从一题多解到多题一解ppt课件
从“一题多解”到“多题一解”

解法 4 因为直线 z 过定点 ( 30 直线 f过定 。 一 ,), 2
点 N O ) 所以I NI2 , (, , M =
又因为 oD 的半 径 r = 2 , 以如图 所 a f 3  ̄因为 t = = +0。 l a n
又因为oD的半径 r 2  ̄, = 4 直线 Z到直线 Z 的角为 。 : 3 。所以 0,
—
—
—
—
一
n 一,
n
-
)+ 3 2
一
r, / /
L
n一,
l= , 1 1 2
J
3 tn3 = l n a o +m
点评
= 澈 栅+ —= 3- m n 一1
点评
本题是两直线与 圆共 三个元 素的交点 , 如何
选择两者先求交点 , 再代入第 三者 当中 , 要有所取舍 , 否 则运算 极大 , 甚至无 功而返. 法在解 法一 的基础 上做 此
了适 当调整 , 减化了运算量.
3 +l m
^ 一
解法 1 ( 标准答案提 供方法 ) 将直线 z 与 f 的方 , 2
绍.
(m+ ) 3 2 n ,) ( m + m— ) [ ( — 一 3 1 = [ ( 一n + 3 n 2 n ] 2 n m)
、
(m + m n ] 3 n 2 — ) 化 简 , 3 1 = n3 + ) 3 一 m 一 m) 得(m+ ) 3 ( m 1 (n 3 n 4
3 8
中。 7 (l 第 期・ 中 ) ? 般I 21 5 高 版 o年
. 解题研究 .
“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践随着中国教育制度的不断改革,无论是教育目的还是方式方法,都是为了让学生拥有更加合理更加有效的学习环境而做出改变。
其中高中数学的教育目标,也不再单是让学生学会如何运用数学公式进行计算,除了针对学生对数学的学习兴趣以外,在实际解题方面,要求培养学生拥有更多更灵活的解题思路和方式,以改变统一性的教学模式。
就高中数学解题中“一题多解”与“多题一解”的解题方式加以分析研究。
高中数学解题方式思维模式学生在进入高中后,改变的不仅仅是学习的内容,学生自身的心智和思维模式也有较大的改变。
学生在思想成长的阶段,会出现种种的问题,这些问题会直接影响学生的学习情况,特别是数学。
因为高中阶段数学的难度将进一步加大,内容增多,因此学生解题的方式应更加的多样化。
因此,高中数学教学,首先要从学生解题过程中的思维模式入手,同时改变课堂教学的方式和内容,以此提高学生的学习成果。
一、“一题多解”在数学教学中的价值与实践(一)价值与实践在未来的社会发展中需求的人才将是多元化、多样化的,统一性思维的教育模式已经不再适用于现代社会。
因此,在高中数学教学中,“一题多解”的教学理念,是以学生学习为主,改变以老师为主导地位的教学模式。
因为每一个学生的受教育情况、性格、思维模式都不相同,因此一个固定性的解题方式不能最有效的适用于每一个学生,所以在数学教学的解题过程中,老师应引导学生多角度的去分析问题,让学生去探究、发现多样化的解题方式。
“一题多解”的根本在于问题本身,老师在创设和选择问题时,首先应考虑到问题自身是否具备多样化的解答模式。
同时,在培养学生多样化解题思维时,应注意调动学生解题的积极性,被动、消极的解题态度很难让学生产生多样化的解题思维。
所以针对这方面数学问题的内容应结合学生平时感兴趣的东西,让学生自觉的参与到多样化的解题中。
如有的学生喜欢足球,老师就把其融入习题中,让学生用原本感到枯燥的公式,运算他喜欢的与足球相关的问题。
一题多解与多题一解案例

一题多解与多题一解案例一、一题多解案例: 例:已知141=+ba 且a >0,b >0.求b a +最小值. 解法1:(1代换).由a >0,b >0,141=+ba 得: 942545441)41)((1)(=⋅+≥++=+++=++=⋅+=+b a a b b a a b b a a b b a b a b a b a 当且仅当ba ab 4= ,即b =2a ,即a =3,b =6时,(b a +)min =9.解法2:(凑常数法).由141=+b a 且a>0,b>0得)4)(1(--b a =4, 又∵140,110<<<<ba ,∴a >1,b >4. ∴1-a >0,4-b >0. ∴4)4)(1()4()1(=--≥-+-b a b a ∴9≥+b a .当且仅当41-=-b a ,即6,3==b a 时,9)(min =+b a .解法3:(增量法)∵141=+b a 且0,0>>b a .∴410,110<<<<ba . ∴4,1>>b a .令)0,0(4,1>>+=+=y x y b x a 代入141=+ba 得,4=xy , ∴,9255)4()1(=+≥++=+++=+xy y x y xb a 当且仅当2==y x 时,即6,3==b a 时,9)(min =+b a .解法4:(消元法)由已知得,14-=a ab 且1>a , ∴514114+-+-=-+=+a a a a a b a ∵014,01>->-a a , ∴9514)1(25141=+-⋅-≥+-+-=+a a a a b a .当且仅当141-=-a a ,即6,3==b a 时,9)(min =+b a .解法5:(配方法)由)0,0(141>>=+b a ba 得,4)4)(1(=--b a ,1(>a )4>b .则5)4)(1(2)41(5)4()1(2+--+---=+-+-=+b a b a b a b a 9)41(2+---=b a .当且仅当41-=-b a 时,即6,3==b a 时,9)(min =+b a .解法6:(三角代换)∵141=+b a 且140,110<<<<b a .令α2cos 1=a, ααπαα222sin 4,cos 1),20(sin 4==<<=b a b . ∴=+=+αα22sin 4cos 1b a α2sec α2csc 4+)1(4122ααctg tg +++= =5+tg αα224ctg ++≥52αα224ctg tg ⋅=9 当且仅当,2ααctg tg =即2=αtg ,即6,3==b a 时,9)(min =+b a .解法7:(判别式法)设s b a =+,则a s b -=.将a s b -=代入141a b +=整理得,0)3(2=+-+s a s a . ∵110<<a∴1>a ∴方程0)3()(2=+-+=s a s a a f 应在),1(+∞上有实解.则需⎪⎪⎩⎪⎪⎨⎧>-->≥--=∆1230)1(04)3(2s f s s 或0)1(≤f 解得,9≤s . 当.6,3,9===b a s 时 当6,3==b a 时,9)(min =+b a .二、多题一解案例(都是空间平面化方法)1.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===若对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( D )A.1B.2C.13+D.72. 如图,已知三棱锥BCD A -的底面是等边三角形,三条侧棱长都等于1, 30=∠BAC ,N M ,分别在棱AC和AD上,则NB MN BM ++的最小值是( B )A. 3B. 2C.1D.23. 圆柱的轴截面是边长为5cm 的正方形ABCD ,从点A 到点C 在圆柱侧面上的最短距离为( B )(A )10cm (B )4252+πcm (C )52cm (D )512+πcm ABC D N M4. 如图,已知正三棱柱ABC —A 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发, 沿着三棱柱的侧面绕行两周到达点A 1的 最短路线的长为 cm. 135.如图,在直三棱柱111ABC A B C -中,2AB BC AC ===,13AA =,,D E 分别是棱1BB ,1CC 上的动点,则1AD DE EA ++的最小值是( D )A .13B .5C .7D .35。
《一题多解与一题多变在中学数学中的应用开题报告2000字》

[4] 黄跃惠. 一题多解与一题多变在初中数学教学中的运用[J]. 试题与研究:高考版, 2019(28):1.
[5] 宫代印. 浅谈"一题多解"和"一题多变"在高中数学教学中的应用[J]. 试题与研究:教学论坛, 2019(2):1.
[6] 王菊香. 一题多变和多解成就智慧课堂[J]. 考试周刊, 2019(87):2.
[13] 江猷敏. "一题多解和一题多变"在培养学生数学思维能力的应用策略探析[J]. 考试周刊, 2020(66).
[14] 章勇. "一题多解"与"一题多变"在培养学生思维能力中的应用[J]. 新教育时代电子杂志(学生版), 2020(24):2.
八.指导教师意见
指导教师签字:
年 月 日
九.系意见
系主任签字:
年 月 日
十.学院毕业论文(设计)工作领导小组意见
负责人签字:
年 月 日
[7] 颜天伦. 初中数学教学中"一题多变","一题多解"渗透[J]. 中学课程辅导:教学研究, 2019.
[8] 张海玲. 谈利用"一题多解与一题多变"培养学生的思维能力[J]. 新智慧, 2021(6):2.
波的多解问题(教学图文课件分享)

外汇维权;
;外汇经验心得-外汇投资心得 https:///xinde/
外汇经验心得;
;每日最新外汇新闻-今日实时全球外汇新闻 https:///yaowen/
外汇新闻网;
;外汇今天行情-黄金原油行情走势分析 https:///hangqing/ 外汇今天行情;
原题:如图,一根张紧的水平弹性长绳上的a、b两点, 相距为14.0m,b点在a点的右方,波长λ>14m。当 一列简谐横波沿此长绳向右传播时,若a点的位移达到 正极大时,b点的位移为零,且向下运动,经过1.00s后, a点的位移第一次为零,且向下运动,而b点的位移达到 负极大,则这列简谐波的波速等于多少?
a
b
变化二:若把原题中“a点的位移第一次为零”改为“a
点的位移为零”。问这列简谐波的波速可能等于:
A:4.67m/s B:6m/s C:10m/s D:14m/s 解答:由题意知,3 λ/4=14m,考虑时间上的周期性, 即:(n+1/4)T=1s ,故波速:V=λ/T=14(4n+1)/3
当n=0时,V= 4.67m/s A答案正确
https:///zigzag/ ZIGZAG指标;
;外汇ADX指标-ADX平均趋向指数下载 https:///adx/
ADX指标;
;外汇BOLL指标-布林线BOLL指标下载 https:///boll/
;外汇技术分析 /jishufenxi/ 外汇技术分析方法;
;外汇技术指标 /jishufenxi/jishuzhibiao/ 外汇常用技术指标;
;外汇图表形态 /jishufenxi/tbxingtai/ 外汇图表分析;
a
b
变化一:若把原题中“波长λ>14m”的条件取消,
“一题多解”与“多题一解”在高中数学教学中的价值研究与实践

“一题多解”与“多题一解”在高中数学教学中的价值研究与实践作者:钱万毅来源:《中学课程辅导·教师教育(上、下)》2017年第02期摘要:经新课标的多次改革,高中数学教学由从前的教师为主导,逐渐演变为教师的作用为指导、引导,而学生为主体的自主多样性课堂,这样的课堂可以帮助学生更加主动地学习,锻炼学生思考、组织、分析、归纳等的能力。
其中“一题多解”和“多题一解”在高中数学教学中有良好的价值,值得实践与推广。
关键词:高中数学;解题方式;思维模式中图分类号:G633.6 文献标识码: A 文章编号:1992-7711(2017)02-057-01学生在进入高中学习后,不仅仅面临着学习内容的改变,学习的难度上了一个更高的台阶,还面临着思想的成熟和思维方式的养成。
在这一阶段,学生要学会用发散思维和提纲挈领的方法处理问题,而数学的学习,对培养学生这些能力都非常有益,其中“一题多解”与“多题一解”正是培养这些能力的关键教学实践方法。
在此阶段,注重数学教学的方式方法,传递给学生正确的思考方式,锻炼学生正确的思考能力,对于学生今后学习能力以及生活能力的提高都尤为重要。
一、“一题多解”在数学教学中的价值研究与实践(一)价值在传统的数学教学模式中,通常是老师在讲台上教授数学公式、概念等内容,学生在下面记笔记。
学生和老师都认为掌握了大量的定理、定义,以及数学公式,就能做好题,做对题,就能够在考试中取得好成绩。
在此背景和环境下,培养学生的发散性思维是很必要的。
老师不应该对数学题目只做生硬的讲解,只讲一种“标准答案”,这样只会禁锢学生的思维。
长久下去,学生只会变成“书呆子”。
教师应该多注重教学的有效性,应在课堂上观察学生的状态,倾听学生的需求,倾听学生的提问与回答,倾听学生的讨论。
这样才能使课堂互动起来。
数学的学习,本来就应该是丰富多彩的。
这样一个锻炼逻辑思维的学科,教师在教授的过程中应当充分发挥学科特点,让学生学习了数学,真正能有所用。
例谈“一题多解”与“多题一解”之争

: , = 一 , = 一 ,0 = 1 2 贝有 : + = , + 6
C× ; 3 A A 一8 ; ‘
方法三 对 同 色 球 不 加 区 别 , 认 为 3 只 红 球 都 是 相 即 同的 , 5只 白球 也 都 是 一 样 的 , 所 有 的 球 一 一 摸 出 排 成 一 把 排, 每种 排 法 作 为 一 个 基 本 事 件 , 基 本 事 件 总 数 为 n= 则
把 所 有 的 球 都 一 一 摸 出 依 次 排 成 一 排 , 一 种 排 法 作 为 一 每
个 基本事件 , 么基本事 件 的总数 为 n= :其 中第 4个球 那 A,
C XA:
内 的球 数 , 根 据 题 意 得 : 则
是红球的排法数为 m c × ; = A, 所以P —_ ÷. = n = -
^
以上四道题 目, 内容各有不 同 , 在 解答 时都采 用 了 虽 但 同 一种 放 法 —— 插 空 法 .
;×A5
^7
詈÷ ・
方 法 四 只 考 虑 第 4次 摸 出 的 球 的 每 一 种 可 能 作 为 基 本 事 件 , 么 基 本 事 件 总数 为 n: 那 3十5=8 而 摸 出 红 球 的基 ,
●
解 题 技 巧 与 方 法
谁
。
鲁
。
.I _ ., .
・
一
题 臆
◎ 马俊 杰 ( 武威 二 中 730 ) 30 0
28 8 0种 排 法 .
一
插法 , 右端 插入 , 有 A 从 也 种 插 法 , 以 共 有 2×A 所 ×A =
【 要 】 高 中数 学 教 学 中 贯 彻 “ 题 多 解 ” “ 题 一 摘 在 一 与 多
“一题多解”与“多题一解”在高中数学教学中的价值

㊀㊀解题技巧与方法㊀㊀108数学学习与研究㊀2019 24一题多解多题一解在高中数学教学中的价值一题多解 与 多题一解 在高中数学教学中的价值Һ韩云凤㊀(云南省昌宁县第一中学ꎬ云南㊀保山㊀678100)㊀㊀ʌ摘要ɔ 一题多解 与 多题一解 是锻炼学生思维能力的重要途径.高中数学具有一定的抽象性ꎬ对学生的思维能力提出了更高的要求.所以ꎬ高中数学教师应当巧用以上两种方式ꎬ帮助学生灵活运用数学概念㊁数学公式以及数学性质ꎬ不断锤炼学生的思维能力和提升学生的思维水平ꎬ为了达到重建学生思维体系的目的ꎬ从而提高学生的数学学习效率.ʌ关键词ɔ高中数学ꎻ解题能力ꎻ价值意义数学教学的本质是不断锻炼学生的思维ꎬ不断帮助学生解决问题. 一题多解 与 多题一解 这两种解决问题的方法对提高学生的思维品质有重要影响.因此ꎬ在日常数学教学中ꎬ高中数学教师能结合实际教学内容ꎬ有针对性㊁计划性地利用这两种方式锤炼学生的思维水平ꎬ扩大学生解题视野和解决思路ꎬ不断提高学生解决问题的能力.一㊁ 一题多解 的含义概述一题多解的含义是指:在原有问题的基础上ꎬ引导学生从不同的角度和层次思考原题ꎬ拓展学生的问题解决视野.实现思维扩散式发展ꎬ以帮助学生寻找到多种解题途径.允许学生使用不同的方法和方法来分析数学问题ꎬ可以帮助学生加深对数学知识ꎬ定理和自然的理解ꎬ并灵活地应用它们.在一定程度上ꎬ它还提高了学生的思维能力和创新能力.在高中数学课堂上ꎬ应用 一问与多解 的求解方法要求学生从原问题的实际情况出发.对题意进行深入分析ꎬ尝试从多个角度入手解决问题ꎬ通过对比ꎬ最终筛选出最佳解题方案.学生解决 一问与多解 问题的习惯和能力ꎬ可以有效激活学生的思维能力.学生的思维活起来ꎬ也就避免了 钻牛角尖 思维定式 等问题的出现.例如ꎬ在教授 不平等 相关知识点时ꎬ可以使用 一问与多解 教学模式.首先ꎬ要求学生用比较法㊁分析法来解析ꎻ接着ꎬ要求学生从不同角度再次解决问题.此外ꎬ为了提升学生对数学知识的掌握熟练度ꎬ还可以指导学生利用换元法㊁向量法等方式来进行解题.如果问题得到解决ꎬ学生将接受 一个问题和多个解决方案 的培训ꎬ学生将从解决方法演变为各种解决问题的方法.学生也实现了对此类问题的融会贯通ꎬ学生的思维能力㊁解题能力也得到了有效地提升.又如ꎬ在解析 概率 相关例题时ꎬ可以有意识地引导学生从不同角度进行排列计算ꎬ从而让学生掌握多样化求概率的方法.不难看出ꎬ 一个问题和多个解决方案 问题的解决方案并不仅仅意味着数量从 一个 变为 多个 .其本质意义在于锻炼学生的思维能力ꎬ培养学生的创新思维ꎬ帮助学生实现思想的质变.二㊁ 多题一解 的含义概述多题一解 的含义是指:利用一种解题思路去解析不同的题目ꎬ虽然利用到的数学性质㊁数学公式可能不同ꎬ但是ꎬ解题过程和解题思维是相同的. 多题一解 要求学生能够拥有较为完整的知识体系ꎬ能够在日常解题过程中ꎬ不断归纳和总结相应的解题方式ꎬ从而提高学生自己的解题水平.在高中数学问题解决中运用 多问题ꎬ一解 教学模式ꎬ引导学生运用一种方法探索数学的内在规律和本质标志.通过掌握问题解决方法之间的联系ꎬ可以发现数学问题的共同特征ꎬ并总结和总结解决相同类型问题的常用方法.从而提高学生的解题效率.多题一解 教学模式能够使学生的思维更加缜密ꎬ强化了学生对相关概念㊁性质㊁定理的理解以及运用ꎬ这也在一定程度上打破了 题海战术 的弊端ꎬ起到了 做题精炼 的效果.例如ꎬ在教授 寻找功能价值 等数学时ꎬ可以引导学生通过 数字组合 来解决问题.以函数f(x)=sinxcosx-2的值为例ꎬ首先提醒学生绘制函数图像ꎬ让学生使用图像识别函数的形式.然后让学生把它变成找到斜率的问题(假设移动点P(cosxꎬsinx)和固定点A(2ꎬ0)ꎬ迅速计算出PA的斜率值ꎬ即[-ꎬ0])ꎻ又如ꎬ在教学三角函数求值相关问题时ꎬ也可以采用数形结合的方法进行解析.总之ꎬ数学教师应该经常向学生提出一些类似的问题ꎬ引导学生掌握 多问题ꎬ一个解决 的常见问题解决思路.这样学生可以继续反思和总结ꎬ学会推理ꎬ触摸类比ꎬ然后提高学生解决数学问题的能力.三ꎬ 多题一解 和 一题多解 的数学价值(一)帮助学生构建系统的知识体系无论是 一问多解 ꎬ还是 多问题一解 ꎬ其教学价值在于培养学生的思维能力ꎬ提高学生的思维品质.两者解题方式的顺利实施ꎬ离不开学生的主动思考.学生在利用两种方式解题的时候ꎬ也是学生温习旧知的重要途径ꎬ通过对旧概念㊁旧定义和旧公式的复习ꎬ学生可以更清楚地了解知识的相关性ꎬ并帮助学生建立系统的知识体系.自然也就提高了学生的学习效率.(二)帮助学生提高解题能力利用 一题多解 和 多题一解 两种方法解决问题ꎬ可以有效地消除 题海战术 引起的枯燥无聊的感觉.真正实现了量变向质变的有效过渡.学生解决问题的思维更加灵活多变ꎬ有效地避免了学生 深陷 的困境ꎻ学生解决问题的思路更加广泛ꎬ各种问题都清晰可见ꎬ有效地提高了学生解决问题的效率.(三)提升学生的创新思维通过这两种解题方式不断锤炼学生的思维品质ꎬ带领学生积极思考㊁温故知新ꎬ最大化地激发了学生的思维潜能.学生不仅能在有限时间内找到快速解题的方式ꎬ也在一定程度最大化激发了学生的潜能ꎬ提升了学生的创新能力ꎬ发展了学生的创新思维能力.以上只是作者的粗略见解ꎬ旨在抛出砖块吸引玉石ꎬ希望广大数学教育家批评和纠正.ʌ参考文献ɔ[1]朱如昌.例析一题多解㊀一题多变㊀多题一解[J].数理化学习(高中版)ꎬ2005(1):47-49.[2]申祝平.一题多解㊁多题一解㊁一解多写与多解一写[J].中学数学教学参考ꎬ1995(5):13-15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨市第一六三中学 王志强
1
过
程
一题多解
一题一解 变式训练 一题多变 多题一解
2
推广变式
变式教学分类
课例《一线三角与全等三角形》
习题课的变式教学 3
推广变式
变式教学分类
课例《分比线段图形的探究》
习题课的变式教学 4
教材分析
教 学 目 标 分 析
5
教材分析
教学重点、难点
3 展示提升 15
教学过程分析
设计意图
• 让学生学会分析,反复体会 • 锻炼逻辑思维,推理能力和
语言表达能力 • 让学生的个性得到充分的展示
3 展示提升 16
教学过程分析
4
反
馈
验
让学生能够将刚刚总结的方式、方法,马
收
设计意图
上得以应用,达到巩固的目的,同时也体现了
本节课设计中 “浅入 — 深探 — 浅出”的思想。
17
教学过程分析
4
反
馈
验
避免学生形成惯性思维,固定解题模式,
收
设计意图
从而开拓学生思维,提高解决问题的灵活性
及数学思维能力。
18
教学过程分析
4
反
馈
验
通过此类训练让学生自己有意识地去寻找分比线
段型图形的本质特征并能在复杂的图形中将其发现,
收
设计意图
在突破难点的同时,提高自己的分析能力,培养数
学思考的习惯,同时为今后解决几何综合探究题奠
4
反 馈 验 收
(选作题) (选作题) (选作题)
作业布置
21
一题多变
教学评价与反思 一题多解
多题一解
22
从一题多解到多题一解
哈尔滨市第一六三中学 王志强
不当之处请批评指正
在无穷的变化中 领略数学的魅力 在曼妙的演变中 体会数学的快乐
23
重点
教
✓ 利用平行线在分
学
目
比线段型图形中
标
构造相似三角形
分
析
并解决问题。
难点
• 如何在复杂图形中 构造基本图形并利 用其本质特征解决 问题。
6
教学过程分析
1
自
设计意图
主
• 利于学生独立完成
学
• 使学生便于寻找图形的本质特征
• 顺利过渡到对一般三角形和相似三角形
习
的研究
• 为后续的探究活动打下基础
7
教学过程分析
1
自 主 学 习
8
教学过程分析
通过小组合作 的方式探究此 题的其他解决 方法
2 合作探究 9
教学过程分析
2 合作探究 10
教学过程分析
2 合作探究 11
教学过程分析
2 合作探究 12
教学过程分析
1 几何推理 13
教学过程分析
✓过任意分点作对边的平行线
2 数形结合 14
教学过程分析
定基础。
19
教材分析 教法、学法分析 教学过程分析 教学评价与反思
4
我们是如何一步一步揭示了分比线段型图形的本质?
反
在以上的学习过程中你体会到了那些数学思想及方法?
馈
验
设计意图:
收
让学生在收获知识的同时,
Hale Waihona Puke 也获得继续学习的方法和思想。 反思提升
20
教材分析 教法、学法分析 教学过程分析 教学评价与反思