模拟乘法器

合集下载

模拟乘法器原理

模拟乘法器原理

模拟乘法器原理乘法器是一种电路设计,用于将两个输入数相乘,并输出它们的乘积。

乘法器常用于数字信号处理、计算机和通信系统中。

乘法器的原理基于布尔代数和逻辑门。

它通常由多个逻辑门和触发器组成,以实现乘法运算。

乘法器的设计要考虑精度和运算速度。

一种常见的乘法器设计是Booth乘法器,它使用偏置编码技术来减少部分乘积的计算。

另一种常见的设计是Wallace树乘法器,它通过级联多个片段乘法器来提高速度。

乘法器的操作原理是分别将两个输入数的每个位进行乘法运算,并将结果相加。

具体步骤如下:1. 将两个输入数分别展开为二进制形式,对应位分别相乘。

最低位乘积直接输入到第一级部分乘积的输入。

2. 对每一位乘积进行部分乘积运算。

部分乘积运算是将当前位乘积和之前的部分乘积相加,并将结果输出到下一级。

3. 重复步骤2,直到所有位的乘积都被计算出来。

4. 对所有部分乘积进行累加,得到最终的乘积结果。

乘法器还需要考虑进位和溢出的问题。

在每一位相乘时,会产生进位位和当前位的乘积。

如果乘积超过了位数的范围,就会产生溢出。

乘法器的性能可以通过速度和面积这两个指标来评估。

速度是指乘法器完成一次乘法运算所需的时间,面积是指乘法器所占据的芯片空间大小。

总结来说,乘法器是一种常见的电路设计,用于将两个输入数相乘。

乘法器的原理基于布尔代数和逻辑门,它的设计考虑了精度和运算速度。

乘法器的操作原理是对输入数的每一位进行乘法运算,并将结果累加得到最终的乘积。

乘法器还需要考虑进位和溢出的问题。

乘法器的性能可以通过速度和面积来评估。

第七章模拟乘法器电路

第七章模拟乘法器电路

若带通滤波器中心频率为ω l − ω s,带宽大于2Ω, 1 则有uo = KU SmU Lm (1 + m cos Ωt ) cos(ω l − ω s )t 2
电子线路
五 倍频
us
x y K
uo'
高通滤波器
uo
us = U
'
Sm
cos ω s t
2 Sm
u o = KU
cos ω s t
2 2
uo'
带通滤波器
uo
u = KUsm cosωst ⋅ mcos Ωt 1 1 = KmUsm cos(ωs +Ω)t + KmUsm cos(ωs −Ω)t 2 2
电子线路
单边带调幅
1 u o = KmU sm cos(ω s + Ω )t 2 1 or u o = KmU sm cos(ω s − Ω )t 2
1 ui1 + ui 2 uo = − ⋅ A uy
多个输入除法电路
电子线路
三 平方根运算电路
vO1 vX =− R1 R2
2 vO1 = KvO来自所以有 vO = 1 R2 (−vX) K R1
显然,vO是- vI平方根。因此只有当vI为负值 时才能开平方,也就是说vI为负值电路才能实现 负反馈的闭环。图中的二极管即为保证这一点而 接入的。
电子线路
五 函数发生电路
R2 x
x
K=1 y
uo1 R1 f(x)
R3 R4
R2 2 R2 R4 f ( x) = − x + (1 + ) x R1 R 3 + R 4 R1
电子线路
Uiy 运算电路

模拟乘法器及其应用讲解

模拟乘法器及其应用讲解

模拟乘法器及其应用摘要集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。

可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

The integrated analog multiplier is the second one of the analog integrated circuitoperational amplifier after the general linear integrated circuits, is a multi use. Can be usedas broadband, suppressed carrier double balanced modulator, does not require a coupling transformer or tuning circuit, also can be used as SSB multiplication detector of high performance, AM modulator / demodulator, FM demodulator, mixer, multiplier, the phasedetector, and it can also complete theamplifier combining mathematical operation many, such as multiplication division,involution, evolution, etc..一、实验目的1.了解模拟乘法器的工作原理2.掌握利用乘法器实现AM调制、DSB调制、同步检波、倍频等几种频率变换电路的原理3.学会综合地、系统地应用已学到模、数字电与高频电子线路技术的知识,通过MATLAB掌握对AM调制、DSB调制、同步检波、倍频电路的制作与仿真技术,提高独立设计高频单元电路和解决问题的能力。

模拟乘法器应用实验

模拟乘法器应用实验

二、综合设计实验说明
本次综合设计实验,由大家独自依据所学的有关高频电子 线路中频率变换技术的相关理论知识,以模拟乘法器为核心器 件,设计出实现普通调幅、平衡调制、混频、倍频和同步检波 等功能的实际电路。并完成对所设计的各种功能电路的仿真调 试。
三、实验任务与要求
一、实验任务:
用模拟乘法器实现振幅调制(含AM与DSB)、同步检波、混频、倍频等频 率变换电路的设计。 已知:模拟乘法器为1496,采用双电源供电,Vcc=12V Vee=-8V.
② 同步检波器电路设计与仿真
实现对DSB信号的解调。 基本条件;载波信号UX:f=1MHZ /50-100mV 调制信号Uy: f=2KHz/200mV,并按信号流程记录各级信号波形。
三、实验任务与要求
二、实验要求:
③ 混频器电路设计与仿真 实现对信号的混频。 基本条件:AM信号条件:(载波信号UX:f=1MHZ /50mV ,调制信号Uy: f=2KHz/200mV,M=30%)中频信号:465KHZ,本地载波:按接收机制式自定。 记录各级信号波形。 ④ 倍频器电路设计与仿真 实现对信号的倍频。 基本条件:Ux=Uy(载波信号UX:f=1MHZ /50mV )完成电路设计与仿真, 并记录各级信号波形。推证输入、输出信号的关系。
U 0 (t )
1 KU sU 0 cos( 0 s )t 2
0 s i
为所需要的中频频率,可见
用模拟乘法器实现混频,就是在 U x 端和 U y 端分别加上两个不同频率的信号,两信号 相差一中频,再经过带通滤波器取出中频信号。
四、实验原理说明及设计思路提示
5.模拟乘法器实现混频
U 0 t 1 m Ucm cos c t cos c t 2 m Ucm cos c t cost

《模拟乘法器》课件

《模拟乘法器》课件
《模拟乘法器》PPT课件
# 模拟乘法器 本课程将介绍模拟乘法器的原理及其应用。
模拟乘法器的定义
பைடு நூலகம்
作用
模拟乘法器用于实现模拟 信号的乘法运算,将不同 信号相乘得到新的信号。
原理
模拟乘法器基于电子元件 的特性,通过电压或电流 乘法进行运算。
分类
模拟乘法器可以根据不同 的实现方式和应用场景进 行分类。
模拟乘法器的应用
电子测量中的应用
模拟乘法器在测量仪器中用于信号放大和校正,提高测量精度。
通信系统中的应用
模拟乘法器在通信系统中用于信号调制、解调和频谱分析。
音频系统中的应用
模拟乘法器在音频系统中用于音频效果处理和音频信号放大。
模拟乘法器的实现
电路实现
模拟乘法器可以通过电路设计和集成电路制 造来实现。
软件实现
模拟乘法器也可以通过软件算法来实现,例 如在数字信号处理中。
2 应用前景
模拟乘法器在未来将继续发挥重要作用,随着科技的发展将有更广泛的应用。
参考文献
1. 2. 3.
Author 1. Title 1. Publisher 1. Author 2. Title 2. Publisher 2. Author 3. Title 3. Publisher 3.
模拟乘法器的应用案例
电子秤上的应用
模拟乘法器在电子秤中用于 测量物体的重量并进行计算。
无线电通信系统中 的应用
模拟乘法器在无线电通信系 统中用于信号调制和解调, 实现高质量的通信。
音频放大器中的应 用
模拟乘法器在音频放大器中 用于调节音量和音频效果的 处理。
总结
1 优点和不足
模拟乘法器的优点包括快速响应和高精度,但也存在精度损失和成本较高的不足。

《模电实验》模拟乘法器

《模电实验》模拟乘法器

模拟乘法器幅度调制实验姓名:学号:模拟乘法器幅度调制实验模拟乘法器是利用三极管的非线性特性,经过电路的巧妙设计,在输出中仅保留两路输入信号的乘积项,从而获得良好的乘积特性的集成器件。

模拟乘法器其可用于各种频率变化,如平衡调制、混频、同步检波、鉴波、检波、自动增益控制等电路。

本实验利用模拟乘法器MC1496实现幅度调制电路。

一、实验目的1、了解模拟乘法器的工作原理;2、学会利用模拟乘法器搭建振幅调制电路,掌握其工作原理及特点。

3、了解调制系数Ma的测量方法,了解Ma<1、Ma=1、Ma>1时调幅波的波形特点。

二、复习要求1、复习幅度调制器的有关知识;2、分析实验电路中用MC1496乘法器调制的工作原理,并分析计算各引脚的直流电压;3、了解调制系数M的意义及测量方法;4、分析全载波调幅信号的特点;5、了解实验电路各元件的作用。

三、实验电路原理实验电路如下图所示。

该电路可用来实现幅度调制,混频。

倍频,同步检波等功能。

图中R8和R9为负载电阻,R10为偏置电阻,R7为负载反馈电阻。

R1、R2和Rp组成平衡调节电路,调节Rp可以调节1、4两管脚的电位差。

当电位器为0时,电路满足平衡调幅。

当电位差不为零时,输入包含调制信号和直流分量两部分,则可实现普通调幅。

四、实验步骤1、按照电路图焊接电路。

2、实现普通单音调幅:a、在Ux上加入振幅Vx=50mV、频率f=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,调节电位器Rp,使电路工作在不平衡状态,用示波器观察输出波形。

b、保持Ux不变,改变Uy的幅值,当Uy的幅度为50mV、100mV、150mV、200mV、250mV时,用示波器观察输出信号的变化,并作出Ma—Uy曲线。

c、保持Ux不变,fx由小变大,观察输出波形的变化。

3、实现平衡调幅a、将Uy接地,在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,调节电位器Rp使输出Uo=0.b、在Ux上加入振幅Vx=50mV、频率fx=500KHz的正弦信号,在Uy上加入振幅Vy=200mV、频率f=10KHz的正弦信号,微调调节电位器Rp,得到抑制波的双边带信号。

模拟乘法器

模拟乘法器

图1:基础模拟乘法器与乘法器象限的定义从数学角度来看,乘法是一种“四象限”运算——换言之,两个输入可能为正,也可能为负,输出亦是如此。

然而,用于生产电子乘法器的某些电路仅支持单极性信号。

如果两个信号都必须是单极性的,结果形成一个“单象限”乘法器,输出同样也会是单极性的。

如果其中一个信号为单极性,而其他信号可能为正或负,则乘法器就是一个“二象限”输出可能为两个极性之一(因而为“双极性”)。

用于产生一象限或二象限乘法器的电路可能比四象限乘法器所需电路要简单,由于许多应用并不需要全四象限乘法,因此,常用的是仅支持一象限或二象限的精密器件。

一个示例是AD539,这是一款宽带双通道二象限乘法器,具有一个单极性Vy 输入,其相对受限带宽为5 MHz,还有两个双极性Vx输入,每个乘法器各一个,带宽为60 MHz。

图2显示的是AD539的框图。

图2:AD539模拟乘法器框图最简单的电子乘法器采用对数放大器。

计算依赖于以下事实:两个数的对数之和的反对数为这两些数字之积(如图3所示)。

图3:利用对数放大器实现乘法运算图4:基础跨导乘法器这是一种性能很差的乘法器,因为(1) Y 输入被随V Y 非线性变化的V BE 抵消;之间存在指数关系,因而X 输入呈现非线性;(3) 比例因子随温度而变化。

图5:基础跨导乘法器如此,吉尔伯特单元有三个不便之处:(1) 其X输入为差分电流;(2) 其输出为差分电流;输入为单极性电流——因此吉尔伯特单元只是一个二象限乘法器。

通过交叉耦合两个这样的单元并使用两个电压-电流转换器(如图6所示),我们可以把基础架构转换成一种带电压输入的四象限器件,如AD534。

在中低频率下,可以用一个减法器放大器把输出端的差分电流转换成电压。

鉴于其电压输出架构,AD534的带宽仅为1 MHz 左右,而后续版本AD734的带宽则为10 MHz。

图6:AD534:一款四象限跨导线性乘法器Q1A和Q1B以及Q2A和Q2B形成两个吉尔伯特单元的两对核心长尾对,而Q3A 则为两个单元的线性化晶体管。

702模拟乘法器(一般了解)

702模拟乘法器(一般了解)

第七章 信号的运算和处理
1. 模拟乘法器简介
uI1 uI2 uO
uo = KuI1uI2
模拟乘法器符号
图 7.3.1
输出电压正比于两个输入电压之积 如果比例系数 K 为正值——同相乘法器; 为正值 同相乘法器; 同相乘法器 为负值——反相乘法器。 反相乘法器。 如果比例2.理想模拟乘法器具备的条件 理想模拟乘法器具备的条件
1. ri1和ri2为无穷大; 为无穷大; 2. ro为零; 为零; 3. k值不随信号幅值而变化,且不 值不随信号幅值而变化, 值不随信号幅值而变化 随频率而变化; 随频率而变化; 4.当uX或uY为零时 o为零,电路没 当 为零时u 为零, 有失调电压、噪声。 有失调电压、噪声。
第七章 信号的运算和处理
7.2模拟乘法器及其在运算电路中的应用 模拟乘法器及其在运算电路中的应用 (一般了解 一般了解) 一般了解 • 什么是模拟乘法器?模拟乘法器可以用来 什么是模拟乘法器? 做什么? 做什么? • 画出模拟乘法器的符号及其等效电路。 画出模拟乘法器的符号及其等效电路。 • 理想模拟乘法器应具备哪些条件? 理想模拟乘法器应具备哪些条件? • 按照允许输入信号的极性不同,可以将模 按照允许输入信号的极性不同, 拟乘法器分为哪几种? 拟乘法器分为哪几种?
uI2 − uBE3 uI2 I= ≈ Re Re Rc uO ≈ − uI1uI2 = KuI1uI2 2 ReU T
须大于零。 须大于零。故图 7.3.4 为两象限模拟乘法器
uI1可正可负,但uI2必 可正可负,
两象限模拟乘法器 两象限模拟乘法器
第七章 信号的运算和处理
5.四象限变跨导型模拟乘法器 四象限变跨导型模拟乘法器
则:
R2 uI1 uO = − R1 K uI 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳大学科技工程学院模拟乘法器1.课程设计目的随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。

在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了方案,按照设计的电路图在Multisim 仿真软件中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结。

2.设计方案论证2.1 乘法器常规调幅的设计作用随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。

用集成模拟乘法器可以构成性能优良的调幅和解调电路,其电路元件参数通常采用器件典型应用参数值。

作调幅时,高频信号加到输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端。

调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。

集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。

2.2乘法器常规调幅设计调制就是指携带有用信息的调制信号去控制高频载波信号解调是调制的逆过程,将有用的低频信号从高频载波中还原出来。

调幅过程是非线性变换的过程。

普通调幅是用需传送的信息(调制信号))(t u Ω去控制高频载波)(t u c 的振幅,使其随调制信号)(t u Ω的规律而变化。

调幅时,载波的频率和相位不变,而振幅将随调制信号线性变化。

若载波信号为t U t u c cm c ωcos )(=,调制信号为)(t u Ω。

则普通调幅波的振幅为:)()(t u k U t U a cm cm Ω+=沈阳大学科技工程学院式中,a k 是一个与调幅电路有关的比例常数。

)(t U cm 称为包络函数,它反映了)(t u Ω的变化规律。

因此,调幅波的数学表达式为t t u k U t t U t u c a cm c cm A M ωωcos )]([cos )()(Ω+==2.3 乘法器框图及分析根据乘法运算的代数性质,乘法器有四个工作区域,由它的两个输入电压的极性来确定,并可用X-Y 平面中的四个象限表示。

能够适应两个输入电压四种极性组合的乘法器称为四象限乘法器;若只对一个输入电压能适应正、负极性,而对另一个输入电压只能适应一种极性,则称为二象限乘法器;若对两个输入电压都只能适应一种极性,则称为单象限乘法器。

图1 乘法器框图作调幅时,高频信号加到X 输入端,低频信号加到Y 输入端;作解调时,同步信号加到X 输入端,已调信号加到Y 输入端,本实验电路中将载波信号加在X 端,调制信号加在Y 端。

调试时,先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。

还需注意:(1)Y 端输入信号幅度不应超过允许的线性范围,其大小与反馈电阻R Y 有关,否则输出波形会产生严重失真;(2)X 端输入信号可采用小信号(小于26mV )或者大信号(大于260mV ),采用大信号可获得较大的调幅或解凋信号输出,本实验给出的是大信号。

信息传输系统中,调制是用以实现电信号远距离传输及信道复用的重要手段。

由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。

2.4电路设计基本思路及各部分结构原理差分放大器是基本放大电路之一,由于它具有抑制零点漂移的优异性能,因此得到广泛的应用,并成为集成电路中重要的基本单元电路,常作为集成运算放大器的输入级。

本实验采用双差分对相乘器设计,其电路如下图图2 双差分放大器电路差分放大电路不仅具有放大作用,还具有乘法功能,所以它成为变跨导单片集成模拟乘法器的基本单元电路。

双差分电路由两对差分放大器组成第一对差分放大器Q11,Q9管,第二对差分放大器Q10,Q13管,Q14和1Q8分别是两对差分放大器的恒流源他们的输入电压为差模输入电压,输出集电极交叉连接,同时Q14,Q18又组成一对差分放大管。

本实验恒流源Io/2用Q17,Q19实现,二极管与电阻500Ω构成Q17与Q19的偏置电路,R7为反馈电阻,用于扩展输入信号的范围,计算电路参数,在Multism10中画出仿真电路图正确输入载波信号和调制信号即可进行设计电路仿真。

直流电源采用正负双极电源VCC=|VEE|,差分放大电路都具有放大差分信号,抑制共模信号的作用,实验设计电路中设计的输入信号是差模信号,5和8线输入的是输入信号,由于其幅值很小,在实际电路中采用负反馈技术来扩展它的动态范围R7为增益电阻,在这里起到负反馈的作用流过R7 的共模电流为0,给每管的负载为R7的一半,R4,R5 R6组成单端输出,利用这三个电阻的负反馈作用抑制共模信号,在设计电路中对差模视为短路,R3的作用是给内部差分对管提供恒流源的外接阻抗。

沈阳大学科技工程学院沈阳大学科技工程学院2.5乘法器常规调幅电路参数选择计算低频信号U Ωt U U m Ω=ΩΩcos Ft U m π2cos Ω=高频载波信号分别为 Fct U t w U Uc cm c cm π2cos cos ==式中,F 为输入信号频率,c F 为载波频率,设两者波形的初相角均为零。

将Uc 和ΩU 分别输入模拟乘法器的X 和Y 输入端,a U 为一固定的直流电压,要求a U ≥ΩU ,一般选取a U 为1V 。

由此可得输入端总的输入电压为Y U = a U +t U m ΩΩcos因此,模拟乘法器的输出电压U 。

=K X U Y U =K (a U +t U m ΩΩcos )t w U c cm cos= K t w t U U U U c a cm a cos ]cos )/(1[Ω+Ω= K t w t m U U c a cm a cos )cos 1(Ω+其中Ma 为调幅系数,由设计要求已知调幅系数为0.5,UΩm=500mv ,F=1.5KHz;cm U =100mv.Fc=10KHz.U 。

=K c U U Ω =K0.5 cos2π15000t .0.1cos2π10000t=0.25(cos3000πt+cos20000πt)根据要求对输出波形放大10倍,所以K 取10,所以U 。

=0.25[cos (23000πt)+ cos (17000πt)]对于其它参数根据资料查询可知K=)/()(2t X c V R R aR3的取值可由下面方程决定0-(-VEE )=(3β+βb I )R3+Vbe+(1+β)IbR2c I 的取值可根据电路具体情况取值,c I =(VEE-be V )/(R3+R6),所以取R3为1KΩ。

估算R1和R2,R1=R2,集电极电位约为Vcc —IcR1,基极电位通过外接电阻设定约为0.5Vcc 为了保证T1,T2和T3,处于放大状态则Vcc-IcR1≥0.5V cc ,于是R1≤0.5V cc /Ic=6KΩ,选取R1和R2为1KΩ,Rx为增益控制电阻,暂取500Ω选取Vcc=12V,Vee=-12V,比例电流源射极电阻均取500Ω。

2.6乘法器常规调幅电路设计图3 乘法器常规调幅电路沈阳大学科技工程学院2.7设计电路仿真实现乘法器常规调幅仿真电路图图4 乘法器常规仿真电路图沈阳大学科技工程学院仿真实现结果(1)输入信号仿真波形图5 仿真波形(2)载波信号输入仿真波形图6 载波信号输入仿真波形沈阳大学科技工程学院(3) 输出仿真波形图7 输出仿真波形(4) 调幅波的频谱图8调幅波的频谱沈阳大学科技工程学院沈阳大学科技工程学院(5) AM 波的频谱图9 AM 波的频谱3.设计结果与分析3.1设计电路仿真结果分析用调制信号去改变载波信号的振幅,使其振幅不再是恒指而是随着调制信号成比例变化,m a 为调幅系数,由于m a ≤1,则(1+m a cosΩt )≥0始终为正,所以这时AM 波的包络与U Ω(t )成正比关系AM 波的最大值)1(max a cm m U U +=,AM 波的最小值)1(min a m U -=,从而的调幅系数为)/()(min max min max U U U U m a --=,可见m a 越大,AM 波的包络起伏越大,但当m a >1时由于(1+m a cosΩt )不在始终为正,会出现负值,这时AM 波的包络与U Ω成正比关系,这种情况称为过调,对AM 波来说应尽量避免过调出现。

单频信号调幅后的高频已调波,由幅度为cm U 、角频率为ωc 的载频和两个幅度一样、角频率分别为(ωc+ Ω)、(ωc -Ω)的边频所组成,)(F f c + 称上边频、)(F f c -称下边频,它们对称地排列在载频的两侧,相对于载频的位置仅取决于调制信号的频率。

显然,载波分量并不包含信息,调制信号的信息只包含在上、下边频分量内,边频的幅度反映了调制信号幅度的大小,边频的频率虽属于高频的范畴,但反映了调制信号频率的高低。

由于载波本身并不包含信息,因此为了提高设备的功率利用率,可以不传送载波而只传送两个边带信号,这种调制方式称为抑制载波双边带调幅,简称双边带调幅。

m a等于1时仿真波形图10 仿真波形m a大于1时的仿真波形图11 仿真波形ma>1沈阳大学科技工程学院3.2仿真电路设计失真分析由于通过对仿真电路图进行分析发现此设计电路的仿真输出波形存在一定的失真,其产生失真的原因主要是因为电路设计存在一定的缺陷,模拟乘法器的输出电压含有调制频率与载波频率的“和”频与“差”频分量,即双边带调幅波产生,同时也会有奇次谐波与调制频率的“和”频与“差”频,所以,输出端应该想办法滤除这些无用的分量。

电路还有很多地方需要改善,此设计电路存在相对优缺点,优点是电路设计图相对简单,主要采用双差分对乘法器,相似于MC1496内部结构,即采用芯片实物相连更加简单,成本相对较低,缺点是仿真波形存在失真,还需要改善。

4.设计体会集成模拟乘法器是实现两个模拟量相乘功能的器件它是另一类使用很广泛的模拟集成电路以构成乘法、平方、除法、平方根等运算电路,也可构成压控增益、倍频、混频、鉴相等电路。

混频电路能获得两个输入信号的和频及差频信号输出,集成模拟乘法器混频电路具有良好的特性而被广泛采用。

相关文档
最新文档