第4节幂函数与二次函数
湘教版高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第四节 幂函数与二次函数

求二次函数解析式,一般运用待定系数法,选择规律如下:
考点三
二次函数的图象与性质(多考向探究预测)
考向1二次函数的图象
例题(多选)(2023·湖南岳阳高三检测)如图,二次函数y=ax2+bx+c(a≠0)的图
象与x轴交于A,B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0),
则下列结论正确的是(
= 7.
= 8,
4
故 f(x)=-4x2+4x+7.
(方法 2 利用二次函数的顶点式)设 f(x)=a(x-m)2+n(a≠0).
2+(-1)
因为 f(2)=f(-1),所以二次函数 f(x)图象的对称轴为直线 x= 2
又根据题意函数有最大值 8,所以 n=8,
所以 y=f(x)=a
1 2
x- +8.
( 1 )-( 2 )
x1≠x2,都有 - >1,不妨令 x1>x2,则
1 2
( 1 )-( 2 )
2
>1⇔f(x
1)-x1>f(x2)-x2,令 g(x)=f(x)-x=ax -2x+1,则函数 g(x)在[1,+∞)上
所以a<0,且f(x)max=f(-1)=-a=8,所以a=-8,
所以f(x)=-8x(x+2)=-8x2-16x.
引申探究2将本例中条件变为二次函数f(x)的图象经过点(4,3),在x轴上截得
的线段长为2,且∀x∈R,都有f(2+x)=f(2-x),试确定f(x)的解析式.
解 因为f(2+x)=f(2-x)对任意的x∈R恒成立,所以f(x)的对称轴为直线x=2.
2.4幂函数与二次函数课件高三数学一轮复习

单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.
高考数学(理)一轮复习课件:第二章第四节 幂函数与二次函数(广东专用)

一轮复习 ·新课标 ·数学(理)(广东专用)
综上可知,当 0<λ≤2 时,函数 g(x)在[-1+2 λ,+∞)上 是增函数.
因此 g(x)在(0,1) 上是增函数, 又 g(0)=-1<0,g(1)=2-|λ-1|>0, 故函数 g(x)在区间(0,1)上只有唯一的零点.
一轮复习 ·新课标 ·数学(理)(广东专用)
已知关于 x 的二次函数 f(x)=x2+(2t-1)x+1-2t. (1)求证:对于任意 t∈R,方程 f(x)=1 必有实数根; (2)若12<t<34,求证:方程 f(x)=0 在区间(-1,0)及(0,12) 上各有一个实根.
【证明】 (1)由于 f(x)=x2+(2t-1)x+1-2t. ∴f(x)=1⇔(x+2t)(x-1)=0,(*) ∴x=1 是方程(*)的根,即 f(1)=1. 因此 x=1 是 f(x)=1 的实根,即 f(x)必有实根. (2)当12<t<34时,f(-1)=3-4t>0.
A.m=-2
B.m=2
C.m=-1
D.m=1
【解析】 ∵f(x)=x2+mx+1 的对称轴方程为 x=-m2 . ∴-m2 =1,∴m=-2.
【答案】 A
一轮复习 ·新课标 ·数学(理)(广东专用)
3.(2011·陕西高考)函数 y=x31的图象是( )
【解析】 因为当 x>1 时,x>x13,当 x=1 时,x=x31(广东专用)
(2)设二次函数f(x)=ax2+bx+c(a≠0), 由f(0)=1可知c=1. 又f(x+1)-f(x)=[a(x+1)2+b(x+1)+c]-(ax2+bx+c)=2ax +a+b, 由f(x+1)-f(x)=2x,可得2a=2,a+b=0. 因而a=1,b=-1.所以f(x)=x2-x+1.
高考数学一轮复习第2章函数的概念及基本初等函数Ⅰ第4节二次函数与幂函数课件理新人教A版

第四节 二次函数与幂函数
栏
课 前 ·基 础 巩 固 1
目
导
课 堂 ·考 点 突 破 2
航
3 课 时 ·跟 踪 检 测
[最新考纲]
[考情分析]
[核心素养]
1.了解幂函数的概念.
2.结合函数 y=x,y=x2,y
幂函数一般不单独命题,常与指数、对数
=x3,y=1x,y=x12的图象,函数交汇命题;二次函数的图象与应用仍是 1.逻辑推理
(2)二次函数的图象和性质
解析式
f(x)=ax2+bx+c(a>0)
图象
定义域 值域
(-∞,+∞) 4ac4-a b2,+∞
f(x)=ax2+bx+c(a<0)
(-∞,+∞) -∞,4ac4-a b2
解析式
f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
单调性
在-∞,-2ba上单调递减; 在 6 ___-__∞__,__-__2b_a__上单调递增; 在 5 ___-__2b_a_,__+__∞___上单调递 在-2ba,+∞上单调递减 增
考点二 二次函数的图象与性质 |题组突破|
4.如图是二次函数 y=ax2+bx+c 图象的一部分,图象过点 A(-3,0),对称轴为 x =-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的 是( )
A.②④ B.①④ C.②③ D.①③
解析:选 B 因为图象与 x 轴交于两点,所以 b2-4ac>0,即 b2>4ac,①正确;对称 轴为 x=-1,即-2ba=-1,2a-b=0,②错误;结合图象知,当 x=-1 时,y>0,即 a -b+c>0,③错误;由对称轴为 x=-1 知,b=2a.又函数图象开口向下,所以 a<0,所 以 5a<2a,即 5a<b,④正确.故选 B.
第2章 函数概念与基本初等函数Ⅰ 第4节 幂函数与二次函数

知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理 1.幂函数
(1)幂函数的定义 一般地,形如___y_=__x_α___的函数称为幂函数,其中x是自变量,α为常数. (2)常见的五种幂函数的图象
索引
(3)幂函数的性质 ①幂函数在(0,+∞)上都有定义; ②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.
索引
感悟提升
求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二 次函数解析式的形式,一般选择规律如下:
索引
训练1 (1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值 为f(-1)=0,则f(x)=______x_2+___2_x_+__1. 解析 设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a, 由已知f(x)=ax2+bx+1, 所以a=1,b=2a=2,故f(x)=x2+2x+1.
D.f(m+1)<0
索引
角度2 二次函数的单调性与最值
例3 (1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取
值范围是( D )
A.[-3,0)
B.(-∞,-3]
C.[-2,0]
D.[-3,0]
解析 当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意. 当 a≠0 时,f(x)的对称轴为直线 x=3- 2aa,
第二章 函数概念与基本初等函数Ⅰ
索引
考试要求
1.了解幂函数的概念;结合函数 y=x,y=x2,y=x3,y=x12,y=1x的图象, 了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、 不等式之间的关系解决简单问题.
【推荐ppt】2019版高考数学一轮复习第二章函数第四节二次函数与幂函数课件文

考点突破
考点一 幂函数的图象与性质
典例1 (1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是 ( )
栏目索引
(2)当0<x<1时, f(x)=x1.1,g(x)=x0.9,h(x)=x-2的大小关系是 .
答案 (1)C (2)h(x)>g(x)>f(x)
考点突破
解析 (1)设幂函数的解析式为f(x)=xa, ∵幂函数y=f(x)的图象过点(4,2),
0, 2a,
解得-1≤a< 2 .
3
栏目索引
考点突破
考点二 二次函数的图象与性质
典例2 (2014北京,8,5分)加工爆米花时,爆开且不糊的粒数占加工总粒 数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t (单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次实验
的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 ( B)
钟 C.4.00分钟 D.4.25分钟
答案 B
9a 3b c 0.7,
a 0.2,
解析 由已知得16a 4b c 0.8, 解得b 1.5,
综上可得,实数a的取值范围是(0,2),选A.
栏目索引
考点突破
3-2 (2017北京,11,5分)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是
1 2
,1
.
答案 12 ,1
解析 解法一:由题意知,y=1-x, ∵y≥0,x≥0, ∴0≤x≤1,
栏目索引
则x2+y2=x2+(1-x)2=2x2-2x+1=2
2024版高考数学总复习:二次函数与幂函数教师用书

第四节二次函数与幂函数考试要求:1.通过具体实例,结合y=x,y=x-1,y=x2,y=�12,y=x3的图象,理解它们的变化规律,了解幂函数.2.理解简单二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.一、教材概念·结论·性质重现1.幂函数的概念一般地,函数y=xα称为幂函数,其中α为常数.(1)自变量x处在幂底数的位置,幂指数3.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,因此在第一象限内都有图象,并且图象都通过点(1,1).(2)如果α>0,则幂函数的图象通过原点,并且在(0,+∞)上是增函数.(3)如果α<0,则幂函数在(0,+∞)上是减函数,且在第一象限内,当x从右边趋向于原点时,图象在y轴右方且无限逼近y轴;当x无限增大时,图象在x轴上方且无限逼近x轴.4.二次函数的图象与性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0)图象二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.5.常用结论(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0且Δ<0”.(2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0且Δ<0”.二、基本技能·思想·活动经验1.判断下列说法的正误,对的画“√”,错的画“×”.(1)函数y =2�12是幂函数.(×)(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.(√)(3)当n <0时,幂函数y =x n 是定义域上的减函数.(×)(4)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.(×)2.已知幂函数y =f (x )的图象经过点4f (2)=()A.14B.4C.22D .2C 解析:设f (x )=x α,因为图象过点4所以f (4)=4α=12,解得α=-12,所以f (2)=2−12=22.3.二次函数f (x )的图象经过(0,3),(2,3)两点,且f (x )的最大值是5,则该函数的解析式是()A.f (x )=2x 2-8x +11B.f (x )=-2x 2+8x -1C.f (x )=2x 2-4x +3D.f(x)=-2x2+4x+3D解析:二次函数f(x)的图象经过(0,3),(2,3)两点,则图象的对称轴为x=1.又由函数的最大值是5,可设f(x)=a(x-1)2+5(a≠0).于是3=a+5,解得a=-2.故f(x)=-2(x-1)2+5=−2�2+4x+3.故选D.4.(多选题)(2022·海南中学月考)若幂函数y=f(x)的图象经过点(3,27),则幂函数f(x)是() A.奇函数B.偶函数C.增函数D.减函数AC解析:设幂函数为f(x)=xα(α为常数),因为其图象经过点(3,27),所以27=3α,解得α=3,所以幂函数f(x)=x3.因为f(x)的定义域为R,且f(-x)=(-x)3=-x3=-f(x),所以f(x)是奇函数,又α=3>0,所以f(x)在R上是增函数.5.已知函数y=2x2-6x+3,x∈[-1,1],则y的最小值是_________.-1解析:因为函数y=2x2-6x+3的图象的对称轴为x=32>1,所以函数y=2x2-6x+3在[-1,1]上单调递减.当x=1时,y取得最小值,所以y min=2-6+3=-1.考点1幂函数的图象和性质——基础性1.幂函数y=f(x)的图象经过点(3,3),则f(x)是()A.偶函数,且在区间(0,+∞)上是增函数B.偶函数,且在区间(0,+∞)上是减函数C.奇函数,且在区间(0,+∞)上是减函数D.非奇非偶函数,且在区间(0,+∞)上是增函数D解析:设幂函数f(x)=x a,则f(3)=3a=3,解得a=12,所以f(x)=�12=�,是非奇非偶函数,且在区间(0,+∞)上是增函数.2.若幂函数y=(m2-3m+3)·��2−�−2的图象不过原点,则() A.-1≤m≤2B.m=1或m=2C.m=2D.m=1B解析:因为幂函数y=(m2-3m+3)��2−�−2的图象不过原点,所以�2−�−2≤0,�2−3�+3=1,解得m=1或2,符合题意.故选B.3.与函数y=�12-1的图象关于x轴对称的图象大致是()B解析:y=�12的图象位于第一象限且函数图象是上升的,函数y=�12-1的图象可看作由y=�12的图象向下平移一个单位长度得到的(如选项A中的图象所示).将y=�12-1的图象关于x轴对称后即为选项B.4.若(a+1)-2>(3-2a)-2,则a的取值范围是_________.(-∞,-1)∪−1解析:因为(a+1)-2>(3-2a)-2,又f(x)=x-2为偶函数,且在(0,+∞)上单调递减,所以푎+1<3−2푎,푎+1≠0,3−2푎≠0,解得a<23且a≠-1或a>4.1.解决这类问题要优先考虑幂函数的定义以及解析式,然后结合幂函数的图象与性质来求解.2.有些题目,如第考点2二次函数的解析式——综合性已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,求二次函数f(x)的解析式.解:(方法一:利用二次函数的一般式)设f(x)=ax2+bx+c(a≠0).由题意得4푎+2�+ =−1,푎−�+ =−1,4푎 −�24푎=8,解得푎=−4,�=4,=7.故f (x )=-4x 2+4x +7.(方法二:利用二次函数的顶点式)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以y =f (x )=a �+8.因为f (2)=-1,所以a 2−+8=-1,解得a =-4,所以f (x )=-4×�−+8=-4x 2+4x +7.(方法三:利用二次函数的零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x+1),a ≠0,即f (x )=ax 2-ax -2a -1.又函数有最大值y maxa =-4.故f (x )=-4x 2+4x +7.1.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A.与a 有关,且与b 有关B.与a 有关,但与b 无关C.与a 无关,且与b 无关D.与a 无关,但与b 有关B 解析:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =�12+ax 1+b ,M =�22+ax 2+b .所以M -m =�22−�12+a (x 2-x 1),显然与a 有关,与b 无关.2.(2022·青岛模拟)设a ,b 为不相等的实数,若二次函数f (x )=x 2+ax +b 满足f (a )=f (b ),则f (2)=()A.7B.5C.4D.2C解析:由f (x )=x 2+ax +b 可得函数f (x )图象的对称轴为直线x =-푎2.又由a ≠b ,f (a )=f (b )得f (x )图象的对称轴为直线x =푎+�2,所以-푎2=푎+�2,得2a +b =0,所以f (2)=4+2a +b =4.故选C.考点3二次函数的图象和性质——应用性考向1二次函数的图象应用(1)已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为()D 解析:因为函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),所以-2,1是方程ax 2-x-c =0的两根.把x =-2,1分别代入方程得4푎+2− =0,푎−1− =0,联立解得a =-1,c =-2.所以f (x )=-x 2-x +2.所以函数y =f (-x )=-x 2+x +2,可知其图象开口向下,与x 轴的交点坐标分别为(-1,0)和(2,0).故选D.(2)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是()A解析:若0<a<1,则y=log a x在(0,+∞)上单调递减;y=(a-1)x2-x的图象开口向下,对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上单调递增,y=(a-1)x2-x的图象开口向上,且对称轴在y轴右侧,因此B不正确,只有A满足.1.解决二次函数图象问题的基本方法(1)排除法.抓住函数的特殊性质或特殊点.(2)讨论函数图象,依据图象特征,得到参数间的关系.2.分析二次函数图象问题的要点一是看二次项系数的符号;二是看对称轴和顶点;三是看函数图象上的一些特殊点.从这三方面入手,能准确地判断出二次函数的图象.反之,也能从图象中得到如上信息.若函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]D解析:当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的图象对称轴为x=3−푎2푎.由f(x)在[-1,+∞)上单调递减知푎<0,3−푎2푎≤−1,解得-3≤a<0.综上,a的取值范围为[-3,0].若函数f(x)=ax2+(a-3)x+1的单调递减区间是[-1,+∞),则a=_________.-3解析:由题意知f(x)必为二次函数且a<0.(1)对于二次函数的单调性,的位置不确定,则需要分类讨论.已知函数f(x)=ax2+2ax+1在区间[-1,2]上有最大值4,求实数a的值.解:f(x)=a(x+1)2+1-a.①当a=0时,函数f(x)在区间[-1,2]上的值为常数1,不符合题意,舍去.②当a>0时,函数f(x)在区间[-1,2]上单调递增,最大值为f(2)=8a+1=4,解得a=3.8③当a<0时,函数f(x)在区间[-1,2]上单调递减,最大值为f(-1)=1-a=4,解得a=-3.综上可知,a的值为3或-3.8将本例改为:求函数解:f(x)=(x+f(x)的图象是开口向上的抛物线,对称轴为直线1二次函数的最值问题主要有以下几类:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系.已知函数f(x)=x2-x+1,在区间[-1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.解:由题意可知,f(x)>2x+m等价于x2-x+1>2x+m,即x2-3x+1-m>0.令g(x)=x2-3x+1-m,要使g(x)>0在[-1,1]上恒成立,只需使函数g(x)在[-1,1]上的最小值大于0即可.因为g(x)=x2-3x+1-m在[-1,1]上单调递减,所以g(x)min=g(1)=-m-1,由-m-1>0得m<-1.因此,满足条件的实数m的取值范围是(-∞,-1).将问题归结为求函数的最值,依据是1.(2021·洛阳一中检测)已知函数f(x)=ax2+bx+c.若a>b>c且a+b+c=0,则f(x)的图象可能是()D解析:由a>b>c且a+b+c=0,得a>0,c<0,所以函数图象开口向上,排除选项A,C.又f(0)=c<0,排除选项B.故选D.2.(多选题)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则f(-1),f(1),f(2),f(5)中,最小的可能是()A.f(-1)B.f(1)C.f(2)D.f(5)ACD解析:因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)图象的对称轴是x=2.当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).3.函数f(x)=ax2-(a-1)x-3在区间[-1,+∞)上是增函数,则实数a的取值范围是() A.−∞B.(-∞,0)C.0D .0D解析:若a =0,则f (x )=x -3,f (x )在区间[-1,+∞)上是增函数,符合题意.若a ≠0,因为f (x )在区间[-1,+∞)上是增函数,故푎>0,푎−12푎≤−1,解得0<a ≤13.综上,0≤a ≤13.故选D.4.已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为_________.−∞解析:2ax 2+2x -3<0在[-1,1]上恒成立.当x =0时,-3<0,成立;当x ≠0时,a <32-16,易知1�∈(-∞,-1]∪[1,+∞),所以当x =1时,函数f (x )取最小值12,所以a<12.综上,实数a 的取值范围是−∞课时质量评价(九)A 组全考点巩固练1.若幂函数f (x )=(m 2-4m +4)��2-6�+8在(0,+∞)上单调递增,则m 的值为()A.1或3B.1C.3D.2B 解析:由题意得m 2-4m +4=1,m 2-6m +8>0,解得m =1.2.函数y =3�2的图象大致是()C 解析:y =3�2=�23,其定义域为x ∈R ,排除A,B.又0<23<1,图象在第一象限为上凸的,排除D.故选C.3.(2021·全国甲卷)下列函数中是增函数的为()A.f (x )=-x B.f (x C.f (x )=x 2D.f (x )=3�D解析:对于A,f (x )=-x 为R 上的减函数,不合题意.对于B,f (x为R 上的减函数,不合题意.对于C,f (x )=x 2在(-∞,0)上单调递减,不合题意.对于D,f (x )=3�为R 上的增函数,符合题意.4.设函数f (x )=x 2+x +a (a >0),已知f (m )<0,则()A.f (m +1)≥0B.f (m +1)≤0C.f (m +1)>0D.f (m +1)<0C 解析:因为f (x )图象的对称轴为直线x =-12,f (0)=a >0,所以f (x )的大致图象如图所示.由f (m )<0,得-1<m <0.所以m +1>0.所以f (m +1)>f (0)>0.5.(2023·潍坊模拟)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则()A.a >0,4a +b =0B.a <0,4a +b =0C.a >0,2a +b =0D.a <0,2a +b =0A解析:由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-�2푎=2,所以4a +b =0,又f (0)>f (1),f (4)>f (1),所以f (x )先减后增,于是a >0.6.已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )=_________.x 2-2x +3解析:由f (0)=3,得c =3.又f (1+x )=f (1-x ),所以函数f (x )的图象关于直线x =1对称,所以�2=1,所以b =2,所以f (x )=x 2-2x +3.7.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围28.若푎+1−13<3−2푎−13,则实数a的取值范围是___________.(-∞,-1)∪解析:不等式푎+1−13<3−2푎−13等价于a +1>3-2a >0或3-2a <a+1<0或a +1<0<3-2a ,解得a <-1或23<a <32.9.(2023·福州模拟)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1得c =1,故f (x )=ax 2+bx +1.因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,所以2푎=2,푎+�=0,所以푎=1,�=−1,所以f(x)=x2-x+1.(2)由题意得x2-x+1>2x+m在[-1,1]上恒成立.即x2-3x+1-m>0在[-1,1]上恒成立.设g(x)=x2-3x+1-m,其图象的对称轴为直线x=32,所以g(x)在[-1,1]上单调递减.故只需最小值g(1)>0,即12-3×1+1-m>0,解得m<-1.10.已知幂函数f(x)=(m-1)2��2-4�+2在(0,+∞)上单调递增,函数g(x)=2x-k.(1)求m的值;(2)当x∈[1,2)时,记f(x),g(x)的值域分别为集合A,B,设p:x∈A,q:x∈B,若p是q 成立的必要条件,求实数k的取值范围.解:(1)依题意得:(m-1)2=1⇒m=0或m=2,当m=2时,f(x)=x-2在(0,+∞)上单调递减,与题设矛盾,舍去,所以m=0.(2)由(1)得,f(x)=x2,当x∈[1,2)时,f(x)∈[1,4),即A=[1,4),当x∈[1,2)时,g(x)∈[2-k,4-k),即B=[2-k,4-k).因为p是q成立的必要条件,所以B⊆A,则2−�≥1,4−�≤4,即�≤1,�≥0,得0≤k≤1.故实数k的取值范围是[0,1].B组新高考培优练11.设函数f(x)=1�,g(x)=ax2+bx(a,b∈R,a≠0).若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0D.当a>0时,x1+x2>0,y1+y2>0B解析:当a<0时,作出两个函数的图象,如图所示,由题意不妨记函数f(x)与g(x)的图象在第三象限交于点A(x1,y1),在第一象限相切于点B(x2,y2).因为函数f(x)=1�是奇函数,所以设A关于原点对称的点为�'(−�1,−�1),显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0.当a>0时,由对称性知x1+x2<0,y1+y2>0.12.(多选题)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.下面四个结论中正确的是()A.b 2>4ac B.2a -b =1C.a -b +c =0D.5a <bAD 解析:因为二次函数y =ax 2+bx +c 的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,A 正确;二次函数的图象的对称轴为直线x =-1,即-�2푎=-1,得2a -b =0,B 错误;结合图象知,当x =-1时,y >0,即a -b +c >0,C 错误;因为函数的图象开口向下,所以a <0,所以5a <2a ,即5a <b ,D 正确.故选AD.13.(多选题)若函数f (x )=(x -1)(x +a )在区间(1,2)上单调递增,则满足条件的实数a 的值可能是(AB )A.0B.2C.-2D.-314.(2022·潍坊质检)已知函数f (x )=�2+�,−2≤�≤ ,1�, <�≤3.若c =0,则f (x )的值域是________;若f (x )的值域是−14,2,则实数c 的取值范围是_________.−14,+∞1解析:当c =0时,即x ∈[-2,0]时,f (x)∈−14,2,当x ∈(0,3]时,f (x +∞,所以f (x )的值域为−14,+∞.作出y =x 2+x 和y =1�的图象如图所示,当f (x )=-14时,x =-12;当x 2+x =2时,x =1或x =-2;当1�=2时,x =12,由图象可知当f (x )的值域为−14,2时,需满足12≤c ≤1.15.已知函数f (x )=x 2+2x .(1)若f (x )>a 在区间[1,3]上恒有解,求实数a 的取值范围;(2)若f (x )>a 在区间[1,3]上恒成立,求实数a 的取值范围.解:(1)f (x )>a 在区间[1,3]上恒有解,等价于푎<��max .又f (x )=x 2+2x 且x ∈[1,3],当x=3时,f(x)max=15,故a的取值范围为{a|a<15}.(2)f(x)>a在区间[1,3]上恒成立,等价于푎<��min,又f(x)=x2+2x且x∈[1,3],当x=1时,f(x)min=3,故a的取值范围为{a|a<3}.16.(2022·郑州模拟)已知函数g(x)=ax2-2ax+b+1(a≠0,b<1)在区间[2,3]上有最大值4,最小值1.(1)求a,b的值;(2)设f(x f(2x)-k·2x≥0对x∈[-1,1]恒成立,求实数k的取值范围.解:(1)g(x)=ax2-2ax+b+1=a(x-1)2-a+b+1.若a>0,则g(x)在[2,3]上单调递增,所以g(2)=b+1=1,g(3)=3a+b+1=4,解得a=1,b=0;若a<0,则g(x)在[2,3]上单调递减,所以g(2)=b+1=4,解得b=3.因为b<1,所以b=3(舍去).综上,a=1,b=0.(2)因为f(x f(x)=�2−2�+1�=x+1�-2.因为不等式f(2x)-k·2x≥0对x∈[-1,1]恒成立,所以2x+12�-2-k·2x≥0对x∈[-1,1]恒成立,即k 12对x∈[-1,1]恒成立.因为x∈[-1,1],所以12�∈2,−12∈[0,1],所以k≤0,故实数k的取值范围是(-∞,0].。
高考数学总复习(一轮)(人教A)教学课件第二章 函 数第4节 幂函数与二次函数

一
章
[课程标准要求]
2
3
1.通过具体实例,结合 y=x,y= ,y=x ,y= ,y=x 的图象,理解它
们的变化规律,了解幂函数.2.理解二次函数的图象和性质,能
用二次函数、方程、不等式之间的关系解决简单问题.
积累·必备知识
回顾教材,夯实四基
1.幂函数
(1)幂函数的定义
一般地,函数y=xα叫做幂函数,其中x是 自变量 ,α是常数.
2
2
所以 f(x)=a(x- ) +8.因为 f(2)=-1,所以 a(2- ) +8=-1,
2
2
解得 a=-4,所以 f(x)=-4(x- ) +8=-4x +4x+7.
法三
(利用“零点式”解题)
由已知f(x)+1=0的两根为x1=2,x2=-1,
故可设f(x)+1=a(x-2)(x+1)(a≠0),
2
即 y= x -x-4.
(2)已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离
等于2,则二次函数的解析式为
2
Hale Waihona Puke 2y= x +x- 或 y=- x -x+
.
解析:(2)因为二次函数的图象过点(-3,0),(1,0),
所以可设二次函数为y=a(x+3)(x-1)(a≠0),
位置.
(3)三看特殊点:看函数图象上的一些特殊点,如函数图象与y轴
的交点、与x轴的交点、函数图象的最高点或最低点等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节幂函数与二次函数【考试要求】1.通过具体实例,结合y=x,y=1x,y=x2,y=x,y=x3的图象,理解它们的变化规律,了解幂函数;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.【教学重点】幂函数的概念,三个二次的关系【教学难点】幂函数性质,三个二次的转换【教学方法】知识梳理、典例启发讲练【教学手段】多媒体辅助教学【教学过程】【知识梳理】1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质 函数 y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象 (抛物线)定义域 R值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a对称轴 x =-b2a顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是增函数 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数; 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是减函数 1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关. 2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎨⎧a >0,Δ<0时恒有f (x )>0;当⎩⎨⎧a <0,Δ<0时,恒有f (x )<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限; (2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.【诊 断 自 测】1.判断下列结论正误(在括号内打“√”或“×”) (1)函数y =2x 13是幂函数.( )(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.( ) (4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b 24a .( )2.(多填题)(老教材必修1P79T1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k =________,α=________.3.(新教材必修第一册P86T7改编)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.4.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( ) A.b <a <cB.a <b <cC.b <c <aD.c <a <b5.(2020·河南省实验中学质检)已知函数f (x )=3x 2-2(m +3)x +m +3的值域为[0,+∞),则实数m 的取值范围为( ) A.{0,-3} B.[-3,0] C.{0,3}D.(-∞,-3]∪[0,+∞)6.(2018·上海卷)已知α∈⎩⎨⎧-2,-1,-12,⎭⎬⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.【考点解读】考点一 幂函数的图象和性质【例1】 (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )(2)当x ∈(0,+∞)时,幂函数y=(m2+m-1)x-5m-3为减函数,则实数m 的值为 ( )A.-2B.1C.1或-2D.m ≠15-±(3)若a=2312⎛⎫ ⎪⎝⎭ ,b=2315⎛⎫ ⎪⎝⎭ ,c= 1312⎛⎫ ⎪⎝⎭,则a,b,c 的大小关系是 ( )A.a<b<cB.c<a<bC.b<c<aD.b<a<c(4)(2020·衡水中学调研)已知点(m ,8)在幂函数f (x )=(m -1)x n 的图象上,设a =f ⎝ ⎛⎭⎪⎫13,b =f (ln π),c =f (2-12),则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.b <c <aD.b <a <c规律方法 1.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【训练1】 (1)(多选题)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A.奇函数B.偶函数C.(0,+∞)上的增函数D.(0,+∞)上的减函数(2)若幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A.-1<m <0<n <1B.-1<n <0<mC.-1<m <0<nD.-1<n <0<m <1考点二 二次函数的解析式【例2】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.规律方法 求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练2】(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)= .(2)若函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则f(x)= .(3)已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.考点三二次函数的图象及应用【例3】(1)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是()(2)设函数f(x)=x2+x+a(a>0),已知f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0规律方法 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【训练3】一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是()考点四二次函数的性质多维探究角度1二次函数的单调性与最值【例4-1】已知二次函数f(x)=ax2+bx+1(a,b∈R且a≠0),x∈R.(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围.角度2二次函数中的恒成立问题【例4-2】(2020·沈阳模拟)已知函数f(x)=-x2+ax-6,g(x)=x+4.若对任意x1∈(0,+∞),存在x2∈(-∞,-1],使f(x1)≤g(x2),则实数a的最大值为() A.6 B.4 C.3 D.2规律方法 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.2.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.这两个思路的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a≤f(x)min.【训练4】(1)(角度1)若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)()A.在(-∞,2]上递减,在[2,+∞)上递增B.在(-∞,3)上递增C.在[1,3]上递增D.单调性不能确定(2)(2)已知函数f(x)=x2-x+1,在区间[-1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.(3)已知函数f(x)=ax2+2ax+1在区间[-1,2]上有最大值4,求实数a的值.(4)若函数f(x)=ax2-(2a+1)x+a+1对于x∈[-1,1]时恒有f(x)≥0,则实数a 的取值范围是________.【课堂小结】1、幂函数性质应用2、二次不等式、方程函数间关系及应用3、恒成立问题的转换【作业】《创新设计》第二章函数第4节【教学反思】。