人教版数学九下《相似三角形》word教学设计

合集下载

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案

人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。

本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。

教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。

但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。

三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。

2.培养学生的几何思维和解决问题的能力。

3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。

四. 教学重难点1.掌握相似三角形的性质。

2.能够运用相似三角形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。

通过案例教学,让学生直观地理解和掌握相似三角形的性质。

通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪、电脑等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。

2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。

同时,教师结合性质给出相应的例题,让学生进一步理解和运用。

3.操练(15分钟)教师给出一些练习题,让学生独立完成。

教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。

4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。

九年级数学下册《相似三角形的性质》教案、教学设计

九年级数学下册《相似三角形的性质》教案、教学设计
-提问:“全等三角形有哪些性质?它们在几何证明中有什么作用?”
-学生回顾全等三角形的性质,为新课的学习打下基础。
(二)讲授新知
1.教师引导学生从相似三角形的定义入手,探讨相似三角形的性质。
-解释相似三角形的定义,强调比例关系。
-引导学生观察相似三角形的边长和角度,发现性质。
2.教师运用几何画板动态展示相似三角形的性质,帮助学生形象理解。
-学生能够运用相似三角形的性质,进行严密的几何证明,掌握证明过程中的逻辑关系。
-学生能够灵活运用相似三角形的性质,解决复合几何问题,提高解题技巧。
3.学会运用相似三角形的性质解决实际问题,增强数学应用能力。
-学生能够运用相似三角形的性质,解决生活中的实际问题,如测量高度、距离等。
-学生能够将相似三角形的性质与其他数学知识相结合,解决综合性的数学问题。
3.培养学生的创新精神和实践能力,激发学生探索未知世界的热情。
-教师鼓励学生提出问题、解决问题,培养学生的创新思维。
-学生通过解决实际问题,感受数学与现实生活的联系,激发探索未知世界的热情。
4.培养学生的严谨学生严谨对待数学问题,养成良好的学习习惯。
(二)教学难点
1.相似三角形性质的推理和证明过程。
2.学生在解决实际问题中,对相似三角形性质的应用。
3.帮助学生建立几何直观,理解相似三角形的空间变化。
教学设想:
1.采用情境导入法,引发学生兴趣
-通过展示生活中与相似三角形相关的实例,如建筑物的立面设计、摄影中的构图等,激发学生的学习兴趣,引导学生认识到相似三角形在实际中的应用。
九年级数学下册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及其判定条件,掌握相似三角形的性质和比例关系。

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3

人教版九年级数学下册: 27.2.1《相似三角形的判定》教学设计3一. 教材分析本节课的主题是《相似三角形的判定》,是人教版九年级数学下册第27.2.1节的内容。

相似三角形是几何中的一个重要概念,它是学习更复杂几何知识的基础。

本节课的内容包括相似三角形的定义、性质和判定方法。

通过本节课的学习,学生将对相似三角形有更深入的理解,并能够运用相似三角形的知识解决实际问题。

二. 学情分析九年级的学生已经学习了三角形的性质、角的度量等基础知识,对几何图形有一定的认识。

但是,他们对相似三角形的理解和应用还比较模糊,需要通过本节课的学习来进一步明确相似三角形的概念和判定方法。

此外,学生可能对一些抽象的概念和证明过程感到困难,需要教师在教学过程中进行耐心引导和解释。

三. 教学目标1.理解相似三角形的定义和性质。

2.学会使用相似三角形的判定方法判断两个三角形是否相似。

3.能够运用相似三角形的知识解决实际问题。

四. 教学重难点1.相似三角形的定义和性质。

2.相似三角形的判定方法。

3.运用相似三角形的知识解决实际问题。

五. 教学方法本节课采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题、展示案例、引导学生进行小组讨论和合作,激发学生的思考和探究欲望,培养学生的动手操作能力和团队合作精神。

六. 教学准备1.准备相关的教学案例和图片。

2.准备教学课件和板书设计。

3.准备练习题和作业题。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生回顾三角形的基本性质和角的度量知识。

激发学生对相似三角形的兴趣和好奇心。

2.呈现(10分钟)展示一些相似三角形的案例,让学生观察和分析,引导学生发现相似三角形的特征。

引导学生通过小组讨论,总结出相似三角形的定义和性质。

3.操练(10分钟)让学生通过实际操作,使用尺子和直尺来画出相似三角形。

引导学生通过小组合作,探索并验证相似三角形的判定方法。

4.巩固(10分钟)让学生解答一些相似三角形的练习题,巩固他们对相似三角形的理解和应用。

九年级数学下册《相似三角形》教案、教学设计

九年级数学下册《相似三角形》教案、教学设计
九年级数学下册《相似三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握相似三角形的定义,能够识别图形中的相似三角形。
2.掌握相似三角形的性质,如对应角相等、对应边成比例,能够运用性质解决相关问题。
3.学会使用相似三角形的判定方法,如AA、SAS、SSS等,能够判断两个三角形是否相似。
4.能够运用相似三角形的知识解决实际问题,如测量物体的高度、计算角度等。
2.提出问题:询问学生是否知道这些图形中的相似三角形,它们有什么特点?如何判断两个三角形是相似的?
3.学生回答:鼓励学生积极思考,回答问题,分享他们的观察和发现。
4.教师总结:根据学生的回答,总结相似三角形的初步概念,为新课的学习做好铺垫。
(二)讲授新知
1.教学内容:详细讲解相似三角形的定义、性质(对应角相等、对应边成比例)及判定方法(AA、SAS、SSS)。
(ቤተ መጻሕፍቲ ባይዱ)情感态度与价值观
1.培养学生积极主动探索数学知识的热情,增强学生学习数学的自信心。
2.培养学生严谨、细致的学习态度,对待数学问题要有耐心和毅力。
3.培养学生善于发现生活中的数学问题,体会数学在现实生活中的应用价值。
4.培养学生的审美观念,欣赏相似三角形在几何图形中的美感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理。在此基础上,学习相似三角形的知识,对学生来说是水到渠成的过程。然而,由于相似三角形涉及的概念和性质较为抽象,学生在理解上可能存在一定困难。因此,在教学过程中,教师需要关注以下几点:
(3)单元测试:通过单元测试,检验学生对相似三角形知识的掌握程度,发现并解决学生存在的问题。

初中数学九年级下册《相似三角形》详细表格式教学设计.doc

初中数学九年级下册《相似三角形》详细表格式教学设计.doc

《相似三角形》教学设计在仔细研究这一章教学的内容后 ,我认为§29.1《形状相同的图形》这一节内容主要是让学生感受形状相同的图形,内容较为单薄,可以看成是相似三角形的情境创设,根据学生的接受能力,在处理本节课的内容时 ,我把§29.1《形状相同的图形》和 29.3《相似三角形》整合 , 把课题定为相似三角形。

一、教材的地位与作用相似三角形是两个图形进行比较时产生的一个概念,它的内容是全等三角形的推广和拓展 ,而全等三角形是相似三角形的特例。

相似三角形无论是在数学领域还是在现实生活中都有广泛应用,本节课的学习,不仅为从更一般的角度研究图形之间的关系打下基础,而且能够为进一步的发展学生的空间观念创造条件。

b5E2RGbCAP 二、教学目标根据“相似三角形”的地位,作用及《课标》中的教学要求,我认为本节课的教学目标是:(一)知识与技能:(1)结合具体实例认识形状相同的图形,了解相似三角形的概念,会求相似三角形的相似比。

(2)能准确找出相似三角形的对应边和对应角。

(二)过程与方法(1)经历形状相同的图形 ,相似三角形概念的形成过程,培养学生的探究精神和实践能力。

(2)体会成比例线段和相似三角形之间的内在联系。

(三)情感态度与价值观:(1)通过观察实物和图形 ,感受数学与现实世界的联系 ,进一步增强同学们的数学应用意识。

(2)体验数学活动充满探索性与创造性,逐步增强数学学习的信心。

三、教学重难点重点:相似三角形的定义以及在复杂图形中准确地找出相似三角形的对应角与对应边。

难点:在复杂图形中准确的找出相似三角形的对应角与对应边。

四、教学方法课程标准明确规定“教师应帮助学生在自主探索与合作交流中真正理解和掌握数学知识与技能,数学思想和方法,获得广泛数学活动的经验。

所以在本节课我采用以下方法进行教学。

p1EanqFDPw1、自主探究法。

在本节课教学中,我十分注重学生主体性因素的挖掘,例如:在引导学生获得相似三角形的概念时,让学生主动参与,动手实践,使学生真正成为了课堂的主人。

人教版九年级数学下27.2.1相似三角形的判定(第一课时)教学设计

人教版九年级数学下27.2.1相似三角形的判定(第一课时)教学设计
4.培养学生勇于面对困难、克服挫折的品质,使他们具备解决问题的信心和决心。
在教学过程中,教师要关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,教师要善于运用启发式教学,引导学生主动发现、总结相似三角形的判定方法,提高他们的数学素养。通过本章节的学习,使学生掌握相似三角形的判定方法,为后续几何学习打下坚实基础。
(2)结合数学学科特点,探讨相似三角形在艺术、建筑等领域的应用,撰写一篇小论文。
作业要求:
1.学生独立完成作业,确保解题过程的正确性和答案的准确性。
2.注重作业书写的规范性和整洁性,体现良好的学习态度。
3.鼓励学生积极参与小组合作作业,提高团队协作能力。
4.教师在批改作业时,关注学生的解题思路和方法,及时给予评价和指导。
三、教学重难点和教学设想
(一)教学重难点
1.重点:相似三角形的判定方法及其应用。
2.难点:相似三角形的判定过程中,学生对于比例关系的理解和运用;以及在解决实际问题时,相似变换的灵活运用。
(二)教学设想
1.创设情境,导入新课
利用生活中常见的相似图形,如照片放大、缩小等,引导学生观察、思考相似三角形的性质。通过实际案例,激发学生探究相似三角形判定的兴趣。
1.帮助学生巩固几何基础知识,特别是全等三角形的判定方法,为学习相似三角形打下坚实基础。
2.注重培养学生的观察能力和空间想象力,提高他们发现相似三角形判定方法的能力。
3.针对学生个体差异,设计不同难度的问题,使每位学生都能在课堂上得到锻炼和提升。
4.加强对学生合作学习的引导,培养他们沟通交流、共同解决问题的能力。
(2)鼓励学生积极参与拓展性学习,提高他们的数学素养。
(3)充分挖掘学生的潜能,激发他们的创新意识。

人教版九年级下册《相似三角形的性质》教案

人教版九年级下册《相似三角形的性质》教案

人教版九年级下册《相似三角形的性质》教案一、教学目标1.知道什么是相似三角形;2.掌握相似三角形的相关性质;3.学会运用相似三角形的性质解决相关问题。

二、教学重点1.相似三角形的判定;2.三角形的比较;3.相似三角形的性质。

三、教学难点1.相似三角形的判定方法;2.相似三角形的运用。

四、教学步骤1. 热身(5分钟)让学生回顾上节课讲的相关知识,为本节课做好铺垫。

2. 导入(10分钟)通过引入具体生活例子,让学生了解相似三角形的概念,提高学生对数学的兴趣与探究欲望。

3. 讲解(30分钟)3.1 相似三角形的定义定义:若两个三角形各对应角相等,则这两个三角形互相相似,相似的记作$\\triangle ABC \\sim \\triangle A'B'C'$,其中$\\angle A = \\angle A', \\angle B = \\angle B', \\angle C = \\angle C'$。

3.2 判断两个三角形相似的方法1.对应角相等;2.对应边成比例。

3.3 相似三角形的性质1.两个相似三角形对应边的比相等;2.相似三角形的对应高成比例;3.相似三角形的面积成比例;4.角平分线所分割的对边成比例;5.中线与该边所在直角平分角,且长度成比例;6.AA、SAS、SSS三种情况下,若两个三角形中有一对相等角,则这两个三角形相似。

以上性质都需要通过具体例子来讲解,让学生易于理解。

4. 练习(35分钟)1.练习简单的相似三角形判定;2.练习三角形相似比例的计算;3.通过运用相似三角形的性质,解决一些实际问题。

5. 总结(5分钟)让学生自主总结本节课的学习内容和收获。

五、教学资料1.手册;2.笔记本电脑;3.讲义;4.相关题目练习册。

六、教学评估在练习环节,教师可以根据学生的答题情况进行评估。

在下节课讲解前,可以通过小测验来检查学生是否掌握相关知识点。

人教版九年级数学下册相似《相似三角形(第1课时)》示范教学设计

人教版九年级数学下册相似《相似三角形(第1课时)》示范教学设计

相似三角形(第1课时)教学目标1.理解相似三角形的概念,知道用相似符号“∽”表示的相似三角形之间的边、角对应关系.2.掌握平行线分线段成比例的基本事实及推论,并能用其进行简单的证明和计算.3.掌握利用平行线判定两个三角形相似的定理,并能利用其判定三角形相似.教学重点掌握平行线分线段成比例的基本事实及推论,能利用平行线判定三角形相似.教学难点平行线分线段成比例的基本事实及推论的应用.教学准备准备带刻度的直尺.教学过程知识回顾1.相似多边形的概念是什么?【答案】两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.2.相似多边形的性质有哪些?【答案】相似多边形的对应角相等,对应边成比例.3.什么是相似比?【答案】相似多边形对应边的比叫做相似比.【设计意图】复习相似多边形的相关知识,巩固基础,为本节课的学习作准备.新知探究一、探究学习【问题】在相似多边形中,最简单的是____________.【师生活动】学生独立思考,得出答案:相似三角形.【追问】你能说出相似三角形的定义吗?【新知】如图,在△ABC和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,即三个角分别相等,三条边成比例,我们就说△ABC与△A′B′C′相似,相似比为k.相似用符号“∽”表示,读作“相似于”.△ABC与△A′B′C′相似记作“△ABC∽△A′B′C′”.【思考】△A′B′C′与△ABC的相似比是什么?【师生活动】学生小组讨论,得出答案:△A′B′C′与△ABC的相似比为1k.教师让学生回顾:相似比具有顺序性.【归纳】特别提醒:用符号“∽”表示两个三角形相似时,要把表示对应顶点的大写字母写在对应的位置上.△ABC∽△A′B′C′表示顶点A与A′,B与B′,C与C′分别对应;如果仅说“△ABC与△A′B′C′相似”,没有用“∽”连接,则需要分类讨论它们之间的对应关系.【思考】如果k=1,这两个三角形有怎样的关系?【师生活动】学生小组讨论,得出答案:当ABA B''=BCB C''=ACA C''=k=1时,AB=A′B′,BC=B′C′,AC=A′C′,故△ABC≌△A′B′C′(SSS),即当k=1时,这两个三角形全等.教师讲解、总结.【归纳】全等三角形是相似比为1的相似三角形,即全等三角形是特殊的相似三角形,而相似三角形不一定是全等三角形.【思考】根据相似三角形的定义你能得到相似三角形的性质吗?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义可以看作是性质,即相似三角形的三个角分别相等,三条边成比例.符号表示:∵△ABC∽△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''.【思考】如何判定两个三角形相似?【师生活动】学生自由发言,教师总结.【新知】相似三角形的定义也可以看作是判定,即三个角分别相等,三条边成比例的两个三角形相似.符号表示:∵∠A=∠A′,∠B=∠B′,∠C=∠C′,ABA B''=BCB C''=ACA C''=k,∴△ABC∽△A′B′C′.【设计意图】分析相似三角形的定义,让学生知道全等三角形是特殊的相似三角形,掌握相似三角形对应边、对应角的性质,并能根据定义判定两个三角形相似.【问题】判定两个三角形全等时,除了可以验证它们所有的角和边分别相等外,还可以使用简便的判定方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?我们先来探究下面的问题.如图,任意画两条直线l1,l2,再画三条与l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB BC与DEEF相等吗?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF.【追问】任意平移l5,ABBC与DEEF还相等吗?直线l3,l4,l5在直线l1,l2上截得的线段有什么关系?【师生活动】学生通过测量、计算,得出答案:ABBC=DEEF;小组讨论,发现:ABBC=DE EF ,BCAB=EFDE,ABAC=DEDF,BCAC=EFDF等.教师总结.【新知】平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.注意:(1)截线是一组平行线,被截直线不一定平行;(2)所有的成比例线段是指被截直线上的线段,与这组平行线上的线段无关;(3)对应线段的比相等是指同一直线上的两条线段的比等于另一条直线上与它们对应的线段的比.把平行线分线段成比例的基本事实应用到三角形中,会出现两种情况,如图所示.在图①中,把l4看成是平行于△ABC的边BC的直线;在图②中,把l3看成是平行于△ABC的边BC的直线,那么我们可以得到结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.【设计意图】在让学生通过画图、测量、猜想感知结论的基础上,给出平行线分线段成比例的基本事实;并将基本事实应用到三角形中,直接得出推论,为学习“利用平行线判定两个三角形相似的定理”作准备.【问题】如图,在△ABC中,DE∥BC,且DE分别交AB,AC于点D,E,△ADE与△ABC有什么关系?【师生活动】学生自由发言,给出猜想:△ADE∽△ABC.教师追问:你能证明你的猜想吗?教师给出提示:利用相似的定义证明,即证明∠A=∠A,∠ADE=∠B,∠AED=∠C,AD AB =AEAC=DEBC.学生根据提示,小组讨论,发现:由前面的结论可得,ADAB=AEAC.而DEBC中的DE不在△ABC的边BC上,不能直接利用前面的结论.教师引导学生继续分析:从要证的AEAC=DEBC可以看出,除DE外,AE,AC,BC都在△ABC的边上,因此只需将DE平移到BC边上去,使得BF=DE,再证明AEAC=BFBC就可以了.如图,只要过点E作EF∥AB,交BC于点F,BF就是平移DE所得的线段.学生根据分析,完成证明.【答案】证明:如图,过点E作EF∥AB,交BC于点F.在△ADE与△ABC中,∠A=∠A.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∵DE∥BC,EF∥AB,∴四边形DBFE为平行四边形,ADAB=AEAC,BFBC=AEAC.∴DE=BF.∴DEBC=AEAC.∴ADAB=AEAC=DEBC.∴△ADE∽△ABC.【新知】因此,我们有如下判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.符号表示:∵DE∥BC,∴△ADE∽△ABC.二、典例精讲【例1】如图,DE∥BC,AB=5,AC=6,AD=2,求AE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴ADAC=AEAB.∵AB=5,AC=6,AD=2,∴26=5AE.∴AE=53.【设计意图】通过例1,考查学生是否会用平行线分线段成比例的基本事实解决问题.【例2】如图,在△ABC中,DE∥BC,ADAB=13,BC=12,求DE的长.【师生活动】学生独立完成,请一名学生代表板演,教师指导、讲解.【答案】解:∵DE∥BC,∴△ADE∽△ABC.∴ADAB=AEAC=DEBC.∵ADAB=13,BC=12,∴DE=13BC=4.【提醒】(1)当三角形中出现平行线时,可利用相似三角形建立比例式求线段的长;(2)在利用平行线判定两个三角形相似时,只需两条直线平行这一个条件就能证明这两个三角形相似.【设计意图】通过例2,考查学生是否能利用平行线判定两个三角形相似.课堂小结板书设计一、相似三角形二、平行线分线段成比例三、利用平行线判定两个三角形相似的定理课后作业完成教材第31页练习第1~2题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《相似三角形》教学设计
北京市第二十中学王云松
一、内容和内容解析
1.内容
平行线分线段成比例基本事实及其在三角形中的应用.
2.内容解析
《相似三角形的判定》是人教版九年级数学第二十七章《相似》第二节《相似三角形》第一课时的内容.
《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.”引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法.接下来教材编写者通过一个“探究”,由学生动手测量来探究得到平行线分线段成比例的基本事实(三条平行线截两条直线,所得的对应线段的比相等.),继而将其应用于三角形中,得到“平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.”这一基本事实的推论,是进一步学习相似三角形判定的预备定理的基础.
通过本节课的学习,学生经历画图、测量、猜想感知结论,并能将基本事实应用到三角形中,提高学生的动手操作能力和直观感知和知识迁移能力.
基于以上分析,本节课的教学重点是:平行线分线段成比例的基本事实及其在三角形中的应用.
二、目标和目标解析
1.目标
(1)掌握平行线分线段成比例的基本事实及其在三角形中的应用;
(2)经历“动手操作—直观感知—发现事实”的过程,增强学生发现问题,解决问题的能力.
2.目标解析
达成目标(1)的标志是:学生动手操作,画一组平行线截两条直线,通过度量所截得的对应线段的长度,然后经过计算,发现对应线段的比相等这一基本事实,能够理解将被截线适当平移后,所截对应线段仍然成比例,从而掌握这一基本事实在三角形中的应用.
达成目标(2)的标志是:经历作图,猜想、度量及计算这一探究的全过程,发现平行线分线段成比例的基本事实,发展学生观察、猜想、直观感知以及分析、解决问题的能力,增强学生数学探究的意识.
三、教学问题诊断分析
相似三角形的判定既是本章的重点,也是整个初中几何的重点.同时,在我们的生活中相似图形的应用也比较广泛.学生前面已经学过相似多边形的判定方法和成比例线段及全等三角形的有关知识.在此基础上,学生应不难理解相似三角形的判定.为了使学生在后续相似三角形的判定中更好地学习和掌握各个判定定理,新课标增加了平行线分线段成比例这一基本事实的学习.而这个基本事实,是要求学生能通过动手操作,并且在观察猜想的基础上进行度量与计算,从而自我发现这一事实的真实性,对学生的作图、读数、计算等能力要求较高.因而教学中要求学生做到作图规范、度量准确、计算无误.
本课的教学难点是:平行线分线段成比例基本事实的探究.
四、教学过程设计
1.复习提问,引入新课
问题1相似多边形是如何定义的?根据定义如何判定两个多边形相似?在相似多边形中最简单的是什么?
师生活动:教师提出问题,学生思考并回答,使学生对上节课所学内容有深刻印象,以引起学生对本节课的研究内容的关注.
设计意图:通过对旧知的复习和回顾,激发学生的学习兴趣,学生通过思考能更好地复习图形相似的有关知识,为学习新知识提供基础.
2.探索新知,自主学习
问题2 如何定义相似三角形?
如图,在△ABC和△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,

我们就说△ABC与△A'B'C'相似,记作△ABC∽△A'B'C' .k就是它们的相似比.
师生活动:学生观察图形,结合相似多边形的定义,不难发现如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似.于是,得到判定三角形相似的定义:即对应角相等,对应边的比相等的两个三角形叫相似三角形.教师适时提问,当相似比k为1时,这两个三角形又有怎样的关系?
在此活动中,教师应重点关注学生是否理解:
①相似的顺序性;
②表示对应顶点的字母写在对应的位置上;
③全等是特殊的相似,其相似比为1.
设计意图:通过观察,引导学生去探索、发现、归纳相似三角形的有关概念.
追问1:学习三角形全等时,我们知道,除了可以通过证明对应角相等,对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS等).类似地,判定两个三角形相似时,是不是对所有的对应角和对应边都要一一验证呢?有没有简便方法呢?
师生活动:学生思考,并猜想判定方法,教师对学生的大胆猜想予以鼓励,并指出为了证明相似三角形的判定定理,我们先来学习下面的平行线分线段成比例这个基本事实.设计意图:通过提问,引导学生回顾全等三角形的判定方法.并能类比全等三角形提出相似三角形判定方法的猜想.教师要关注学生的探究投入程度,鼓励学生大胆发表自己的见解.
3.问题探究,发现事实
问题3
如图,任意画两条直线l1、l2,再画三条与l1、l2相交的平行线l3、l4、l5.分别度量l3、l4、l5在l1上截得的两条线段AB、BC和在l2上截得的两条线段DE、EF的长度,
相等吗?任意平移l4,再度量AB、BC、DE、EF的长度,还相等吗?你还能发现哪些成比例线段?
师生活动:学生动手画图,并进行测量三条平行线在两条直线上所截得的对应线段的长度,然后计算它们的比值.在学生动手实践的基础上,教师利用媒体技术,通过任意拖动直
线进行演示.事实上可以得到如下一些结论:,
,.最终发现平行线分线段成比例基本事实:两条直线被一组平行线所截,所得的对应线段成比例.
在此活动中,教师应重点关注学生:
①画图是否规范;
②能否准确找出对应线段;
③度量与计算是否准确;
④能否会用符号语言进行表述.
设计意图:通过学生的独立思考,动手实践操作验证结果,发现基本事实.
4.应用新知,知识迁移
问题4如果将这个基本事实应用到三角形中,会出现下面两种情况:
图(1)图(2)把直线l2向左平移,两直线相交时有两种特殊的交点,图(1)是把l4看成平行于△ACF 的边CF的直线. 图(2)是把l3看成平行于△FBC的边FC的直线,那我们能得出什么样的结论呢?
师生活动:在基本事实的支持下,学生不难发现:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即:平行线分线段成比例基本事实的推论.设计意图:通过学生的独立思考,明确基本事实在三角形中的应用.
5.巩固新知,学以致用
练习1如图,在△ABC中,DE∥BC,AC=6 ,AB=5,EC=2.求AD和BD的长.
练习2 如图,ED∥BC,AB=6,AC=8,AD=2,求AE的长.
设计意图:巩固性练习,运用基本事实于三角形中,使学生熟悉两种基本图形,体验运用新知,独自解决问题的快乐.
6.反思小结,形成方法
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)两个三角形相似需要满足怎样的条件?
(2)平行线分线段成比例的基本事实如何应用于三角形中?
设计意图:通过小结,使学生梳理本节课所学内容和探索问题的过程与方法,巩固平行线分线段成比例的基本事实及推论.
7.布置作业
(1)教科书第31页练习第1题.
(2)思考:如图,在△ABC中,DE∥BC,DE 分别交AB、AC于点D、E,△ADE 与△ABC 相似吗?
五、目标检测设计
1.判断题
(1)两个全等三角形一定相似; ( )
(2)两个直角三角形一定相似; ( )
(3)两个等腰三角形一定相似; ( )
(4)两个等腰直角三角形一定相似; ( )
(5)两个等边三角形一定相似. ( )
设计意图:从定义上理解两个三角形相似的条件.
2.选择题
如图,DE∥BC,下列各式不正确的是( )
A. B.
C. D.
设计意图:检测学生能否理解平行线分线段成比例这一基本事实在三角形中的应用.
3.已知AE 与CD 相交于点B,∠A =∠E,CB=4,,求CD 的长.
设计意图:检测学生能否根据已知条件,找到基本事实应用于三角形的条件,进而解决问题.。

相关文档
最新文档