江苏省南京市七年级下学期期末考试数学试题
2022-2023学年江苏省南京市联合体七年级第二学期期末数学练习试卷及评分标准

南京市联合体七年级第二学期期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分) 1.计算(-a 2)3的结果是( )A .a 5B .-a 5C .a 6D .-a 62.下列运算正确的是( )A .a 3+a 2=a 5B .a 3·a 2=a 6C .a 3÷a 2=aD .(a 3)2=a 93.若x >y ,则下列各式不正确的是( )A .x +2>y +2B .x -2>y -2C .x 2>y 2D .-2x >-2y4.如图,l 1∥l 2,若∠1=115°,则∠2的度数为( )5.已知M =x 2+x ,N =3x -1,则M ,N 的大小关系是( )A .M ≥NB .M >NC .M ≤ND .M <N6.如图,两面镜子AB ,BC 的夹角为∠α,当光线经过镜子后反射,∠1=∠2,∠3=∠4.若∠α=70°,则∠β的度数是( )A .30°B .35°C .40°D .45°二、填空题(本大题共10小题,每小题2分,共20分)7.某种花粉颗粒的直径约为0.000 031m ,将0.000 031用科学记数法表示为 . 8.若x 2-6x +m (m 为常数)是一个完全平方式,则m 的值是 . 9.若一个多边形的每个内角都为144°,则这个多边形的边数是 . 10.若(a +b )2=7,a 2+b 2=3,则ab = .11.已知方程组⎩⎪⎨⎪⎧3x +y =5,x +3y =-1.则x +y = .12.一个直角三角形的两个锐角的差是20°,则最小的锐角的度数为 °. 13.已知y =2x +1,若-1<y ≤3,则x 的取值范围是 .A .55°B .65°C .75°D .85°l 1l 212(第4题)(第6题) A14.如图,△ABC 是直角三角形.若l 1∥l 2,则∠1-∠2= °.15.若关于x 的一元一次不等式x +1≤m 只有1个正整数解,则m 的取值范围是 . 16.如图,四边形ABOC 中,∠BAC 与∠BOC 的角平分线相交于点P ,若∠B =16°,∠C =42°,则∠P = °.三、解答题(本大题共10小题,共68分.解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(1)20+23-2-3; (2)(x -3y )(2x +y ).18.(6分)因式分解:(1)2a 3-12a 2+18a ; (2)(a -3)2-16.ACBl 112 l 2 (第14题)ABOP (第16题)19.(6分)先化简,再求值:(x -2y )2-(x +2y )(x -2y ),其中x =-1,y =12.20.(6分)解方程组⎩⎨⎧3x -y =7,x +3y =-1.21.(6分)解不等式组⎩⎨⎧2(x -1)≤-4,x 3-x -12<1.并写出它的整数解.22.(6分)比较大小.(1)当a >1时,aa +12(填“>”、“<”或“=”); (2)说明第(1)小题的正确性.23.(6分)如图,平移线段AB ,使点A 移动到点A '的位置.(1)尺规作图,保留作图痕迹; (2)作图的依据是 .24.(8分)如图, D 、E 、F 、G 是△ABC 边上的点,DE ∥BC ,∠1=∠2.求证:DG ∥FC .AE G CBDF12(第24题)(第23题)AA '25.(8分)某校计划购买A 型和B 型两种笔记本作为奖品发放给学生,若购买A 型笔记本5本,B型笔记本8本,共需80元;若购买A 型笔记本15本,B 型笔记本4本,共需140元. (1)A 型和B 型笔记本每本的价格分别是多少元?(2)该校计划购买A 型和B 型两种笔记本共80本,费用不超过500元,A 型笔记本最多买多少本?26.(10分) 【初步认识】(1)如图①,在△ABC 中,BP ,CP 分别平分∠ABC ,∠ACB .求证:∠BPC =90°+12∠A .ABCP①【继续探索】(2)如图②,在△ABC 中,BM 平分∠ABC ,CM 平分△ABC 外角∠ACD .求证:∠M =12∠A .(3)如图③,BN 、CN 分别平分△ABC 外角∠EBC ,∠FCB .则∠N 与∠A 的数量关系是 .(4)如图④,△ABC 中的两内角平分线交于P 点,两外角平分线交于N 点,一内角平分线与一外角平分线交于M 点.设∠BPC =a °,∠M =b °,∠N =c °,则a ,b ,c 之间的关系是 .ABCM② DABCN ③EFABCN ④EFMPD七年级数学参考答案一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3.1×10-5; 8.9; 9.10; 10.2; 11.1;12.35; 13.-1<x ≤1; 14.90; 15. 2 ≤m <3; 16.13.三、解答题(本大题共68分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(1)原式=1+8-18, ·········································································· 2分=718. ··················································································· 3分 (2)原式=2x 2+xy -6xy -3y 2, ······················································· 2分=2x 2-5xy -3y 2. ······························································· 3分18.(6分)(1)原式=2a (a 2-6a +9), ································································· 1分=2a (a -3)2, ········································································· 3分(2)原式=[(a -3)+4][( a -3)-4], ················································· 1分=(a +1)(a -7). ·································································· 3分19.(6分)原式=x 2-4xy +4y 2-(x 2-4y 2), ························································ 2分=8y 2-4xy , ·················································································· 4分 把x =-1,y =12代入得,原式=4. ·················································· 6分20.(6分)解法一:由①得y =3x -7……③, ····································································· 1分 把③代入②得x =2, ············································································ 3分所以原方程组的解为⎩⎨⎧x =2,y =-1.···························································· 6分解法二:①×3得9x -3y =21……③, ································································ 1分 ②+③得x =2, ···················································································· 3分 把x =2代入①得y =-1, ··································································· 5分所以原方程组的解为⎩⎨⎧x =2,y =-1.···························································· 6分21.(6分)由①得x ≤-1, ··················································································· 2分由②得x >-3, ···················································································· 4分 ∴不等式组的解集是-3<x ≤-1,····················································· 5分 ∴不等式组的整数解是:-1,-2. ·················································· 6分22.(6分)(1)>. ······························································································· 2分(2)∵a >1,∴a +a >a +1, ··········································································· 4分 ∴2a >a +1, ··············································································· 5分 ∴a >a +12. ················································································· 6分23.(6分)(1)······································································································ 4分 (2)一个图形和它经过平移所得的图形中,两组对应点连线平行且相等. ··················································································································· 6分24.(8分)∵DE ∥BC ,∵∠ADG =∠ADE +∠1,∠AFC =∠B +∠2, ∠1=∠2, ············ 4分 ∴∠ADG =∠AFC , ··········································································· 6分 ∴DG ∥FC . ························································································ 8分25.(8分)(1)设A 型笔记本每本x 元,B 型笔记本每本y 元,根据题意得⎩⎨⎧5x +8y =80,15x +4y =140.····················································· 3分解得⎩⎨⎧x =8,y =5.答:A 型笔记本每本8元,B 型笔记本每本5元. ················· 5分 (2)设购买A 型笔记本m 本,根据题意得8m +5(80-m )≤500, ··········································· 7分 解得m ≤1003 ,∴m 最大取33,答:A 型笔记本最多买33本. ················································· 8分26.(10分)(1)∵BP ,CP 分别平分∠ABC ,∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB . ································· 1分∴∠BPC =180°-∠PBC -∠PCB =180°-12(∠ABC +∠ACB )=180°-12(180°-∠A )=90°+12∠A . ················· 3分(2)∵∠ACD 是△ABC 的外角,∠MCD 是△MBC 的外角,∴∠ACD =∠ABC +∠A ,∠MCD =∠MBC +∠M . ·············· 4分 ∴∠M =∠MCD -∠MBC =12(∠ACD -∠ABC )=12∠A . ······· 6分(3)∠N =90°-12∠A . ·································································· 7分(4)a -c =2b . ··············································································· 10分。
江苏省南京市 七年级(下)期末数学试卷

江苏省南京市七年级(下)期末数学试卷一、选择题(共20小题,每小题2分,共40分)1. 若$\frac{a}{b}=\frac{3}{5}$,且$a+b=80$,则$a$的值为多少?A. 24B. 30C. 36D. 402. 化简下列各式:$(-3a^2b^3)^2\div7a^4b^{-1}$A. $-\frac{9}{7}a^6b^5$B. $\frac{9}{7}a^6b^5$C. $-\frac{9}{7}a^8b^5$D. $\frac{9}{7}a^8b^5$3. 直径为10cm的圆形纸片,下列可以装入该圆形纸片的封套是A. 边长为9cm的正方形纸片B. 边长为10cm的正方形纸片C. 边长为11cm的正方形纸片D. 边长为12cm的正方形纸片4. 下列等式中,哪个等式是恒等式?A. $3(a+b)=3a+3b$B. $\dfrac{a+b}{2}=\dfrac{a}{2}+\dfrac{b}{2}$C. $(a+b)^2=a^2+2ab+b^2$D. $a(b+c)=ab+ac$5. 下列函数中,哪一个是一次函数?A. $y=x$B. $y=x^2$C. $y=\sqrt{x}$D. $y=\dfrac{1}{x}$6. 在四边形$ABCD$中,已知$AB=3$,$BC=4$,$\angle ABC=90^\circ$,则四边形$ABCD$的面积为A. 6B. 7C. 8D. 97. 小萝卜5月1日有100元钱,每天钱数比前一天多10元,这样钱会够她花多少天?A. 9B. 8C. 7D. 68. 两个相反数的和一定是A. 1B. 0C. 任意整数D. 不能确定9. 下列数中,哪个数不能被2整除?A. 16B. 25C. 36D. 4910. 一辆从A地到B地的火车,速度是每小时$60km$,一辆从B地到A地的火车,速度是每小时$80km$,两辆火车都从A、B两地同时出发,相遇需要多长时间?A. 1 小时B. 1.5 小时C. 2 小时D. 2.5 小时11. 下列集合中,属于由$-1$,$0$,$1$组成的是A. $ \left\{ x|x=0 \right\} $B. $ \left\{ x|x>0 \right\} $C. $ \left\{ x|x\geq-1 \right\} $D. $ \left\{ x|x\leq1 \right\} $12. 减去$ \dfrac{5}{6}- \dfrac{1}{2} $的结果为A. $\dfrac{1}{3}$B. $\dfrac{1}{6}$C. $\dfrac{3}{6}$D. $\dfrac{2}{6}$13. 分数从最大的数到最小的数依次是$\dfrac{3}{4}$、$\dfrac{1}{2}$、$\dfrac{2}{3}$、$\dfrac{2}{5}$,则它们按小数表示的从大到小应该是A. $0.75$、$0.5$、$0.67$、$0.4$B. $0.67$、$0.4$、$0.75$、$0.5$C. $0.67$、$0.75$、$0.5$、$0.4$D. $0.4$、$0.5$、$0.67$、$0.75$14. 若$x:y=4:5$,且$x+y=18$,则$y$的值为多少?A. 4B. 5C. 8D. 915. 化简下列各式:$(-2x^4y^3)^2\div(-4x^2y)^2$A. $\dfrac{2}{4}xy$B. $2xy$C. $\dfrac{4}{2}x^6y^5$D. $\dfrac{4}{2}x^4y^3$16. 在直线$y=2x+1$上,当$x=-4$时,$y$的值是多少?A. $-7$B. $-6$C. $5$D. $9$17. 下列等式中,哪个等式是恒等式?A. $2(x+y)=2x+2y$B. $\dfrac{x+y}{2}=\dfrac{x}{2}+\dfrac{y}{2}$C. $(x+y)^2=x^2+2xy+y^2$D. $x(y+z)=xy+xz$18. 若一次函数$y=ax+b$的图象经过点$(2,5)$和$(3,7)$,则函数的解析式是A. $y=x+3$B. $y=2x+1$C. $y=x+2$D. $y=3x+1$19. 长方形ABCD的周长是30cm,当长方形的长为5cm时,宽是多少?A. 10 cmB. 7.5 cmC. 5 cmD. 2.5 cm20. 下列数中,不属于有理数的是A. $\dfrac{2}{5}$B. $0.3$C. $\sqrt{2}$D. $-\dfrac{7}{3}$二、计算题(共6小题,每小题4分,共24分)1. $\dfrac{5}{6}+(-\dfrac{1}{2})-(\dfrac{3}{4}-\dfrac{1}{3})=$ ()2. $3\div\dfrac{3}{4}\times2=$ ()3. (奥特曼题)如果10艘战舰共耗费了20卢比,那么两卢比能买几艘战舰?()4. $(x+1)(-2x^2+3)=(x-2)(2x-1)=$ ()5. $(-3a)^4\div(-9a^4)\times3=(-2)^3=$ ()6. 若$p=4$,$q=2$,则下列各式的值是多少?$$4p^2-3pq+2q^2=$$()三、解答题(共4小题,共36分)1. 写出下列各数的整数部分:$-5.68$、$2.41$、$8.0$、$9.6$2. 如图所示,长方形$ABCD$中,$DE=5$,$EC=6$,求长方形$ABCD$的周长和面积。
2023-2024学年江苏省南京市联合体七年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市联合体七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)化简(a2)3的结果为()A.a5B.a6C.a8D.a92.(2分)下列各式中,能用平方差公式计算的是()A.(x+1)(x+2)B.(x﹣1)(x﹣1)C.(x+1)(﹣x+1)D.(x+1)(x﹣2)3.(2分)若m>n,则下列式子不正确的是()A.m+1>n+1B.m﹣3>n﹣3C.2m>2n D.﹣m>﹣n4.(2分)若三角形的两边长分别为5和7,则其第三边c的取值范围是()A.5<c<7B.3≤c≤11C.2<c<12D.2≤c≤125.(2分)如图,下列条件中:①∠C=∠1,②∠C=∠2,③∠3+∠C=180°,④∠4+∠2=180°,能判断AB∥CD的有()A.1个B.2个C.3个D.4个6.(2分)关于命题“如果a>0,b>0,那么ab>0”下列判断正确的是()A.该命题及其逆命题都是真命题B.该命题是真命题,其逆命题是假命题C.该命题是假命题,其逆命题是真命题D.该命题及其逆命题都是假命题7.(2分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.8.(2分)如图,△ABC的边BC在直线MN上,∠ABC与∠ACN的平分线交于点D,∠BAC的平分线交BD于点E.若∠MBA=α,∠AEB=β,∠D=γ,则下列关系正确的是()A.2α+2γ﹣β=180°B.2β+2γ﹣α=180°C.α﹣2γ+β=180°D.β﹣2γ+α=180°二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(2分)30=,3﹣1=.10.(2分)某种花粉颗粒的直径约为0.000032m,将0.000032用科学记数法表示为.11.(2分)分解因式:4a2﹣b2=.12.(2分)已知x、y满足方程组,则x+y的值为.13.(2分)已知y﹣3x=1,若y≥﹣1,则x的取值范围是.14.(2分)已知2a=3,4b=5,则2a+2b的值是.15.(2分)年级花费120元用来购买甲、乙两种奖品(两种奖品都购买),奖励知识竞赛中的获奖同学,若甲种奖品每件15元,乙种奖品每件10元,则购买方案有种.16.(2分)已知关于x的不等式组有且仅有3个整数解,则a的取值范围是.17.(2分)如图,在线段AB上取一点C,分别以AC、BC为直角边作等腰直角三角形ACD、等腰直角三角形CBE.若这两个等腰直角三角形的面积和为11,△CDB的面积为3.5,则AB的长为.18.(2分)如图,AB∥CD,∠AEF的平分线与∠EFC的平分线交于点O.若∠A=20°,则∠O=°.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)分解因式:(1)ax2﹣ay2;(2)2a2﹣4a+2.20.(7分)先化简,再求值:(x﹣1)2+(x+2)(x﹣2)﹣3(x﹣3),其中x=﹣2.21.(6分)解方程组.22.(8分)解不等式组,并写出它的整数解.23.(8分)如图,∠1=∠2,∠B=∠D.求证:AD∥BC.24.(7分)当a>b>0时,试说明:a2>ab.25.(9分)一条公路上A、B、C三地的位置如图所示.已知B、C两地之间相距240千米,一辆货车从B 地出发,向C地匀速行驶,经过30分钟,距A地135千米,又经过1.5小时,距A地225千米.(1)求A、B两地之间的距离;(2)该货车从B地出发时,一辆客车从A地以每小时m千米的速度驶向C地,若两车在距C地30千米到60千米的某处相遇,直接写出m的取值范围.26.(11分)定义:只有一组对角相等的四边形叫做等角四边形.如:在四边形ABCD中,若∠A=∠C,且∠B≠∠D,则称四边形ABCD为等角四边形,记作(A,C)等角四边形.【初步认识】(1)如图①,四边形ABCD是(A,C)等角四边形,∠A=80°,∠B=65°,则∠D=°;【继续探索】(2)如图②,四边形ABCD是(B,D)等角四边形,AE平分∠DAB,CF平分∠DCB,求证:AE∥CF;(3)如图③,已知∠AOB,点M、N分别在边OA、OB上.在∠AOB的内部求作一点P,使四边形OMPN是(O,P)等角四边形,且PM≠OM.(要求:用直尺和圆规作图,保留作图痕迹,写出必要的文字说明.)2023-2024学年江苏省南京市联合体七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.【分析】根据平方差公式:(a+b)(a﹣b)=a2﹣b2逐项判断即可.【解答】解:(x+1)(x+2),(x﹣1)(x﹣1),(x+1)(x﹣2)不能用平方差公式计算;(x+1)(﹣x+1)可以用平方差公式计算;故选:C.【点评】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.3.【分析】利用不等式的性质逐项判断即可.【解答】解:若m>n,两边同时加上1得m+1>n+1,则A不符合题意;若m>n,两边同时减去3得m﹣3>n﹣3,则B不符合题意;若m>n,两边同时乘2得2m>2n,则C不符合题意;若m>n,两边同时乘﹣1得﹣m<﹣n,则D符合题意;故选:D.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.4.【分析】三角形两边之和大于第三边,三角形的两边差小于第三边,由此即可得到答案.【解答】解:由三角形三边关系定理得到:7﹣5<c<7+5,∴2<c<12.故选:C.【点评】本题考查三角形三边关系,关键是掌握三角形三边关系定理.5.【分析】由平行线的判定,即可判断.【解答】解:①由同位角相等,两直线平行判定AB∥CD,故①符合题意;②由同位角相等,两直线平行判定AC∥DE,不能判定AB∥CD,故②不符合题意;③由同旁内角互补,两直线平行判定AB∥CD,故③符合题意;④由对顶角的性质得到∠2和∠4的对顶角互补,由同旁内角互补,两直线平行判定AB∥CD,故④符合题意.∴能判断AB∥CD的有3个.故选:C.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.6.【分析】写出该命题的逆命题后与原命题一起判断正误即可.【解答】解:“若a>0,b>0,则ab>0”是真命题,它的逆命题是“若ab>0,则a>0,b>0”,是一个假命题.故选:B.【点评】本题考查命题与定理,正确写出原命题的逆命题是解题关键.7.【分析】根据“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵用一根绳子去量一根木条,绳子剩余4.5尺,∴y=x+4.5;∵将绳子对折再量木条,木条剩余1尺,∴y=x﹣1.∴所列方程组为.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】根据三角形外角的性质定理得出∠DCN=∠D+∠DBC,∠ACN=∠BAC+∠ABC,结合角平分线的定义证得2γ=∠BAC,由角平分线的定义得出∠BAC=2∠1,于是推出γ=∠1,在△ABE中根据三角形内角和定理得出β+γ+∠2=180°,变形为2β+2γ+2∠2=360°,根据邻补角的性质得出α+2∠2=180°,从而得出答案.【解答】解:∵∠DCN是△DBC的一个外角,∴∠DCN=∠D+∠DBC,∵∠ABC与∠ACN的平分线交于点D,∴∠DCN=,∠DBC=,∴,即∠D=,∴2γ=∠ACN﹣∠ABC,∵∠ACN是△ABC的一个外角,∴∠ACN=∠BAC+∠ABC,即∠ACN﹣∠ABC=∠BAC,∴2γ=∠BAC,如图,∵∠BAC的平分线交BD于点E,∴∠BAC=2∠1,∴2γ=∠1,∴γ=∠1,在△ABE中,∠AEB+∠1+∠2=180°,∴β+γ+∠2=180°,即2β+2γ+2∠2=360°,∵BD平分∠ABC,∴∠ABC=2∠2,∵∠MBA+∠ABC=180°,∴α+2∠2=180°,即2∠2=180°﹣α,∴2β+2γ+180°﹣α=360°,∴2β+2γ﹣α=180°,故选:B.【点评】本题考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟练掌握这些知识点是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简,进而得出答案.【解答】解:30=1,3﹣1=.故答案为:1,.【点评】此题主要考查了零指数幂的性质以及负整数指数幂的性质,正确化简各数是解题关键.10.【分析】根据科学记数法的方法进行解题即可.【解答】解:0.000032=3.2×10﹣5.故答案为:3.2×10﹣5.【点评】本题考查用科学记数法﹣表示较小的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.11.【分析】首先把4a2写成(2a)2,再直接利用平方差公式进行分解即可.【解答】解:4a2─b2=(2a)2﹣b2=(2a+b)(2a﹣b),故答案为:(2a+b)(2a﹣b).【点评】本题主要考查利用平方差公式进行因式分解,关键是掌握能够运用平方差公式分解因式的多项式的特点:①必须是二项式;②两项都能写成平方的形式;③符号相反.12.【分析】把已知条件在的两个方程相加,然后根据等式的基本性质,求出x+y即可.【解答】解:,①+②得:4x+4y=﹣4,∴x+y=﹣1,故答案为:﹣1.【点评】本题主要考查了解二元一次方程组,解题关键是熟练掌握解二元一次方程组的一般步骤.13.【分析】利用不等式的性质计算即可.【解答】解:∵y﹣3x=1,∴y=3x+1,∵y≥﹣1,∴3x+1≥﹣1,则3x≥﹣2,x≥﹣,故答案为:x≥﹣.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.14.【分析】根据幂的乘方运算法则以及同底数幂的乘法法则计算即可.【解答】解:∵2a=3,4b=5,∴2a+2b=2a•22b=2a•4b=3×5=15.故答案为:15.【点评】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘.15.【分析】设购买x件甲种奖品,y件乙种奖品,根据总价=单价×数量,列出二元一次方程,求出正整数解,即可得出结论.【解答】解:设购买x件甲种奖品,y件乙种奖品,依题意得:15x+10y=120,∴y=12﹣x,又∵x、y均为正整数,∴或或,∴共有3种购买方案.故答案为:3.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.16.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式x﹣a≤2得:x≤2+a,解不等式x+3>4得:x>1,∴不等式组的解集为1<x≤2+a,∵关于x的不等式组有且仅有3个整数解,∴4≤2+a<5,∴2≤a<3,故答案为2≤a<3.【点评】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能根据不等式组的解集和已知得出结论是解此题的关键.17.【分析】由等腰直角三角形ACD、等腰直角三角形CBE的面积和为11,△CDB的面积为3.5,设AC =CD=x,CE=CB=y,得x2+y2=11×2,xy=3.5×2=7,得AB2=(x+y)2=x2+y2+2xy=36,即可得AB=6.【解答】解:由等腰直角三角形ACD、等腰直角三角形CBE的面积和为11,△CDB的面积为3.5,设AC=CD=x,CE=CB=y,得x2+y2=11×2,xy=3.5×2=7,得AB2=(x+y)2=x2+y2+2xy=36,得AB=6.故答案为:6.【点评】本题主要考查了勾股定理,解题关键是正确用字母表示.18.【分析】作∠AME的平分线MK交OE于K,由角平分线定义得到∠EMK=∠AME,∠MEK=∠AEM,由三角形内角和定理求出∠EMK+∠MEK=80°,得到∠MKE=180°﹣80°=100°,由平行线的性质推出∠AME=∠CFM,由角平分线定义得到∠EMK=∠OFM,判定MK∥OF,推出∠O=∠MKE =100°.【解答】解:作∠AME的平分线MK交OE于K,∴∠EMK=∠AME,∵OE平分∠AEM,∴∠MEK=∠AEM,∴∠EMK+∠MEK=(∠AEM+∠AME),∵∠AEM+∠AME=180°﹣∠A=160°,∴∠EMK+∠MEK=80°,∴∠MKE=180°﹣80°=100°,∵AB∥CD,∴∠AME=∠CFM,∵MK平分∠AME,OF平分∠CFM,∴∠EMK=∠AME,∠OFM=CFM,∴∠EMK=∠OFM,∴MK∥OF,∴∠O=∠MKE=100°.故答案为:100.【点评】本题考查平行线的判定和性质,三角形内角和定理,角平分线定义,关键是由角平分线定义,三角形内角和定理求出∠MKE的度数,判定MK∥OF,推出∠O=∠MKE.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先提公因式a,再根据公式法进行分解即可;(2)先提公因式2,再根据公式法进行分解即可;【解答】解:(1)ax2﹣ay2=a(x2﹣y2)=a(x﹣y)(x+y);(2)2a2﹣4a+2=2(a2﹣2a+1)=2(a﹣1)2.【点评】本题考查提公因式与公式法的综合运用,熟练掌握相关的知识点是解题的关键.20.【分析】直接利用乘法公式去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式=x2﹣2x+1+x2﹣4﹣3x+9=2x2﹣5x+6,当x=﹣2时,原式=2×(﹣2)2﹣5×(﹣2)+6=8+10+6=24.【点评】此题主要考查了整式的混合运算—化简求值,正确掌握相关运算法则是解题关键.21.【分析】利用加减消元法解方程组即可.【解答】解:,②×2﹣①得:9y=﹣9,解得:y=﹣1,将y=﹣1代入①得:2x+1=5,解得:x=2,故原方程组的解为.【点评】本题考查解二元一次方程组,熟练掌握解方程组的方法是解题的关键.22.【分析】解:分别解出两个不等式,找到其公共部分便是不等式组的解集,再找出整数解即可.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<2,则不等式组的解集为:﹣1≤x<2,所以不等式组的整数解为:﹣1,0,1.【点评】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式的解法是解答本题的关键.23.【分析】由同位角相等,两直线平行推出推出AB∥CD,得到∠B=∠DCF,而∠B=∠D,得到∠D=∠DCF,推出AD∥BC.【解答】证明:∵∠1=∠2,∴AB∥CD,∴∠B=∠DCF,∵∠B=∠D,∴∠D=∠DCF,∴AD∥BC.【点评】本题考查平行线的判定和性质,关键是判定AB∥CD,推出∠B=∠DCF.24.【分析】利用不等式的性质进行证明即可.【解答】证明:已知a>b,且a>0,∵不等式两边同乘一个正数,不等号方向不变,∴将a>b两边同乘a得:a2>ab.【点评】本题考查不等式的性质,此为基础且重要知识点,必须熟练掌握.25.【分析】(1)设A、B两地之间的距离为x千米,利用速度=路程÷时间,结合货车的速度不变,可列出关于x的一元一次方程,解之即可得出结论;(2)利用速度=路程÷时间,可求出货车的速度,分两车在距C地60千米相遇及两车在距C地30千米相遇两种情况考虑,利用路程=速度×时间,可列出关于m的一元一次方程,解之可得出m的值,结合题意,即可得出m的取值范围.【解答】解:(1)设A、B两地之间的距离为x千米,根据题意得:=,解得:x=105.答:A、B两地之间的距离为105千米;(2)货车的速度为(225﹣135)÷1.5=60(千米/小时).当两车在距C地60千米相遇时,m=105+240﹣60,解得:m=90;当两车在距C地30千米相遇时,m=105+240﹣30,解得:m=95,∴m的取值范围为90≤m≤95.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.26.【分析】(1)根据等角四边形的定义和四边形内角和作答即可;(2)设∠B=∠D=α,根据四边形内角和和角平分线的性质,∠EAB+∠BCF=(DAB+∠DCB),再根据三角形的内角和推出∠EAB=∠CFB,进而证明即可;(3)连接MN,作∠OMC=∠MNO,作射线MD;作∠NME=∠NMD,∠MNF=∠CMD,ME、NF 交于点P,点P即为所求.【解答】(1)解:∵四边形ABCD是(A,C)等角四边形,∠A=80°,∴∠C=∠A=80°,∴∠D=360°﹣∠A﹣∠B﹣∠C=360°﹣80°﹣65°﹣80°=135°,故答案为:135;(2)证明:∵四边形ABCD是(B,D)等角四边形,∴∠B=∠D,设∠B=∠D=α,在四边形ABCD中,∵∠DAB+∠B+∠DCB+∠D=360°,∴∠DAB+∠DCB=360°﹣2α,∵AE平分∠DAB,CF平分∠DCB,∴∠EAB=∠DAB,∠BCF=∠DCB,∴∠EAB+∠BCF=(DAB+∠DCB)=180°﹣α,在△BCF中,∵∠BCF+∠CFB+∠B=180°,∴∠BCE+∠CEB=180°﹣α,∴∠EAB=∠CFB,∴AE∥CF;(3)解:如图,连接MN,作∠OMC=∠MNO,作射线MD;作∠NME=∠NMD,∠MNF=∠CMD,ME、NF交于点P,∴点P即为所求.【点评】本题是四边形综合题,考查了三角形内角和,四边形内角和,角平分线的性质,新定义问题,解题的关键是熟练掌握以上知识。
2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷及答案解析

2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)化简(a2)3的结果为()A.a5B.a6C.a8D.a92.(2分)若m>n,则下列不等式不成立的是()A.m+2>n+2B.m﹣2>n﹣2C.2m>﹣2n D.3.(2分)三角形的两边长分别为4cm和8cm,则该三角形的第三条边的长度可能是()A.4cm B.8cm C.12cm D.14cm4.(2分)关于x,y的二元一次方程x﹣my=5的一个解是,则m的值为()A.2B.﹣2C.3D.﹣35.(2分)下列命题中,是真命题的是()A.相等的两个角是对顶角B.同位角相等C.若|a|=|b|,则a=b D.平行于同一条直线的两条直线平行6.(2分)下列各式中,计算正确的是()A.(﹣x+y)2=x2﹣2xy+y2B.(﹣3x+2)(3x﹣2)=9x2﹣4C.(x﹣1)(y﹣1)=xy﹣x﹣y﹣1D.(﹣2x+y)(2x+y)=4x2﹣y27.(2分)如图,在△ABC中,点D,E,F分别在AC,AB,BC上,以下条件能判断DE∥BC的是()A.∠1=∠2B.∠4=∠CC.∠1+∠3=180°D.∠3+∠C=180°8.(2分)如图,△ABC的三条中线AF,BE,CD相交于点P.以下结论:①S△APB=S△APC;②AP=BP;③AP=2PF;④∠BPC=2∠BAC.其中,正确的结论为()A.①③B.②③C.③④D.①②④二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s,北斗全球导航系统亚太地区的授时精度优于10ns.用科学记数法表示10ns是s.10.(2分)写出命题“两直线平行,内错角相等”的逆命题:.11.(2分)一个多边形的每个内角都是150°,这个多边形是边形.12.(2分)如果x+y=﹣1,x2﹣y2=3,那么x﹣y=.13.(2分)若a m=6,a n=3,则a m﹣n=.14.(2分)如图,已知直线a∥b,∠1=70°,∠2=36°,则∠3=°.15.(2分)如图,△ABC中,CE,BD分别是AB,AC边上的高线.若∠ABC=62°,∠ACB=72°,则∠BOC的度数是°.16.(2分)如图,小明用直角三角尺和刻度尺画平行线时,将△ABC沿刻度尺推到△DEF的位置.若AB =BC=a,CF=b,则四边形ACED的面积是(用含a,b的代数式表示).17.(2分)若关于x的一元一次不等式ax<b的解集是,bx<a的解集是,则a和b的取值范围分别是.18.(2分)若m2+m﹣1=0,则代数式m2(m+2)的值是.三、解答题(本大题共8小题,共64分)19.(8分)(1)计算:(a﹣2b)(a+b)+2b(a﹣b);(2)因式分解:m3+2m2n+mn2.20.(7分)解方程组:.21.(8分)解不等式组:,并把解集在数轴上表示出来.22.(10分)如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,求证:BE ∥DF.23.(6分)超市开展“端午佳节至,浓浓粽香情”促销活动,蛋黄肉粽打八折,红豆粽打七折.已知购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.求打折前蛋黄肉粽和红豆粽每盒的价格.(用二元一次方程组解决问题)24.(6分)与几何证明一样,代数推理也需要有理有据.请完成下题中依据的填写.已知有理数x,y满足x>y>0,求证:x2>y2.证明:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0().∵(x+y)(x﹣y)=x2﹣y2(),∴x2﹣y2>0(等量代换).∴x2>y2().25.(10分)(1)如图(1),△ABC中,∠A=80°,O是△ABC内一点,OD∥AC,OE∥AB,求∠EOD 的度数.(2)如图(2),O,P分别是△ABC内的两个点,OD∥AC,PE∥AB,连接PO.求证∠A=∠OPE﹣∠POD.26.(9分)如图,是某牛奶的“营养成分表”及相关说明.(注:NRV%表示100ml牛奶中相关营养的含量占一个人每日所需该种营养总量的百分比的参考值)假设一个同学每日所需相关营养的含量恰好符合根据该牛奶“营养成分表”中的信息计算出的结果,请解决下列问题:(1)该同学每日所需碳水化合物是g;(2)该同学的钙的吸收率为80%,求他每天喝多少毫升的该牛奶,才能恰好满足一天的钙的摄入?(不计其他渠道摄入的钙)(3)该同学某天早餐喝了200ml该牛奶,吃了一个鸡蛋和一块牛排(每100g牛排中蛋白质含量为20g).如果他在早餐中摄入的蛋白质全部吸收,且已经超过当日他所需蛋白质总量,那么这块牛排的质量至少是多少克?(用一元一次不等式解决问题,结果保留整数.)2023-2024学年江苏省南京市秦淮区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.【分析】根据不等式的基本性质(1)对A、C进行判断;根据不等式的基本性质(3)对A进行判断;根据不等式的基本性质(2)对D进行判断.【解答】解:A.m>n,则m+2>n+2,所以A选项不符合题意;B.m>n,则m﹣2>n﹣2,所以B选项不符合题意C.m>n,则2m与﹣2n的大小无法判定,所以C选项符合题意D.m>n,则m>,所以D选项不符合题意.故选:C.【点评】本题考查了不等式的性质:灵活运用不等式的性质是解决问题的关键.3.【分析】根据三角形的三边关系可得第三边的范围,再根据第三边的范围确定答案.【解答】解:设第三边长为x cm,有三角形的三边关系可得:8﹣4<x<8+4,即4<x<12,观察选项,只有选项B符合题意.故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.4.【分析】根据方程的解的定义把把代入方程x﹣my=5中即可求出m的值.【解答】解:把代入方程x﹣my=5中,得1﹣2m=5,解得m=﹣2,故选:B.【点评】本题考查了二元一次方程的解,熟知方程的解的定义是解题的关键.5.【分析】根据平行线,相交线,绝对值等知识逐项判断即可.【解答】解:等的两个角不一定是对顶角,故A是假命题,不符合题意;同位角不一定相等,故B是假命题,不符合题意;若|a|=|b|,则a=b或a=﹣b,故C是假命题,不符合题意;平行于同一条直线的两条直线平行,故D是真命题,符合题意;故选:D.【点评】本题考查命题与定理,解题的关键是掌握平行线与相交线相关的知识.6.【分析】根据多项式乘多项式的方法,以及完全平方公式和平方差公式,逐项判断即可.【解答】解:∵(﹣x+y)2=x2﹣2xy+y2,∴选项A符合题意;∵(﹣3x+2)(3x﹣2)=﹣9x2+12x﹣4,∴选项B不符合题意;∵(x﹣1)(y﹣1)=xy﹣x﹣y+1,∴选项C不符合题意;∵(﹣2x+y)(2x+y)=﹣4x2+y2,∴选项D不符合题意.故选:A.【点评】此题主要考查了整式的混合运算,解答此题的关键是注意完全平方公式和平方差公式的应用.7.【分析】由平行线的判定,即可判断.【解答】解:A、由内错角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故A不符合题意;B、由同位角相等,两直线平行判定EF∥AC,不能判定DE∥BC,故B不符合题意;C、由同旁内角互补,两直线平行判定DE∥BC,故C符合题意;D、由同旁内角互补,两直线平行判定EF∥AC,不能判定DE∥BC,故D不符合题意.故选:C.【点评】本题考查平行线的判定,关键是掌握平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.【分析】由三角形面积公式推出△ABP的面积=△ACP的面积;AP不一定等于BP,由三角形重心的性质得到AP=2PF,P不一定是△ABC的外心,∠BPC不一定等于2∠BAC.【解答】解:∵AF是△ABC的中线,∴BF=CF,∴△ABF的面积=△ACF度数面积,△PBF的面积=△PCF的面积,∴△ABF的面积﹣△PBF的面积=△ACF的面积﹣△PCF的面积,∴△ABP的面积=△ACP的面积,故①符合题意;如果AP=BP,∵CD是△ABC的中线,∴PD⊥AB,但PD不一定垂直AB,故②不符合题意;∵△ABC的三条中线AF,BE,CD相交于点P,∴P是△ABC的重心,∴AP=2PF,故③符合题意;当P是△ABC的外心时,∠BPC=2∠BAC,P是△ABC的重心,不一定是△ABC的外心,∴∠BPC不一定等于2∠BAC,故④不符合题意.∴其中,正确的结论为①③.故选:A.【点评】本题考查三角形的重心,三角形的面积,关键是掌握三角形重心的性质.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)9.【分析】科学记数法的表现形式为a×10n,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n是负整数,表示时关键是要正确确定a及n的值.【解答】解:10ns=10×10﹣9s=1×10﹣8s,故答案为:1×10﹣8.【点评】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.10.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:内错角相等∴其逆命题为:内错角相等,两直线平行.【点评】考查学生对逆命题的定义的理解及运用.11.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.所以多边形是十二边形,故答案为:十二.【点评】本题主要考查了多边形的内角和定理.n边形的内角和为:180°•(n﹣2).此类题型直接根据内角和公式计算可得.12.【分析】根据平方差公式进行因式分解即可得出答案.【解答】解:∵x2﹣y2=3,∴(x+y)(x﹣y)=3,∵x+y=﹣1,∴x﹣y=﹣3.故答案为:﹣3.【点评】本题主要考查平方差公式,熟练运用平方差公式是解题的关键.13.【分析】根据同底数幂的除法法则求解.【解答】解:a m﹣n==2.故答案为:2.【点评】本题考查了同底数幂的除法,解答本题的关键是掌握同底数幂的除法法则:底数不变,指数相减.14.【分析】根据对顶角相等求出∠4=∠2=36°,根据平行线的性质求出∠5=∠4=36°,再根据平角定义求解即可.【解答】解:如图,∵∠2=36°,∠2=∠4,∴∠4=36°,∵a∥b,∴∠5=∠4=36°,∵∠3+∠1+∠5=180°,∠1=70°,∴∠3=74°,故答案为:74.【点评】此题考查了平行线的性质,熟记平行线的性质定理是解题的关键.15.【分析】在△BEC中根据三角形内角和定理求出∠BCE的度数,在△BCD中根据三角形内角和定理求出∠CBD的度数,在△BOC中根据三角形内角和定理求出∠BOC的度数即可.【解答】解:∵CE,BD分别是AB,AC边上的高线,∴∠BEC=90°,∠BDC=90°,在△BEC中,∠EBC+∠BEC+∠BCE=180°,∵∠ABC=62°,∠BEC=90°,∴∠BCE=180°﹣90°﹣62°=28°,在△BCD中,∠DCB+∠BDC+∠CBD=180°,∵∠ACB=72°,∠BDC=90°,∴∠CBD=180°﹣90°﹣72°=18°,在△BOC中,∠CBO+∠BOC+∠BCO=180°,∴∠BOC=180°﹣28°﹣18°=134°,故答案为:134.【点评】本题考查了三角形内角和定理,熟知三角形三个内角的和是180°是解题的关键.16.【分析】由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,可得∠ADE =∠CED=90°,CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,利用梯形的面积公式计算即可.【解答】解:由平移得,AB=DE=BC=EF=a,AD=BE,AD∥BE,∠ABC=∠DEF=90°,∴∠ADE=∠CED=90°.∵CF=CE+EF=b,∴CE+BC=BE=AD=b,CE=CF﹣EF=b﹣a,∴四边形ACED的面积是==ab﹣.故答案为:ab﹣.【点评】本题考查作图—复杂作图、平移的性质、列代数式,解题的关键是理解题意,灵活运用所学知识解决问题.17.【分析】根据不等式的性质2,不等式的性质3,可得答案.【解答】解:∵关于x的一元一次不等式ax<b的解集是,∴a<0,∵关于x的一元一次不等式bx<a的解集是,∴b>0,故答案为:a<0,b>0.【点评】本题考查解一元一次不等式,掌握不等式的性质是解题的关键.18.【分析】由题意可得m2=﹣m+1,m2+m=1,再代入所求代数式运用整式的运算方法和数学整体思想进行求解.【解答】解:∵m2+m﹣1=0,∴m2=﹣m+1,m2+m=1,∴m2(m+2)=(﹣m+1)(m+2)=﹣m2﹣m+2=﹣(m2+m)+2=﹣1+2=1,故答案为:1.【点评】此题考查了运用整体思想求代数式值的能力,关键是能准确变式、计算.三、解答题(本大题共8小题,共64分)19.【分析】(1)根据多项式乘多项式、单项式乘多项式的计算法则即可得出答案;(2)先提取公因式再利用完全平方公式进行因式分解即可得出答案.【解答】解:(1)原式=a2+ab﹣2ab﹣2b2+2ab﹣2b2=a2+ab﹣4b2;(2)原式=m(m2+2mn+n2)=m(m+n)2.【点评】本题主要考查多项式乘多项式、单项式乘多项式、提取公因式与公式法的综合运用,熟练掌握以上知识点是解题的关键.20.【分析】可以注意到①式可变形为y=3x+4,代入②式即可对y进行消元.再解一元一次方程即可【解答】解:由①式得y=3x+4,代入②式得x﹣2(3x+4)=﹣3解得x=﹣1将x=﹣1代入②式得﹣1﹣2y=﹣3,得y=1∴方程组解为【点评】此题主要考查二元一次方程组的解法,熟练运用代入消元法是解题的关键.21.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤4,∴不等式组的解集是2<x≤4,在数轴上表示不等式组的解集为:【点评】本题考查了解一元一次不等式,在数轴上表示不等式组的解集,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22.【分析】根据角平分线的定义和四边形的内角和进行解答即可.【解答】证明:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠EBF+∠FDC=90°,∵∠C=90°,∴∠DFC+∠FDC=90°,∴∠EBF=∠DFC,∴BE∥DF.【点评】此题考查平行线的判定,关键是根据角平分线的定义和四边形的内角和进行解答.23.【分析】设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,根据购买一盒蛋黄肉粽和一盒红豆粽打折前需120元,打折后需92元.列出二元一次方程组,解方程组即可.【解答】解:设打折前蛋黄肉粽的价格为x元,红豆粽每盒的价格为y元,由题意得:,解得:,答:打折前蛋黄肉粽的价格为80元,红豆粽每盒的价格为40元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.【分析】先利用有理数的加法法则,不等式的基本性质可得x+y>0,x﹣y>0,然后利用有理数的乘法法则可得(x+y)(x﹣y)>0,再利用平方差公式可得x2﹣y2>0,从而利用不等式的基本性质1,即可解答.【解答】解:∵x>y>0,∴x+y>0(有理数的加法法则),x﹣y>0(不等式的基本性质1),∴(x+y)(x﹣y)>0(有理数的乘法法则).∵(x+y)(x﹣y)=x2﹣y2(平方差公式),∴x2﹣y2>0(等量代换).∴x2>y2(不等式的基本性质1),故答案为:有理数的乘法法则;平方差公式;不等式的基本性质1.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.25.【分析】(1)由平行线的性质推出∠EOD+∠A=180°,即可求出∠EOD的度数;(2)延长OP交AB于M,由平行线的性质推出∠ODM=∠A,∠BMO=∠OPE,由三角形外角的性质即可证明∠A=∠OPE﹣∠POD.【解答】(1)解:如图(1),∵OD∥AC,∴∠ODB=∠A,∵OE∥AB,∴∠EOD+∠ODB=180°,∴∠EOD+∠A=180°,∵∠A=80°,∴∠EOD=100°;(2)证明:如图(2),延长OP交AB于M,∵OD∥AC,∴∠ODM=∠A,∵PE∥AB,∴∠BMO=∠OPE,∵∠ODM=∠BMO﹣∠POD,∴∠A=∠OPE﹣∠POD.【点评】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.26.【分析】(1)根据表格中给出数据直接计算即可;(2)设该同学每天喝x毫升的该牛奶,根据该同学喝的牛奶的含钙量×钙的吸收率=营养表中的含钙量列方程即可;(3)这块牛排的质量是y克,根据他摄入蛋白质的总量之和>营养表中的蛋白质量,列出不等式即可.【解答】解:(1)该同学每日所需碳水化合物为:5.5÷2%=275(g),故答案为:275;(2)设该同学每天喝x毫升的该牛奶,根据题意得:×125×80%=,解得x=781.25,答:该同学每天喝781.25毫升的该牛奶,才能恰好满足一天的钙的摄入;(3)这块牛排的质量是y克,根据题意得:×3.8+3.8×2+×20>,解不等式得:y>240,∵y取整数,∴y的最小值为241,答:这块牛排的质量至少是241g.【点评】本题考查一元一次不等式和一元一次方程的应用,关键是找到等量关系和不等关系列出方程和不等式。
2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷及答案解析

2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)下列运算正确的是()A.3a2﹣a2=3B.a2+a3=a5C.a3•a2=a6D.(a2)3=a62.(2分)不等式4﹣2x<0的解集在数轴上表示正确的是()A.B.C.D.3.(2分)如图,已知AB∥CD,则下列结论成立的是()A.∠1=∠D B.∠B=∠D C.∠B=∠1D.∠D+∠2=180°4.(2分)一个正方形的边长是a,若边长增加2,则这个正方形的面积增加了()A.4B.2a C.2a+4D.4a+45.(2分)当0<x<1时,x2,,x之间的大小关系是()A.<x<x2B.<x2<x C.x<x2<D.x2<x<6.(2分)下列命题中,属于真命题的是()A.若a>b,则ac2>bc2B.若ac2>bc2,则a>bC.同位角相等D.有两个角是锐角的三角形是锐角三角形7.(2分)中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为()A.B.C.D.8.(2分)如图,AB∥CD,点E在AB的上方,G,F分别为AB,CD上的点,∠AGE,∠EFC的角平分线交于点H,∠EFD的角平分线与HG的延长线交于点M.下列结论:①HF⊥MF;②∠EFC=∠E+∠AGE;③∠E=2∠H;④若∠BGE﹣∠EFD=∠M,则∠H=40°.其中,所有正确结论的序号是()A.①②B.①②③C.①③④D.①②③④二、填空题(本大题共10小题,每小题2分,共20分)9.(2分)20=;2﹣2=.10.(2分)某品牌手机芯片采用了最新的0.000000009米的工艺制程,将数0.000000009用科学记数法表示为.11.(2分)任意写出一个解为的二元一次方程组.12.(2分)已知多边形的每个内角都等于135°,求这个多边形的边数是.(用两种方法解决问题)13.(2分)已知方程组,则x2﹣y2=.14.(2分)若3m=4,3n=5,则3m﹣2n的值为.15.(2分)如图,DE⊥AB,垂足为E,∠A=48°,∠ACB=64°,则∠D=°.16.(2分)代数式m2+6m+10的最小值为.17.(2分)若关于x的不等式组有解但没有整数解,则a的取值范围为.18.(2分)如图,△ABC中,BE是中线,点D在边BC上,BD=3CD,AD,BE相交于点O.若△BOD 的面积为6,则△AOE的面积为.三、解答题(本大题共8小题,共64分)19.(8分)分解因式:(1)x2y﹣4xy+4y;(2)2(a+b)2﹣8.20.(8分)先化简,再求值:(a+2b)(a﹣2b)﹣(a﹣2b)2,其中a=,b=﹣1.21.(8分)解不等式组并写出它的最大整数解.22.(8分)如图,△ABC中,CD是角平分线,点E,F分别在边AB,AC上,CD,BF相交于点G,∠BGC+∠EFB=180°.(1)求证∠ACD=∠AFE;(2)若∠A=60°,∠ABC=70°,求∠BEF的度数.23.(8分)为迎接校园文化节,学校计划购买甲、乙两种纪念品.已知购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元.(1)求甲、乙两种纪念品的价格各是多少元;(2)学校计划购买甲、乙两种纪念品共800件,总费用不超过2000元,那么最多能购买多少个甲种纪念品?24.(8分)(1)从“数”的角度证明:当a>b>0时,a2+b2>2ab;(2)从“形”的角度证明:当a>b>0时,a2+b2>2ab.25.(6分)如图,已知∠α,点P为直线AB外一点,在直线AB上求作点C,使得∠PCB=∠α.(要求:尺规作图,保留作图痕迹,写出必要的文字说明.)26.(10分)【初步认识】(1)如图①,线段AB,CD相交于点O,连接AD,BC.求证:∠A+∠D=∠B+∠C.【继续探索】(2)如图②,∠A=m°,∠C=n°,∠ABC,∠ADC的角平分线BP、DP相交于点P.①若m=40,n=32,求∠P的度数;②用m、n表示∠P的度数为.(3)如图③,∠ABC,∠ADC的角平分线BP,DP相交于点P,∠DAB,∠DCB的角平分线AQ,CQ 相交于点Q.若∠P=∠Q,判断AD与BC的位置关系并说明理由.2023-2024学年江苏省南京市联合体七年级(下)期末数学练习试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.【分析】根据运算法则进行计算即可.【解答】解:A、3a2﹣a2=2a2,故该项不正确,不符合题意;B、a2与a3不是同类项,不能进行合并,故该项不正确,不符合题意;C、a3•a2=a5,故该项不正确,不符合题意;D、(a2)3=a6,故该项正确,符合题意;故选:D.【点评】本题考查同底数幂的乘法、幂的乘方与积的乘方、合并同类项,掌握运算法则是解题的关键.2.【分析】按照解一元一次不等式的步骤进行计算,即可解答.【解答】解:4﹣2x<0,﹣2x<﹣4,x>2,∴该不等式的解集在数轴上表示如图所示:故选:A.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.3.【分析】根据平行线的性质分析解答即可.【解答】解:∵AB∥CD,∴∠1=∠B.故选:C.【点评】本题考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.4.【分析】一个正方形的边长是a,若边长增加2,则边长变为(a+2),根据正方形的面积公式和作差法求得答案.【解答】解:根据题意,得(a+2)2﹣a2=4a+4.故选:D.【点评】本题考查了列代数式.解题的关键是掌握正方形的面积公式.5.【分析】本题可以采用特殊值的方法比较三个代数式的大小.【解答】解:∵0<x<1,∴令x=,∴x2=()2=,==2,∴<<2,即x2<x<.故选:D.【点评】本题考查了不等式的性质,采用特殊值法是一个比较不错的方法.6.【分析】利用不等式的性质、平行线的性质及锐角三角形的定义分别判断后即可确定正确的选项.【解答】解:A、若a>b,则ac2>bc2,当c=0时不成立,故原命题错误,是假命题,不符合题意;B、若ac2>bc2,则a>b,正确,是真命题,符合题意;C、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;D、有三个角是锐角的三角形是锐角三角形,故原命题错误,是假命题,不符合题意.故选:B.【点评】本题主要考查了命题与定理的知识,解题的关键是了解有关的定义及定理,难度不大.7.【分析】根据每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:根据题意可得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【分析】①根据角平分线定义设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=β+θ,根据∠EFC+∠EFD=180°得β+θ=90°,则∠HFM=90°,据此可对结论①进行判断;②过点E作EK∥AB,则EK∥AB∥CD,进而得∠KEF=180°﹣2β,∠KEG=180°﹣2α,则∠FEG=∠KEG﹣∠KEF=2β﹣2α,继而得∠FEG+∠AGE=2β,再根据∠EFC=2β可对结论②进行判断;③过点H作HT∥AB,则HT∥AB∥CD,进而得∠THG=∠AGH=α,∠THF=∠CFH=β,则∠GHF =β﹣α,由②可知∠FEG=2β﹣2α,据此可对结论③进行判断;④过点M作MN∥AB,则AB∥MN∥CD,进而得∠HMN=∠AGH=α,∠FMN=∠DFM=θ,则∠HMF =∠HMN+∠FMN=α+θ,再根据∠BGE=180°﹣2α,∠EFD=2θ,∠BGE﹣∠EFD=∠M得α+θ=60°,则∠HMF=60°,根据①可知∠HFM=90°,则∠H=30°,据此可对结论④进行判断,综上所述即可得出答案.【解答】解:①∵GH平分∠AGE,FH平分∠EFC,FM平分∠EFD,设∠EGH=∠AGH=α,∠EFH=∠CFH=β,∠EFM=∠DFM=θ,则∠AGE=2α,∠EFC=2β,∠EFD=2θ,∠HFM=∠EFH+∠EFM=β+θ,∵点F在直线CD上,∴∠EFC+∠EFD=180°,∴2β+2θ=180°,∴β+θ=90°,∴∠HFM=β+θ=90°,即HF⊥MF,故结论①正确,符合题意;②过点E作EK∥AB,如图1所示:∵AB∥CD,∴EK∥AB∥CD,∴∠KEF=180°﹣∠EFC=180°﹣2β,∠KEG=180°﹣∠AGE=180°﹣2α,∴∠FEG=∠KEG﹣∠KEF=180°﹣2α﹣(180°﹣2β)=2β﹣2α,∴∠FEG+∠AGE=2β﹣2α+2α=2β,又∵∠EFC=2β,∴∠EFC=∠FEG+∠AGE,∴结论②正确,符合题意;③过点H作HT∥AB,如图2所示:∵AB∥CD,∴HT∥AB∥CD,∴∠THG=∠AGH=α,∠THF=∠CFH=β,∴∠GHF=∠THF﹣∠THG=β﹣α,由②可知:∠FEG=2β﹣2α,∴∠FEG=2∠GHF,故结论③正确,符合题意;④过点M作MN∥AB,如图3所示:∵AB∥CD,∴AB∥MN∥CD,∴∠HMN=∠AGH=α,∠FMN=∠DFM=θ,∴∠HMF=∠HMN+∠FMN=α+θ,∵∠BGE=180°﹣∠AGE=180°﹣2α,∠EFD=2θ,又∵∠BGE﹣∠EFD=∠M,∴180°﹣2α﹣2θ=α+θ,∴α+θ=60°,∴∠HMF=α+θ=60°,由①可知:∠HFM=90°,∴∠H=180°﹣(∠HFM+∠HMF)=180°﹣(90°+60°)=30°,故结论④不正确,不符合题意.综上所述:正确的结论是①②③.故选:B.【点评】此题主要考查了平行线的性质,垂线的定义,角平分线的定义,熟练掌握平行线的性质,垂线的定义,角平分线的定义是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分)9.【分析】根据零次幂的性质、负指数次幂的性质,进行计算即可.【解答】解:20=1,2﹣2==,故答案为:1,.【点评】考查零次幂、负指数次幂的性质,掌握零次幂、负指数次幂的性质是正确计算的前提.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000009=9×10﹣9,故答案为:9×10﹣9.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】根据二元一次方程组解的定义进行解答即可.【解答】解:由于x=2,y=﹣1,因此有x+y=1,x﹣y=3,所以符合条件的方程组为,故答案为:(不唯一).【点评】本题考查二元一次方程组的定义以及二元一次方程组的解,理解二元一次方程组的解是正确解答的关键.12.【分析】根据多边形的内角和公式,可得方程,根据解方程,可得答案;根据正多边形的外角相等,可得每一个外角,根据多边形的外角和除以一个外角,可得答案.【解答】解:解法一:设这个多边形是n边形,由题意,得(n﹣2)×180°=135°n,解得n=8.解法二:由正多边的性质,得每个外角等于=180°﹣135°=45°外角和除以一个外角,得360°÷45°=8.故答案为:8.【点评】本题考查了多边形内角与外角,利用了多边形的内角和公式,外角和公式.13.【分析】首先把方程组的两个方程的左右两边分别相加、相减,求出x+y、x﹣y的值;然后把求出的x+y、x﹣y的值代入x2﹣y2计算即可.【解答】解:,①+②,可得3x+3y=9,∴x+y=9÷3=3,①﹣②,可得x﹣y=1,∴x2﹣y2=(x+y)(x﹣y)=3×1=3.故答案为:3.【点评】此题主要考查了解二元一次方程组的方法,解答此题的关键是注意观察方程组的两个方程和所求的代数式之间的关系.14.【分析】同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.据此计算即可.【解答】解:∵3m=3,3n=5,∴3m﹣2n=3m÷32n=3m÷(3n)2=4÷52=,故答案为:.【点评】本题考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.15.【分析】在△ABC中根据三角形内角和定理求出∠B的度数,再根据垂线的定义得出∠BED=90°,最后在△BED中根据三角形内角和定理求出∠D的度数.【解答】解:∵∠A=48°,∠ACB=64°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣48°﹣64°=68°,∵DE⊥AB,∴∠BED=90°,∴∠D=180°﹣∠B﹣∠BED=180°﹣68°﹣90°=22°,故答案为:22.【点评】本题考查了三角形内角和定理,垂线,熟练掌握三角形内角和定理是解题的关键.16.【分析】经过计算,可知m2+6m+10=(m+3)2+1,而(m+3)2≥0,因此(m+3)2+1≥1,即可得出结果.【解答】解:m2+6m+10=(m2+6m+32)+1=(m+3)2+1,∵(m+3)2≥0,∴(m+3)2+1≥1,∴代数式m2+6m+10的最小值为1,故答案为:1.【点评】本题考查的是配方法的应用,非负数的性质,熟练掌握上述知识点是解题的关键.17.【分析】由x﹣a<0得x<a,由x﹣2>0得x>2,结合不等式组有解但没有整数解,得出2<a≤3.【解答】解:由x﹣a<0得:x<a,由x﹣2>0得:x>2,∵不等式组有解但没有整数解,∴2<a≤3,故答案为:2<a≤3.【点评】本题考查的是解一元一次不等式组和一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【分析】连接OC,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系,从而求出△AOE的面积.【解答】解:连接OC.∵BD=3CD,=3S△COD=6,∴S△BOD=2,∴S△COD=S,设S△AOE∵BE是中线,=S△AOE=S,∴S△COE+S△AOE=S△BOD+S△COD+S△COE,即S△AOB+S=6+2+S,∴S△AOB=8,∴S△AOB=S△AOB+S△BOD=8+6=14,S△ACD=S△AOE+S△COE+S△COD=S+S+2=2S+2,∴S△ABD∵BD=3CD,=3S△ACD,即14=3(2S+2),解得S=,∴S△ABD∴△AOE的面积为.故答案为:.【点评】本题考查三角形的面积,根据“同高的两个三角形,其面积比等于底边长之比”得到各三角形之间的数量关系是解题的关键.三、解答题(本大题共8小题,共64分)19.【分析】(1)先提取公因式,然后利用完全平方公式分解因式即可;(2)先提取公因式,然后利用平方差公式分解因式即可.【解答】解:(1)x2y﹣4xy+4y=y(x2﹣4x+4)=y(x﹣2)2;(2)2(a+b)2﹣8=2[(a+b)2﹣4]=2(a+b+2)(a+b﹣2).【点评】本题考查了因式分解,熟练掌握运用提取公因式法、公式法分解因式是解题的关键.20.【分析】先利用完全平方公式,平方差公式进行计算,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:(a+2b)(a﹣2b)﹣(a﹣2b)2=a2﹣4b2﹣(a2﹣4ab+4b2)=a2﹣4b2﹣a2+4ab﹣4b2=4ab﹣8b2,当a=,b=﹣1时,原式=4××(﹣1)﹣8×(﹣1)2=﹣2﹣8×1=﹣2﹣8=﹣10.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.21.【分析】求出每个不等式的解集,从而可得不等式组的解集,得到答案.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x<;∴不等式组的解集为﹣2<x<,∴它的最大整数解为1.【点评】本题考查解一元一次不等式组,解题的关键是求出每个不等式的解集.22.【分析】(1)根据∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,得出∠CGF=∠EFG,再由平行线的判定与性质解答即可;(2)根据三角形的内角和定理求出∠ACB的度数,再根据三角形内角和定理解答即可.【解答】(1)证明:因为∠BGC+∠EFB=180°,∠BGC+∠CGF=180°,所以∠CGF=∠EFG,所以EF∥DC,因此∠ACD=∠AFE,(2)解:因为∠A=60°,∠ABC=70°,所以∠ACB=180°﹣∠A﹣∠ABC=50°,因为CD是角平分线,所以∠ACD=25°,∴∠ACD=∠AFE=25°,∴∠AEF=180°﹣60°﹣25°=95°,∴∠BEF=180°﹣95°=85°.【点评】本题考查了平行线的判定与性质,三角内角和定理,掌握平行线的性质是解题的关键.23.【分析】(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据“购买3个甲种纪念品和2个乙种纪念品需要13元;购买2个甲种纪念品和5个乙种纪念品需要16元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,利用总价=单价×数量,结合总价不超过2000元,可列出关于m的一元一次不等式,解之取其中的最大值,即可得出结论.【解答】解:(1)设甲种纪念品的价格是x元,乙种纪念品的价格是y元,根据题意得:,解得:.答:甲种纪念品的价格是3元,乙种纪念品的价格是2元;(2)设购买m个甲种纪念品,则购买(800﹣m)个乙种纪念品,根据题意得:3m+2(800﹣m)≤2000,解得:m≤400,∴m的最大值为400.答:最多能购买400个甲种纪念品.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【分析】(1)运用完全平方公式和非负数的性质即可;(2)构造图形,用代数式表示各个图形的面积,再根据面积之间的关系得出结论;【解答】证明:(1)∵a>b>0,∴a﹣b>0,∴(a﹣b)2>0,即a2﹣2ab+b2>0,∴a2+b2>2ab;(2)构造的图形如下,=a(a﹣b)=a2﹣ab,S长方形EFCD=b(a﹣b)=ab﹣b2,证明:∵S长方形ABCD>S长方形EFCD,由图形可得S长方形ABCD∴a2﹣ab>ab﹣b2,∴a2+b2>2ab.【点评】本题考查的是完全平方公式,用代数式表示图形的面积,再根据面积之间的关系得出结论是解决问题的关键.25.【分析】在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,与AB的交点即为所求的点C.【解答】解:在直线AB上任取一点D,连接PD,在PD的右侧作∠DPN=∠ADP,再作PN所在的直线MN,在直线MN的下方作∠MPC=∠α,交AB于点C,则点C即为所求.【点评】本题考查作图—基本作图,平行线的判定和性质,熟练掌握基本尺规作图方法是解答本题的关键.26.【分析】(1)依据题意,在△AOD中,∠A+∠D+∠AOD=180°,则∠A+∠D=180°﹣∠AOD,又在△BOC中,∠B+∠C+∠BOC=180°,故∠B+∠C=180°﹣∠BOC,从而可以得解;(2)①依据题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP,结合BP平分∠ABC,DP平分∠ADC,从而∠ADP=∠ADC,∠ABP=∠ABC,故∠A+∠ADC=∠P+∠ABC,进而可得2∠A+∠ADC=2∠P+∠ABC,又∠A+∠ADC=∠ABC+∠C,从而∠A=2∠P﹣∠C,即可得∠P=,代入计算可以得解;②依据题意,根据①∠P=,又∠A=m°,∠C=n°,进而计算可以得解;(3)依据题意,根据(2)①∠P=,同理可得,∠Q=,又∠P=∠Q,故可得∠A+∠C=∠B+∠D,又∠A+∠D=∠C+∠B,则2∠A+∠C+∠D=2∠B+∠C+∠D,从而∠A=∠B,故可得解.【解答】(1)证明:由题意,在△AOD中,∠A+∠D+∠AOD=180°,∴∠A+∠D=180°﹣∠AOD.又在△BOC中,∠B+∠C+∠BOC=180°,∴∠B+∠C=180°﹣∠BOC.又∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.(2)解:①由题意,结合(1)可得,∠A+∠ADC=∠ABC+∠C,∠A+∠ADP=∠P+∠ABP.∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠ADC,∠ABP=∠ABC.∴∠A+∠ADC=∠P+∠ABC.∴2∠A+∠ADC=2∠P+∠ABC.又∠A+∠ADC=∠ABC+∠C,∴∠A=2∠P﹣∠C.∴∠P=.又∠A=m°=40°,∠C=n°=32°,∴∠P==36°.②由题意,根据①∠P=,又∠A=m°,∠C=n°,∴∠P=()°.故答案为:()°.(3)解:AD∥BC.理由如下:由题意,根据(2)①可得∠P=,同理可得,∠Q=.又∠P=∠Q,∴=.∴∠DAB+∠DCB=∠ABC+∠ADC.又∠DAB+∠ADC=∠DCB+∠ABC,∴2∠DAB+∠DCB+∠ADC=2∠ABC+∠DCB+∠ADC.∴∠DAB=∠ABC.∴AD∥BC.【点评】本题主要考查了三角形内角和定理、平行线的判定,解题时要熟练掌握并能灵活运用是关键。
2022-2023学年江苏省南京市玄武区七年级下学期期末数学试题

江苏省南京市玄武区2022-2023学年七年级下学期期末数学试题学校:___________姓名:___________班级:___________考号:___________A.30︒B.405.从A地到B地需要经过一段上坡路和一段平路,小明上坡速度为为5km/h,下坡速度为6kmA .①②B .②③④C .①②③D .①②③④10.若32x =,95y =,则323x -11.一个多边形的每一个外角都等于12.如图,直角三角形ABC 沿是5,平移的距离是BC 的2倍,则图中四边形13.由方程组32x a y a +=⎧⎨-=⎩可得y 14.已知关于x 的不等式2x m -为 .15.将一副三角板按如图放置,则下列结论:三、解答题17.计算:21.请把下面的证明过程补充完整.求证:GD AC ∥证明:∵AD 是ABC 的高.∴AD BC ⊥(三角形高线的定义)∴90ADC ∠=︒( ).∴390C ∠+∠=︒(直角三角形两个锐角互余)(1)求a 的取值范围;,A B x(1)已知四边形ABCD 是对补四边形.①若65A ∠=︒,则C ∠=______°.②如图①,BAD ∠、BCD ∠的平分线分别与BC AD ,相交于点E 证:AE CF ;参考答案:如图2,延长AB交PC于点O∠=∠-∠-∠∴BPC PBA PCA BAC如图3,延长AC交BP于点O,则∠=∠-∠-∠∴BPC PCA PBA BAC∠+∠+∠如图4,则PBA BAP BPA∴360PBA BAC BPC ∠+∠+∠=︒,∴360BPC ∠=︒---αβγ,故④正确,综上,BPC ∠的度数可能是①②③④,故选:D .【点睛】本题考查三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理和三角形的外角性质,利用数形结合思想求解是解答的关键.7.7×10-7【分析】直接用科学记数法的形式表示即可.【详解】解:70.0000007710-=⨯,故答案为:7710-⨯【点睛】本题考查了用科学记数法表示绝对值小于1的数,要熟记科学记数法的形式为10n a -⨯,其中1||10a ≤<,n 是正整数,且n 等于原数中左边第一个非0数的左边所有0的个数(包括整数位0).8.a (a+2)(a-2)【分析】首先提取公因式a ,再利用平方差公式进行二次分解即可.【详解】解:a 3-4a=a (a 2-4)=a (a+2)(a-2),故答案为:a (a+2)(a-2).【点睛】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.25【分析】要使a b ∥,则12∠=∠,根据已知条件即可确定旋转的度数.【详解】解:当12∠=∠时,a b ∥,又145∠=︒ ,270Ð=°,704525∴︒-︒=︒,∴直线a 顺时针旋转的度数至少是25︒,【点睛】本题主要考查了平行线的性质,平移的性质,正确作出辅助线是解题的关键.13.5x -+/5x-【分析】方程组消去a ,用x 表示出【详解】解:32x a y a +=⎧⎨-=⎩①②,OCE △同高,ABE 和ACE △同高得:1:2OBE OCE S S =△△,:1:2ABE ACE S S =△△,然后设AOD S a =△,OBE S b =△,AOC S c =△,根据上述的等式列出关于a ,b ,c 的等式可得出8b c a ==,由此得36S a =,11BEOD S a =四边形,据此可得出答案.【详解】解:连接OB ,3BD AD = ,:1:3AD BD ∴=,AOD 和BOD 同高,ACD 和BCD △同高,::1:3AOD BOD S S AD BD ∴==△△,::1:3ACD BCD S S AD BD ==△△,3BOD AOD S S ∴=△△,3BCD ACD S S =△△,2EC BE = ,:1:2BE EC ∴=,OBE 和OCE △同高,ABE 和ACE △同高,::1:2OBE OCE S S BE EC ∴==△△,::1:2ABE ACE S S BE EC ==△△,2OCE OBE S S ∴=△△,2ACE ABE S S =△△,设AOD S a =△,OBE S b =△,AOC S c =△,由3BOD AOD S S =△△,得:3BOD S a =△,由2OCE OBE S S =△△,得:2OCE S b =△,由3BCD ACD S S =△△,得:3()BOD OBE OCE AOD AOC S S S S S ++=+△△△△△,即:323()a b b a c ++=+,整理得:b c =,由2ACE ABE S S =△△,得:2()AOC OCE AOD BOD OBE S S S S S +=++△△△△△,即:22(3)c b a a b +=++,整理得:8c a =,8b c a ∴==,ABC AOD BOD OBE OCE AOC S S S S S S S =++++= △△△△△△,32a a b b c S ∴++++=,整理得:43a b c S ++=,438836S a a a a ∴=+⨯+=,【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知大取大;同小取小;大小小大中间找;大大小小找不到21.垂直的定义;23∠∠=;同角的余角相等;等量代换:内错角相等,两直线平行【分析】根据垂线的定义得到90ADC ∠=︒,可得390C ∠+∠=︒,利用同角的余角相等得到23∠∠=,等量代换可知13∠=∠,最后根据内错角相等,两直线平行即可证明.【详解】证明:∵AD 是ABC 的高.∴AD BC ⊥(三角形高线的定义).∴90ADC ∠=︒(垂直的定义).∴390C ∠+∠=︒(直角三角形两个锐角互余),又∵290C ∠+∠=︒(已知),∴23∠∠=(同角的余角相等).又∵12∠=∠(已知),∴13∠=∠(等量代换).∴GD AC ∥(内错角相等,两直线平行).【点睛】本题考查了平行线的性质和判定的应用,余角的性质,三角形高的定义,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.22.1台大收割机和1台小收割机每小时分别收割小麦0.5公顷和0.3公顷【分析】设1台大收割机和1台小收割机每小时分别收割小麦x 公顷和y 公顷,根据题意,列出方程组求解.【详解】解:设1台大收割机和1台小收割机每小时分别收割小麦x 公顷和y 公顷.由题意得:()()437.2323 5.7x y x y ⎧+=⎪⎨+=⎪⎩,解得:0.50.3x y =⎧⎨=⎩,答:1台大收割机和1台小收割机每小时分别收割小麦0.5公顷和0.3公顷.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程组求解.23.(1)2a <(2)0,1【分析】(1)根据数轴得出关于a 的不等式,解不等式即可;(2)先求出不等式22x a -<的解集,然后根据点A 、B 表示的数是关于x 的不等式22x a -<的解,得出221a a +>+,求其整数解即可.【详解】(1)解: 数轴上点A 在点B 的左侧,211a a ∴-<+,解得2a <;(2) 不等式22x a -<的解集为22x a <+,又 点A 、B 表示的数是关于x 的不等式22x a -<的解,221a a ∴+>+,解得1a >-,又2a < ,12a ∴-<<.又a 是整数,a ∴的值为0,1.【点睛】本题考查了解一元一次不等式,一元一次不等式的整数解,能够理解题意,结合数轴得出关于a 的不等式是解题的关键.24.(1)16BCE =︒(2)15︒或45【分析】(1)根据三角形外角的定义与角的和差关系求解,即可得到答案;(2)先利用三角形内角和定理,得到30B ∠=︒,再分两种情况讨论:①当90D ∠=︒时;②当=90ACD ∠︒时,利用三角形内角和定理与三角形外角的定义分别求解,即可得到答案.【详解】(1)解:DEC DCE ∠=∠ ,32DCA ∠=︒,32DEC DCE ACE ∴∠=∠=∠+︒,DEC ∠ 是BEC 的外角,DEC B BCE ∴∠=∠+∠,B ACB ∠=∠ ,DEC ACB BCE ∴∠=∠+∠,32ACE ACB BCE ∴∠+︒=∠+∠,ACB ACE BCE ∠=∠+∠ ,32ACE ACE BCE BCE ∴∠+︒=∠+∠+∠,232BCE ∴∠=︒,16BCE ∴∠=︒;(2)解:120BAC ∠=︒ ,18012060B ACB ∴∠+∠=︒-︒=︒,B ACB ∠=∠ ,30B ∴∠=︒,①如图,当90D ∠=︒时,180D DEC DCE ∠+∠+∠=︒ ,90DEC DCE ∴∠+∠=︒,DEC DCE ∠=∠ ,45DEC ∴∠=︒,DEC ∠ 是BEC 的外角,DEC B BCE ∴∠=∠+∠,453015BCE DEC B ∴∠=∠-∠=︒-︒=︒;②如图,当=90ACD ∠︒时,120BAC ∠=︒ ,18060CAD BAC ∴∠=︒-∠=︒,90ACD ∠=︒ ,180D ACD CAD ∠+∠+∠=︒18030D ACD CAD ∴∠=︒-∠-∠=︒,180DEC DCE D ∴∠+∠+∠=︒,,,∵BEC ∠是ABE 的外角,∴13BEC ∠∠∠=+,又∵ABC BEC ∠=∠,∴2313∠∠∠∠+=+,(3)解:根据题意画出图如图所示:,四边形ABCD 是对补四边形,180BAD BCD ∴∠+∠=︒,AE 平分BAD ∠,CF 平分BCD ∠,BAE DAE BCF DCF ∴∠=∠∠=∠,,360D OFD FOE OED ∠+∠+∠+∠=︒ ,OFD DAE AOF ∠=∠+∠,OED DCF COE ∠=∠+∠,180EOF AOF ∠+∠=︒,180EOF COE ∠+∠=︒,∴90AOC D ∠-∠=︒,三个顶点A B D ,,位置固定,且四边形ABCD 是对补四边形,∴只有一种情况,即90AOC D ∠-∠=︒.【点睛】本题主要考查了角平分线的性质、三角形外角的定义、同角的余角相等等知识点,熟练掌握角平分线的性质、三角形外角的定义、同角的余角相等,理解对补四边形的定义,是解题的关键.。
江苏省南京市联合体2022~2023学年七年级下学期期末数学试题

2022—2023学年度第二学期期末学情分析试卷七年级数学一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.计算()23xy 的结果是( )A .23xyB .29xyC .223x yD .229x y 2.下列各式中,能用平方差公式计算的是( )A .()2a b +B .()()a b a b +-C .()2a b -D .()()a b a b -+-3.不等式20x -+<的解集在数轴上表示正确的是( )A .B .C .D .4.如图,直线a ,b 被直线c 所截,能使a b ∥的条件是( )A .12∠=∠B .13∠=∠C .13180∠+∠=︒D .23180∠+∠=︒5.已知927m n =,则m ,n 满足的关系是( )A .3m n =B .3n m =C .32m n =D .23m n =6.如图,BD 平分ABC ∠,点E ,F 分别在BA 和BC 上,EG 平分AEF ∠交BD 于点G ,ED BC ∥.下列结论:①EBD EDB ∠=∠;②CBD DEG ∠=∠;③2BFE BGE ∠=∠;④2FEG D ∠=∠,其中所有正确结论的序号是( )A .①②B .二、填空题(本大题共卡相应位置上)7.计算:02= ,2-14.如图,AB CD ∥,CE ︒.15.若不等式组3x a x >⎧⎨-≤⎩16.若多项式322x ax ++三、解答题(本大题共中,点E在BC上,24.如图,在ABC∠=∠交AC于点F.求证FDC BEG25.某校计划租用客车送七年级师生去公园郊游,已知满员时,用辆B型客车每次可坐125(1)1辆A型客车和1辆(2)现有师生560人,计划租用有可能的租车方案.26.在直角三角形ABC 中,90C ∠=︒,点D ,E 分别在AB AC ,上,将DEA △沿DE 翻折,得到DEF .(1)如图①,若70CED ∠=︒,则CEF ∠=______︒;(2)如图②,BDF ∠的平分线交线段BC 于点G .若CED BDG ∠=∠,求证BC DF ∥.(3)已知A α∠=,BDF ∠的平分线交直线BC 于点G .当DEF 的其中一条边与BC 平行时,直接写出BGD ∠的度数(可用含α的式表示).1.D【分析】根据积的乘方运算法则计算即可得出答案.【详解】解:()22239xy x y =,故选:D .【点睛】本题考查积的乘方,正确计算是解题的关键.2.B【分析】根据平方差公式()()22a b a b a b +-=-对各选项分别进行判断.【详解】解:A 、()2a b +,不能用平方差公式计算,故本选项不符合题意;B 、()()a b a b +-,能用平方差公式计算,故本选项符合题意;C 、()2a b -,不能用平方差公式计算,故本选项不符合题意;D 、()()()2a b a b a b -+-=--,不能用平方差公式计算,故本选项不符合题意;故选:B .【点睛】本题考查了平方差公式.熟练掌握平方差公式的结构特征是解题的关键.3.A【分析】先解不等式,再根据在数轴上表示不等式解集的方法判断即可.【详解】解:解不等式20x -+<得:2x >,在数轴上表示为:故选:A .【点睛】本题考查了解一元一次不等式,在数轴上表示不等式解集,在表示解集时“>,≥”向右画;“<,≤”向左画,“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.4.B【分析】根据平行线的判定条件进行判断即可.【详解】解:如图,A 、12∠=∠,不能判断a b ∥,故本选项不符合题意;B 、13∠=∠属于同位角相等,能判断a b ∥,故本选项符合题意;C 、13180∠+∠=︒,不能判断a b ∥,故本选项不符合题意;D 、3∠与2∠是邻补角,23180∠+∠=︒,不能判断a b ∥,故本选项不符合题意;故选:B .【点睛】本题主要考查平行线的判定,解答的关键是熟记平行线的判定条件并灵活运用.5.D【分析】直接利用幂的乘方运算法则将原式变形,进而得出答案【详解】927m n = ,323(3)()m n =∴,3233m n∴=23m n ∴=,故选择:D【点睛】本题主要考查幂的乘方运算,正确的掌握运算法则是解题的关键.6.C【分析】①根据平行线的性质得出EDB DBC ∠=∠,根据角平分线的定义得出EBD DBC ∠=∠,即可证明①正确;②根据DG 与EG 不一定相等,得出BDE DEG ∠≠∠,根据CBD BDE ∠=∠,得出CBD DEG ∠≠∠,判断②错误;③设CBD x ∠=,DEG y ∠=,得出2AED ABC x ∠=∠=,求出2AEG GEF x y ∠=∠=+,根据BGE D DEG ∠=∠+∠,得出BGE x y ∠=+,根据ED BC ∥,得出()22222BFE DEF x y y x y x y BGE ∠=∠=++=+=+=∠,可判断③正确;④根据2FEG x y ∠=+,D x ∠=,得出2FEG D ∠≠∠,判断④错误.【详解】解:①∵ED BC ∥,()()3232282242x ax bx x k x k x k ∴++-=+-+---,2428k a k b k -=⎧⎪∴--=⎨⎪-=-⎩,解得284a b k =⎧⎪=-⎨⎪=⎩,()286a b ∴+=+-=-,故答案为:6-.【点睛】本题考查了因式分解,多项式乘多项式,熟练掌握知识点是解题的关键.17.(1)3m (2)228221x xy y --【分析】(1)根据同底数幂的除法法则、积的乘方以及同底数幂的乘法法则求解即可;(2)利用多项式乘以多项式法则进行乘法运算,再合并同类项即可求解.【详解】(1)解:原式2m m =⋅3m =;(2)原式228141221x xy xy y =-+-228221x xy y =--.【点睛】本题考查了整式的混合运算,熟知相关运算法则是解题关键.18.(1)()()222a a +-(2)()22m n -【分析】(1)先提公因式,再利用平方差公式因式分解;(2)先提公因式,再利用完全平方公式因式分解;【详解】(1)()224a -()()222a a =+-【分析】首先在l 上取一点A ,作直线AP ,点B 为直线AP 上的一点,且A ,B 在点P 的两侧;再以A 为圆心,以适当的长为半径画弧交l 于C ,交BP 于D ,然后以点P 为顶点,PB 为一边作DAC EPF ∠=∠即可.【详解】①在l 上取一点A ,作直线AP ,点B 为直线AP 上的一点,且A ,B 在点P 的两侧;②以A 为圆心,以适当的长为半径画弧交l 于C ,交BP 于D ,以P 为圆心,以同样的长为半径画弧,交PB 于点E ,③以点E 为圆心以CD 为半径画弧交前弧于点F ,④过点P ,F 作直线即为所求.证明:由作图可知:AD AC PE PF CD EF ====,,在ACD 和PEF 中,AD PE AC PFCD EF =⎧⎪=⎨⎪=⎩SSS ACD PEF ∴≌()DAC EPF ∴∠=∠,PF AC ∴∥,即直线PF 为所求.【点睛】此题主要考查了尺规作图,过直线外一点作已知直线的平行线,解答此题的关键是熟练掌握基本尺规作图,作一个角等于已知角的步骤.24.证明见解析【分析】根据CD AB ⊥,EG AB ⊥,得出CD EG ∥,进而得出BEG BCD ∠=∠,根据DF BC ∥,证明FDC BCD ∠=∠,等量代换即可得出结论.【详解】证明:∵CD AB ⊥,EG AB ⊥,∴90BGE BDC ∠=∠=︒,∴CD EG ∥,∴BEG BCD ∠=∠,又DF BC ∥,∴FDC BCD ∠=∠,∴FDC BEG ∠=∠.【点睛】本题考查平行线的判定与性质,掌握平行线的判定与性质定理是解题关键.25.(1)1辆A 型客车可坐35人,1辆B 型客车可坐45人(2)三种方案:13辆B 型客车;1辆A 型12辆B 型客车;2辆A 型11辆B 型客车【分析】(1)设1辆A 型客车可坐x 人,1辆B 型客车可坐y 人,根据“用1辆A 型客车和2辆B 型客车每次可坐125人;用2辆A 型客车和1辆B 型客车每次可坐115人”列方程组求解即可;(2)设租用A 型客车a 辆,则租用B 型客车()13a -辆,根据“现有师生560人,一次送完”列不等式求出a 的取值范围,然后可得所有可能的租车方案.【详解】(1)解:设1辆A 型客车可坐x 人,1辆B 型客车可坐y 人,根据题意,得:21252115x y x y +=⎧⎨+=⎩,解得:3545x y =⎧⎨=⎩,答:1辆A 型客车可坐35人,1辆B 型客车可坐45人;(2)解:设租用A 型客车a 辆,则租用B 型客车()13a -辆,由题意得:()354513560a a +-≥,解得: 2.5a ≤,∴a 可取的整数值为0、1、2,∴有三种方案:13辆B 型客车;1辆A 型12辆B 型客车;2辆A 型11辆B 型客车.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组和不等式求解.26.(1)40;(2)见解析;(3)解:①当ED BC ∥,如图①所示:∴190C ∠=∠=︒,∵A α∠=,∴2180290A α∠=︒-∠-∠=︒-,∵翻折,∴3290α∠=∠=︒-,∴190C ∠=∠=︒,∴180190ADF A α∠=︒-∠-∠=︒-,∴190C ∠=∠=︒,∵翻折,F A α∠=∠=,∴2190F α∠=∠+∠=︒+,∴2902FDB A α∠=∠+∠=︒+,∵BDF ∠的平分线交线段BC 于点G ,∴90FDB A α∠=∠=︒-,∵BDF ∠的平分线交线段BC 于点G ,∴1290α∠=∠=︒-,∵翻折,F A α∠=∠=,∴1902FDB F α∠=∠-∠=︒-,∵BDF ∠的平分线交线段BC 于点G ,∴1452GDB BDF α∠=∠=︒-,。
南京市七年级下学期数学期末考试试卷

南京市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列方程组中,不是二元一次方程组的是()A .B .C .D .2. (2分)如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .3. (2分)(2017·邗江模拟) 下列四个数中,是无理数的是()A .B .C .D . () 24. (2分)(2019·北仑模拟) 若实数a<0,则下列事件中是必然事件的是()A . a3>0B . 3a>0C . a+3<0D . a﹣3<05. (2分)(2018·玄武模拟) 如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB于点G,若∠1=72°,则∠2的度数为()A . 36°B . 30°C . 34°D . 33°6. (2分)为了了解湛江市某校1 500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是().A . 1500名学生是总体B . 1500名学生的体重是总体C . 每个学生是个体D . 100名学生是所抽取的一个样本7. (2分)在平面直角坐标系中,点P(m+1,2﹣m)在第二象限,则m的取值范围为()A . m<﹣1B . m<2C . m>2D . ﹣1<m<28. (2分) (2018七上·乌兰期末) 下列说法:;是单项式,且它的次数为1;若,则与互为余角;对于有理数n、x、其中,若,则其中不正确的有()A . 3个B . 2个C . 1个D . 0个9. (2分)(2018·昆山模拟) 若无理数x0= ,则估计无理数x0的范围正确的是()A . 1<x0<2B . 2<x0<3C . 3<x0<4D . 4<x0<510. (2分)(2019·新会模拟) 将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是()A .B .C .D .11. (2分)如果点P(m,1+2m)在第二象限,那么m的取值范围是()A . 0<m<B . -<m<0C . m<0D . m>12. (2分) (2018七下·中山期末) 某学校需要了解全校学生眼睛近视的情况,下面抽取样本的方式比较合适的是()A . 从全校每个班级中随机抽取10名学生作调查B . 从九年级随机抽取一个班级的学生作调查C . 从全校的女同学中随机抽取50名学生作调查D . 在学校篮球场上随机抽取10名学生作调查二、填空题 (共14题;共54分)13. (1分) (2018七上·开平月考) 若|x|=5,则x=________,若,则y=________.14. (1分) (2018八上·郑州期中) 点P(2,a-3)在第四象限,则a的取值范围是________.15. (1分)若代数式有意义,则x的取值范围为________ .16. (1分) (2017七下·宁江期末) 用不等式表示“y的与5的和是正数”________.17. (2分) (2017七下·静宁期中) 决定平移的基本要素是________和________.18. (15分) (2019七下·乌兰浩特期中) 解方程(组)(1) 2(x﹣1)3+16=0.(2);(3).(4)19. (10分)求下面各式中的x:(1)(x﹣3)2=4(2) 8(x﹣1)3=27.20. (5分)(1)解不等式:8﹣5(x﹣2)<4(x﹣1)+13;(2)若(1)中的不等式的最小整数解是方程2x﹣ax=3的解,求a的值.21. (5分)(2017·启东模拟) 解方程(1)解方程: + =4.(2)解不等式组:.22. (5分)用加减法解方程组:(1)(2).23. (2分)如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母)(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母)(3)求点A绕着点O旋转到点A2所经过的路径长.24. (2分) (2020七下·新乡期中) 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1) CD与EF平行吗?为什么?(2) CD与EF平行吗?为什么?(3)如果∠1=∠2,且∠3=115°,求∠ACB的度数.25. (2分) (2017八上·济南期末) 某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有________人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.26. (2分)为了解决农民工子女入学难的问题.我市建立了一套进城农民工子女就学保障机制,其中一项就是免交“借读费”.据统计,2017年秋季有5000名农民工子女进入主城区中小学学习,预测2018年秋季进入主城区中小学学习的农民工子女将比2017年有所增加,其中小学增加20%,中学增加30%,这样,2018年秋季将新增1200名农民工子女在主城区中小学学习.(1) 2017年秋季农民工子女进入主城区中小学学习的小学生、中学生各有多少名?(2)如果按小学每生每年收“借读费“600元,中学每生每年收“借读费”800元计算,求2018年新增的1200名中小学生共免收多少“借读费”?(3)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2018年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共14题;共54分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、18-4、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市七年级下学期期末考试数学试题
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019七下·西宁期中) 下列四种图案分别平移后能得到后面的图案的是()
A .
B .
C .
D .
2. (2分) (2020七下·海勃湾期末) 下列实数中,无理数的个数是()
①0. ;② ;③ ;④π;⑤ ;⑥6.18118111811118……
A . 1 个
B . 2 个
C . 3 个
D . 4 个
3. (2分)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF的度数为()
A . 100°
B . 120°
C . 115°
D . 130°
4. (2分)下列等式正确的是()
A .
B .
C .
D .
5. (2分)(2020·桂林) 下列调查中,最适宜采用全面调查(普查)的是()
A . 调查一批灯泡的使用寿命
B . 调查漓江流域水质情况
C . 调查桂林电视台某栏目的收视率
D . 调查全班同学的身高
6. (2分)(2020·安顺) 计算的结果是()
A . -6
B . -1
C . 1
D . 6
7. (2分)(2018·杭州模拟) 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则下列说法正确的是()
A . ∠AOE与∠BOC互为对顶角
B . 图中有两个角是∠EOD的邻补角
C . 线段DO大于EO的理由是垂线段最短
D . ∠AOC=65°
8. (2分)七年级⑴班的座位共有6排8列,张军同学的座位在2排3列,我们可以记作(2,3),那么吴灏同学的座位在5排6列,应记作()
A . (5,6)
B . (6,5)
C . (6,8)
D . (3,2)
9. (2分) (2018七上·洪山期中) 将正整数1至2018按一定规律排列如下表:
平移表中带阴影的方框,方框中三个数的和可能是()
A . 2018
B . 2019
C . 2040
D . 2049
10. (2分)(2020·温州模拟) 已知不等式组,其解集在数轴上表示正确的是()
A .
B .
C .
D .
11. (2分)不等式组的解在数轴上表示为()
A .
B .
C .
D .
12. (2分)把一个两位数的十位数字和个位数字交换后得到一个新的两位数,新数比原来的两位数多了18,则符合条件的原数有()个.
A . 5
B . 6
C . 7
D . 8
二、填空题 (共4题;共6分)
13. (1分) (2018七上·辛集期末) 计算:35°23′的补角=________.
14. (3分) (2020七下·西安期末) =________;﹣(﹣3)2=________;| ﹣2|=________.
15. (1分)(2013·舟山) 当a=2时,代数式3a﹣1的值是________.
16. (1分) (2019七上·如皋期末) 将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形
如此下去,则图2019中共有正方形的个数为________.
三、解答题 (共10题;共106分)
17. (5分)(2020·上海模拟) 计算:
18. (25分)解下列方程:
(1) 4x+3=2(x﹣1)+1;
(2);
(3) 5y+2=7y﹣8;
(4);
(5).
19. (1分) (2020七下·马山期末) 如图所示,四边形ABCD中,∠1=∠2,∠D=72°,则∠BCD=________.
20. (5分)如果实数x、y满足方程组,求代数式( +2)÷ .
21. (10分) (2019八上·杭州期中) 如图,在四边形ABCD中,AB=AD=12,∠A=60°,BC=15,CD=9,求:
(1)∠ADC的度数;
(2)四边形ABCD的面积。
22. (15分) (2015八下·杭州期中) 为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:
(1)校团委随机调查了多少学生?请你补全条形统计图;
(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人一周零花钱数额的中位数是多少元?
(3)为捐助贫困山区儿童学习,全校1000名学生每人自发地捐出一周的零花钱.请估算全校学生共捐款多少元?
23. (10分) (2019七下·洛阳期末) 如图,、是直线,,,,
(1)试判断与是否平行,说说你的理由.
(2)若,,求的度数.
24. (10分) (2019七下·哈尔滨期中) 为了提高学生的身体素质,并争取在学校的体育节中获得好成绩,班级准备从体育用品商店购买跳绳和毽子.已知购买5个毽子和3根跳绳共需85元,购买4个毽子和5根跳绳共需120元.
(1)求一个毽子和一根跳绳各需多少元?
(2)由于购买量大,商店给出如下优惠:毽子6个一盒,整盒出售,每盒27元,跳绳八折优惠.已知班级需要购买的毽子数比跳绳数的2倍多10,总费用不超过395元.问班级最多能购买多少根跳绳?
25. (15分) (2019九上·上海月考) 如图1,AD、BD分别是的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.
(1)求证:;
(2)如图2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;
(3)如果∠ABC是锐角,且与相似,求∠ABC的度数,并直接写出的值.
26. (10分)我市某镇组织10辆汽车装运A、B、C三种不同品质的樱桃共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装运一种樱桃.根据下表提供的信息,解答以下问题:
樱桃品种A B C
每辆汽车运载量(吨)12108
每吨樱桃获利(万元)342
(1)设装运A种樱桃的车辆数为x,装运B种樱桃的车辆数为y,求y与x之间的函数关系式
(2)如果装运每种樱桃的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、答案:略
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共6分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共106分)
17-1、答案:略
18-1、
18-2、
18-3、
18-4、答案:略18-5、答案:略19-1、
20-1、
21-1、
21-2、答案:略
22-1、
22-2、答案:略
22-3、答案:略23-1、答案:略23-2、答案:略24-1、答案:略24-2、答案:略25-1、答案:略25-2、答案:略25-3、答案:略
26-1、
26-2、。