异步电动机动态数学模型及矢量控制
异步电机矢量控制.

下步工作
学习在矢量控制中加入电流闭环控制的相 关原理 制作IRMCF341电源供电部分,保证电源部 分输出正确的电压。 在IRMCF341微控制器8051中增加故障处理 程序,保证故障类型的完整。
将电压方程
改写为
笼型转子 内部短路
σ=1-L2M/LS/LR σ电机漏磁系数
整理可得状态方程
其中Tr—转子电磁时间常数,Tr=Lr/Rr。
二、异步电机的矢量控制
αβ坐标系下转子磁链旋转矢量 ψr空间角度φ, d轴改成m轴,q轴改成t轴 m轴与转子磁链旋转矢量重合
代入上式
状态方程
可得mt坐标系的旋转角速度
转子绕组2r/2s变换
2r/2s
电压方程
பைடு நூலகம்
磁链方程
转矩方程 4、旋转正交坐标系下的动态数学模型
定子旋转变换阵为
转子旋转变换阵为
旋转坐标系下的电压方程
转矩方程
(3)正交坐标系下的状态方程 异步电机有四阶电压方程和一阶运动方程,需选取 五个状态变量1.转速ω;2.定子电流isd和isq;3.转子电流 ird和irq;4.定子磁链ψsd和ψsq;5.转子磁链ψrd和ψrq 以ω-is-ψr为状态变量 dq下的磁链方程
异步电机的矢量控制
2014年10月9日
一、异步电动机的数学模型 二、异步电动机的矢量控制 三、总结
一、异步电动机的数学模型
(1)三相动态模型
1、磁链方程
Lms - 定子交链的最大互感值; Lls - 漏磁通
定子三相各绕组之间与转子三相各绕组之间位置是固定的,互感 为常值
定、转子之间位置是变化的,与θ有关
电磁转矩表达式
按转子磁链定向,将定子电流分解为励磁分量ism和转矩 分量ist,转子磁链ψr仅由励磁分量ism产生,而电磁转矩 Te正比于转子磁链和定子电流转矩分量的乘积istψr ,实现 了定子电流两个分量的解耦。
异步电动机矢量控制

6
1、三相交流电产生旋转磁场
i
iA
0
iB
iC
C ωt
y
A · z x · B C
y
A z · B x· C ·
y
A
z · B x ·
60 0 900
wt=0
w t = 60
w t = 90
由此可见,交流电动机三相对称的静止绕组ABC,通以三相平衡的正 弦电流iA、iB、iC时,能够产生合成磁通势,这个合成磁通势以同步转 速沿A—B—C相序旋转。 2、两相交流电产生旋转磁场 这样的旋转磁通势也可以由两相空间上相差900的静止绕组 、 ,通 以时间上互差900的交流电来产生。
* i* * * i * 2/3相变换 iA iα B iC β
A1
-1
变频器
iT iM
反馈通道
旋转变换 A2
iα iβ 3/2相变换
A1
iA i B i C
M
以下任务是,从交流电机三相绕组中分离产生磁通势的直流分量和产生 电磁转矩的直流分量,以实现电磁解耦。解耦的有效方法是坐标变换。
13
8.2 坐标变换
异步电动机,也是两个磁场相互作用产生电磁转矩。不同的是,定 子磁势、转子磁势以及二者合成的气隙磁势都是以同步角速度在空 间旋转的矢量,且存在强耦合关系。——关系复杂,难以控制。
然而,交、直流电动机产生电磁转矩的规律有着共同的基础,电磁转矩 控制在本质上是一种矢量控制(直流电动机是特例),也就是对矢量的 幅值和空间位置的控制。
4
从电机学理论讲,任何电动机产生电磁转矩的原理,在本质上都是电动 机内部两个磁场相互作用的结果。
直流电动机,主极磁场在空间固定不变,与电枢的磁势方向总是互 相垂直(正交)、各自独立、互不影响(标量)。 例如他励电动机,励磁和电枢是两个独立的回路,可以对励磁电流 和电枢电流分别控制和调节,就能达到控制转矩的目的,实现转速 的调节。——控制灵活,容易实现。
【精品】第七章异步电动机动态数学模型的调速系统

第七章异步电动机动态模型调速系统内容提要:异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。
矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电动机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。
两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足之处。
本章第8.1节首先导出异步电动机三相动态数学模型,并讨论其非线性、强耦合、多变量性质,然后利用坐标变换加以简化,得到两相旋转坐标系和两相静止坐标系上的数学模型。
第8.2节讨论按转子磁链定向的基本原理,定子电流励磁分量和转矩分量的解耦作用,讨论矢量控制系统的多种实现方案。
第8.3节介绍无速度传感器矢量控制系统及基于磁通观测的矢量控制系统。
第8.4节讨论定子电压矢量对转矩和定子磁链的控制作用,介绍基于定子磁链控制的直接转矩控制系统。
第8.5节对上述两类高性能的异步电动机调速系统进行比较,分析了各自的优、缺点。
第8.6节介绍直接转矩控制系统的应用实例。
8.1交流异步电动机动态数学模型和坐标变换基于稳态数学模型的异步电动机调速系统虽然能够在一定范围内实现平滑调速,但对于轧钢机、数控机床、机器人、载客电梯等动态性能高的对象,就不能完全适用了。
要实现高动态性能的调速系统和伺服系统,必须依据异步电动机的动态数学模型来设计系统。
8.1.1三相异步电动机数学模型在研究异步电动机数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿气隙按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
矢量控制的异步电动机调速系统仿真设计

摘要近年来,随着电力半导体器件及微电子器件特别是微型计算机及大规模集成电路的发展,再加上现代控制理论,特别是矢量控制技术向电气传动领域的渗透和应用,使得交流电机调速技术日臻成熟。
以矢量控制为代表的交流调速技术通过坐标变换重建电机模型,从而可以像直流电机那样对转矩和磁通进行控制,交流调速系统的调速性能已经可以和直流调速系统相媲美。
因此,研究由矢量控制构成的交流调速系统已成为当今交流变频调速系统中研究的主要发展方向。
最后,综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。
关键词:坐标变换矢量控制异步电动机仿真ABSTRACTIn recent years, with the development of the power semiconductor device,the microelectronics component, the microcomputer and large-scale integrated circuit and modern control theory, especially the penetration from vector control technology to electric drive field and application, the feasible AC motor speed regulation technology has become more mature day by day.Depend on the control principle of the MC and the rotor-flux orientation theory, and using the computer simulation technology, the simulation model of the MC and the matrix converter fed induction motor vector control drive system has been build. The input-output characteristic and the ability of four-quadrant operation have been testified, which has proved that the system has wide application field. The software of the vector control unit was designed at the end.Key words: matrix converter vector control induction motor simulation目录1.绪论 (1)1.1引言 (1)1.2 交流调速技术概况 (2)1.3 系统仿真技术概述 (3)1.4仿真软件的发展状况与应用 (4)1.5 MATLAB 概述 (4)1.6 Simulink 概述 (6)2.矢量控制理论 (7)2.1 异步电机的动态数学模型 (7)2.2 坐标变换 (10)2.2.1变换矩阵的确定原则 (10)2.2.2功率不变原则 (10)2.3矢量控制 (11)2.3.1 问题分析 (11)2.3.2直流电机的转矩控制 (12)2.3.3异步电机的转矩分析 (12)2.3.4 矢量控制原理 (12)3.总体模块设计 (15)3.1矢量控制结构框图 (15)3.2各子系统模块 (16)3.2.1求解磁链模块 (16)3.2.2 求解转子磁链角模块 (17)3.2.3 ids*求解模块 (17)3.2.4 iqs*求解模块 (17)3.2.5 ABC到DQ坐标变换模块 (18)3.2.6 DQ到ABC坐标变换模块 (18)3.3 电机参数设置 (19)3.4矢量控制环节模块 (21)3.5矢量控制的异步电动机调速系统模块 (21)4.Simulink 仿真 (23)5.结论 (28)致谢 (29)参考文献 (30)附录1 3s/2r坐标变换 (32)附录2 ω*=100和ω*=150时的比较 (34)1.绪论1.1引言工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。
异步电动机矢量控制

19
3、定子绕组轴系的变换 (A B C )
下图表示三相异步电动机定子三相绕组A、C、C和与之等效的二相
异步电动机定子绕组 、 中各相磁势矢量的空间位置。三相的A轴
与二相的 轴重合。
B
假设当二者的磁势波形按正弦分 布,当二者的旋三相绕组和二相绕
12
矢量变换控制的基本思想和控制过程可用框图来表示:
旋转坐标系
静止坐标系
控制通道
ω* ψ*
控制器
iT* iM*
旋转变换 A-21
iα*
iβ*
2/3相变换
iA*
i
*
B
iC*
A
-1 1
变频器
iT iM 旋转变换
iα iβ 3/2相变换 iA iB i C
M
A2
A1
反馈通道
以下任务是,从交流电机三相绕组中分离产生磁通势的直流分量和产生 电磁转矩的直流分量,以实现电磁解耦。解耦的有效方法是坐标变换。
组的瞬时磁势沿 、 轴的投影
β
N3iB
N2iα N2iβ
α N3iA A
应该相等。(N2、N3为匝数)
C N3iC
3/2变换
N 2ia
N3iA
N3iB
cos
2
3
N 3iC
cos
4
3
2
4
N 2i 0 N3iB sin 3 N3iC sin 3
20
经计算整理,得:
i
N3 N2
i
A
1 2
iB
1 2
第八章 异步电动机矢量控制
主要内容:
矢量控制的基本思想 坐标变换 异步电动机在不同坐标系下的数学模型 异步电动机矢量控制系统举例
异步电动机的动态数学模型及矢量控制

iiCa
Lbc
ib
L2l Lccic
Ψ ΨR SL LR SSS
LSRiS LRRiR
L11L1l
其中,Lss
1 2
L11
1 2
L11
1 2
L11
L11L1l
1 2
L11
1
2 1
2
L11 L11
L11L1l
L22 L2l
LR
R
1 2
L22
1 2
L22
1 2
L2
2
L22 L2l
其中 p 为, 电机的 L 12 磁 N 1N 极 2 m对数。
2、转矩方程
Te
TL
J p
d
dt
J p
d 2
dt 2
J
d 2 m
dt 2
其中 m p 转子转动的机械角度
机数学模型的性质:
在A、B、C三相坐标系异步电动中异步电动机的基本方程 是由七个微分方程和一个电磁转矩公式组成。由于在微分 方程式中出现了两个变量的乘积项,所以数学模型是非线 性的 。
Ca
LCA LaA
b
LbA
c LcA
LAB L1l LBB
LCB LaB LbB LcB
LAC LBC L1l LCC LaC LbC LcC
LAa LBa LCa L2l Laa Lba Lca
LAb LBb LCb Lab L2l Lbb Lcb
LAc iA LBc iB
LCc Lac
Xm
θ
xA
表示x为 AX: mej
参考轴A
三相坐标系下的物理量如何用空间矢量表示?
设三相坐标系下三相物理量分别为:x(A t)、x(B t)、x( C t) 取a e j1200 1 j 3
异步电动机的动态数学模型-完整版

1、绕组自感 对于每一相绕组来说,它所交链的磁通是公共主磁通
(互感磁通)与漏感磁通之和,考虑绕组是对称的,因此 定子和转子各相绕组电感分别为:
LAA=LBB=LCC=L’m+Lls Laa=Lbb=Lcc=L’m+Llr
(6-5)
2、绕组互感 互感与公共主磁通相对应,互感分为两类:
三相异步电机的等效物理模型如下: 定子A、B、C的轴线在空间上固定,以A轴为参考坐标轴; 转子a、b、c的轴线随转子旋转,转速为ωr; 电角度θr为空间角位移变量。
异步电动机的动态数学模型由电压方程、磁链方程、转 矩方程和运动方程组成。
一、电压方程
定子电压方程:
u
A
u
B
u
C
iA R s iB R s iC R s
电机的磁链可表达为:
A LAA
B
LBA
Ca
LLCaAA
b
LbA
c LcA
简写成:
LAB LAC LAa LAb LAciA
LBB
LBC
LBa
LBb
LBc
iB
LCB LaB
LCC LaC
LCa Laa
LCb Lab
LCc Lac
iiCa
LbB
LbC
Lba
Lbb
Lbc
ib
LcB LcC Lca Lcb Lcc ic
d A
dt d B
dt d C
dt
转子电压方程:
u
a
u
b
u
c
ia R r ib R r ic R r
d a
dt d b
dt d c
异步电动机的动态数学模型-完整版

瞬态过程分析需要考虑电动 机内部的电磁场变化、转子 动态响应以及机械系统动态
响应等因素。
瞬态过程分析有助于深入了解 异步电动机的运行机理,为优 化控制策略和提高电机性能提
供理论支持。
04
CATALOGUE
异步电动机的控制策略
直接转矩控制
总结词
直接转矩控制是一种先进的电机控制策 略,通过直接控制电机的转矩和磁通量 来实现高动态性能。
VS
详细描述
直接转矩控制通过实时监测电机的转矩和 磁通量,并采用合适的控制算法来调整电 机的输入电压或电流,以达到快速响应和 精确控制的目的。这种控制策略具有快速 动态响应、高精度和鲁棒性强的优点,广 泛应用于高性能电机驱动系统中。
矢量控制
总结词
矢量控制是一种基于磁场定向的控制策略,通过将电机的电 流和电压解耦成转矩和磁通量分量,实现电机的精确控制。
效率与能效
提高异步电动机的效率和能效是当前 面临的重要挑战,也是推动技术发展 的主要动力。
未来趋势与展望
智能化
随着物联网和人工智能技术的发展,异步电动机将更加智能化, 能够实现自适应控制和预测性维护。
高效化
未来异步电动机将更加高效,能够降低能源消耗和维护成本。
定制化
随着生产工艺和需求的多样化,异步电动机将更加定制化,能够 满足各种特定应用的需求。
THANKS
感谢观看
压缩机等。
能源领域
02
风力发电和太阳能发电等可再生能源系统中,异步电动机作为
发电机和驱动电机被广泛应用。
交通运输
03
异步电动机在轨道交通、电动汽车和船舶推进等领域有广泛应
用。
技术发展与挑战
技术进步
可靠性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ca
LCA LaA
b
LbA
c LcA
LAB L1l LBB
LCB LaB LbB LcB
LAC LBC L1l LCC LaC LbC LcC
LAa LBa LCa L2l Laa Lba Lca
LAb LBb LCb Lab L2l Lbb Lcb
LAc iA LBc iB
LCc Lac
b L2libL22(12iaib12ic)L21[iAco( s120) 0iBcosiCcos(120)0] c L2licL22(12iaib12ic)L21[iAco( s120) 0iBco( s120) 0iCcos]
将定、转子六个磁链方程合起来写成矩阵形式
A L1l LAA
B
LBA
的主磁链。 A相绕组磁链方程:
a L2lia(L22ia12L22ib12L22ic)[(L21iAcosL21iBcos(120)0L21iCcos(120)0] L2liaL22(ia12ib12ic)L21[iAcosiBcos(120)0iCcos(120)0]
同理可 b相得 、 c相磁链方程:
B uB
b
ub
uc
uC
定子绕组:
1
a
ua uA A
L SSA L1l L AA L AB L AC L SRA L Aa L Ab L Ac R SA r1
LSSBL1l LBBLBALBC LSRB LBa LBb LBc
RSB r1
C
c
LSSCL1l LCCLCALCB LSRCLCaLCbLCc RSC r1
转子绕组:
a 相绕组: L RRa L 2 l L aa L ab L ac L RSa L aA L aB L aC R Ra r 2 b 相绕组: L RRb L 2 l L bb L ba L bc L RSb L bA L bB L bC R Rb r 2 c 相绕组: L RRc L 2 l L cc L ca L cb L RSc L cA L cB L cC R Rc r 2
iiCa
Lbc
ib
L2l Lccic
Ψ ΨR SL LR SSS
LSRiS LRRiR
L11L1l
其中,Lss
1 2
L11
1 2
L11
1 2 L11 L11L1l
1 2 L11
1
2 1
2
L11 L11
L11L1l
L22 L2l
LRR
1 2
L22
第1节 A、B、C坐标系下异步电动机的动 态数学模型
三相异步电动机的动态数学模型包括: (1)磁链方程; (2)电压方程; (3)转矩方程; 一、三相异步电动机的物理模型
假设
(1)无论笼型转子或绕线转子,都等效成绕线转子。 (2)三相定子绕组和三相转子绕组均为对称绕组。 (3)不计磁路饱和及铁心损耗。 (4)不计温度和频率变化对电机参数的影响。
L2l
N
2 2
2
L 22
L aa
L bb
L cc
N
2 2
m
L ab
L ba
N
2 2
m
cos
120
0
1 2
L 22
L bc
L cb
N
2 2
m
cos
120
0
1 2
L 22
L ca
L ac
N
2 2
m
cos
240
0
1 2
L 22
二、 三相异步电动机动态数学模型
(一)磁链方程 1、定子三相绕组磁链方程
定子每相磁链由三部分组成:(1)漏磁链;(2)定子三相电流 产生的 主磁链;(3)转子三相电流产生的主磁链。
设定子绕组有效匝数为N1,转子绕组有效匝数为N2。 设气隙磁导为Λm,定子漏磁路的磁导为Λ1σ,转子漏 磁路的磁导为Λ2σ。
则有参数:
L11 L AA
L BB
LCC
N
2 1
m
L1l
N
2 1
1
L AB
L BA
N
2 1
m
cos
120
0
1 2
L11
L AC
LCA
N
2 1
m
cos(
240
0)
1 2
L11
第7章 异步电动机的动态数学模型 及矢量控制
前面几章介绍的异步电动机转速开环恒 U1/f1 协调控制的变频调速系统以及转 差频率控制的变频调速系统,都是依据异步 电动机稳态下的等值电路和转矩公式得出的 维持恒磁通的结论。但动态下磁通是否恒定 则不予考虑。另外上述变频控制都是采用标 量控制方法,即仅控制电动机的电压或电流 的幅值,而不控制其相位.所以前面介绍的 变频控制方法不可能具有良好的动态性能.
A 1l (AAABAC)(AaAbAc)
L1l
iA
(L11iA
1 2
L11iB
1 2
L11iC)
[L12ia cos L12ib cos( 1200)L12ic cos( 1200)]
L1l
iA
L11(iA
1 2
iB
1 2
iC)
ห้องสมุดไป่ตู้
L12[ia
cos
ib
cos(
1200)
ic
cos(
1200)]
同理,得 B相、C相磁链方程;
L BC
LCB
N
2 1
m
cos
120
0
1 2 L11
LAa LaA N1 N 2 m cos L12 cos LAb LbA N1 N 2 m cos( 120 0 ) L12 cos( 120 0 ) LAc LcA N1 N 2 m cos( 240 0 ) L12 cos( 120 0 ) LBa LaB N1 N 2 m cos(120 0 ) L12 cos( 120 0 ) LBb LbB N1 N 2 m cos LBc LcB N1 N 2 m cos(120 0 ) L12 cos( 120 0 ) LCa LaC N1 N 2 m cos(120 0 ) L12 cos( 120 0 ) LCb LbC N1 N 2 m cos(120 0 ) L12 cos( 120 0 ) LCc LcC N1 N 2 m cos L12 cos
B
L1l
iB
L1(1
1 2
iA
iB
1 2
iC)
L12[ia
co(s
1200)ib
cos
ic
co(s
1200)]
C
L1l
iC
L1(1
1 2iA
1 2iB
iC)
L12[ia
co(s
1200)ib
co(s
1200)ic
cos)]
2、转子磁链方程
转子磁链也包含三部分: (1)漏磁链;(2)由三相转子电流产生的主磁链;(3)由定子电流产生