锂离子电池安全影响因素
锂离子电池存在的问题

锂离子电池是一种广泛应用于移动设备、电动汽车、储能系统等领域的重要电 池技术。然而,与其它技术一样,锂离子电池也存在一些问题和挑战,其中一 些主要问题包括:
1. 安全问题: 锂离子电池有时可能发生过充电、过放电、过热等情况,导 致电池过热、发烟、甚至起火爆炸。这种问题主要是由于电池内部的短 路、电解液泄漏、电池结构受损等原因引起的。
5. 资源问题: 锂是锂离子电池的主要原材料,其供应受到地缘政治、资源 分布等因素的影响。为了确保电池产业的可持续发展,需要关注锂资源 的有效利用和替代技术的发展。
6. 充电时间: 锂离子电池充电时间通常战。
尽管存在这些问题,但科技研究一直在不断努力解决这些挑战。新的电池技 术、电池管理系统(BMS)的改进以及对电池制造和使用的更严格监管,都有 望缓解一些锂离子电池存在的问题。
2. 寿命问题: 锂离子电池的寿命通常受到充电和放电循环次数的限制。随 着循环次数的增加,电池容量可能会逐渐下降,影响设备的使用时间。
3. 电池老化: 长时间使用后,电池可能会出现老化现象,导致性能下降。 电池老化可能是由于电解质的分解、电极材料结构变化等多种原因引起 的。
4. 能量密度限制: 锂离子电池的能量密度相对较高,但仍然存在一定限 制。对于一些需要更高能量密度的应用,如电动汽车,需要不断寻找提 高能量密度的新技术。
锂离子电池安全性研究及影响因素分析

锂离子电池安全性研究及影响因素分析一、本文概述随着科技的快速发展和全球能源结构的逐步转型,锂离子电池作为一种高效、环保的能源存储技术,已经广泛应用于便携式电子设备、电动汽车、航空航天、储能电站等多个领域。
然而,随着锂离子电池应用范围的扩大,其安全性问题也日益凸显。
电池热失控、燃烧甚至爆炸等安全事故不仅会造成巨大的财产损失,还可能威胁到人们的生命安全。
因此,对锂离子电池的安全性进行深入研究和影响因素分析,对于保障其安全应用具有重要意义。
本文旨在全面综述锂离子电池安全性的研究现状,分析影响电池安全性的主要因素,包括电池材料、制造工艺、使用条件等,并探讨提高锂离子电池安全性的有效方法和未来发展方向。
通过本文的阐述,希望能够为锂离子电池的安全应用提供理论支撑和实践指导,促进锂离子电池技术的健康、可持续发展。
二、锂离子电池的基本原理与结构锂离子电池,作为现代电化学储能技术的核心,其基本原理和结构是理解其安全性和性能的关键。
锂离子电池是一种通过锂离子在正负极之间移动实现能量存储和释放的二次电池。
其结构主要由正极、负极、隔膜和电解液四个部分组成。
正极是锂离子电池的重要组成部分,通常采用具有高嵌脱锂电位的材料,如钴酸锂、锰酸锂、磷酸铁锂等。
正极材料的性能直接影响电池的能量密度和安全性。
负极材料则通常采用具有低嵌脱锂电位的碳材料,如石墨、硅碳复合材料等。
负极的主要作用是储存和释放锂离子,其结构和性能对电池的循环寿命和安全性具有重要影响。
隔膜位于正负极之间,是防止电池内部短路的关键组件。
隔膜通常由聚烯烃等多孔材料制成,具有良好的离子通透性和机械强度。
电解液则是锂离子电池中的重要组成部分,通常由有机溶剂和锂盐组成,其主要作用是传导锂离子,实现正负极之间的电荷转移。
锂离子电池的工作原理是在充放电过程中,锂离子在正负极之间移动,实现化学能与电能之间的转换。
充电时,锂离子从正极脱嵌,穿过隔膜,嵌入负极;放电时,锂离子从负极脱嵌,穿过隔膜,嵌入正极。
锂离子电池安全性及影响因素分析

锂离子电池安全性及影响因素分析
锂离子电池的安全性受多种因素影响。
首先,电池的设计和制造质量是影响安全性的重要
因素。
不良的设计或制造工艺可能导致电池内部短路或热失控,从而引发安全事故。
其次,外部环境的影响也会对锂离子电池的安全性产生影响。
例如,在高温环境下,锂离子电池
容易发生热失控,导致发生灾难性的事故。
此外,使用过程中的不当操作也可能引发安全
隐患,如过充电、过放电以及外部短路等。
为了提高锂离子电池的安全性,厂商和用户都需要注意以下几点。
首先,厂商应加强对电
池设计和制造工艺的质量控制,确保产品质量符合安全标准。
其次,用户在使用电子设备
时应遵守相关使用说明,避免在不当环境下使用电池,如高温环境下充电或插入不合适的
充电器。
总之,锂离子电池的安全性受多种因素影响,包括设计和制造质量、外部环境和使用过程
中的操作。
厂商和用户都需要共同努力,提高锂离子电池的安全性,以确保其在使用过程
中不会产生安全隐患。
抱歉,我无法满足你的要求。
锂离子电池安全性关键因素

锂离子电池安全性关键因素锂离子电池安全性关键因素锂离子电池是一种常见的电池类型,广泛应用于移动设备、电动车辆和储能系统等领域。
然而,锂离子电池也存在着安全隐患,如过热、短路和电池泄漏等问题。
因此,确保锂离子电池的安全性至关重要。
下面将逐步介绍锂离子电池安全性的关键因素。
第一步:材料选择锂离子电池的材料选择对其安全性至关重要。
正极材料通常使用氧化钴、氧化镍、氧化锰等,而负极材料则采用石墨或石墨烯。
选择高质量、高稳定性的材料可以降低电池的过热和短路风险。
第二步:电解液配方电解液是锂离子电池中的重要组成部分,同时也是电池安全性的关键因素之一。
优质的电解液应具有较高的导电性和稳定性,同时还要具备一定的耐温性。
合理选择和配方电解液可以减少电池泄漏、过热和爆炸的风险。
第三步:隔膜设计隔膜是电池中阻止正负极直接接触的重要屏障,对于电池的安全性至关重要。
优质的隔膜应具备良好的离子传导性和热稳定性,以减少短路和过热的风险。
第四步:电池封装电池封装是保证锂离子电池安全性的另一个关键因素。
封装应具备良好的耐高温性和耐压性,以防止电池在异常情况下发生泄漏和爆炸。
合理设计和选择封装材料和结构可以有效提高电池的安全性能。
第五步:电池管理系统电池管理系统(BMS)对于锂离子电池的安全性至关重要。
BMS可以实时监测电池的温度、电流和电压等参数,同时也可以控制电池的充放电过程。
通过合理设置BMS的保护机制,可以及时发现和处理电池异常情况,减少安全事故的发生。
综上所述,锂离子电池的安全性是一个多方面的问题,需要从材料选择、电解液配方、隔膜设计、电池封装和电池管理系统等方面进行综合考虑和优化。
只有在各个环节都严格控制和把关,才能确保锂离子电池的安全可靠运行。
锂离子电池的安全性及相关标准规定

锂离子电池的安全性及相关标准规定锂离子电池安全性及相关标准规定锂离子电池是一种高能量密度、长寿命、无记忆效应、环保等优点的电池,被广泛应用于便携式设备、电动工具、电动汽车等领域,但其安全性问题也备受关注。
本文将介绍锂离子电池的安全性及相关标准规定。
一、锂离子电池的安全性问题1. 热失控当锂离子电池内部温度达到一定程度时,电池的正副电极、电解液等将会燃烧甚至爆炸,造成严重事故。
热失控的主要原因是电池内部产生热量无法及时散发出去,导致电池内部温度升高。
2. 机械失控锂离子电池内部物质的结构很脆弱,在受到机械碰撞、摩擦等外力作用时,可能会发生机械失控。
3. 内短路内短路是锂离子电池内部发生短路的一种情况。
由于正负电极之间隔膜被损坏,电解液中的离子可以直接通过短路通道流动,导致电池损坏或甚至爆炸。
4. 外短路外短路发生在电池的正负接口被短路时,电池可以在极短的时间内输出大量电流,可能会引发电池爆炸。
二、锂离子电池相关标准规定1. UL标准UL标准是美国安全试验实验室(Underwriters Laboratories)制定的电池安全标准,主要用于规范锂离子电池的安全性能。
2. IEC标准国际电工委员会(IEC)制定了IEC 62133标准,用于规范电池的安全性能,其中包括锂离子电池。
3. GB/T标准GB/T是中国标准制定机构国家标准化管理委员会发布的标准。
《锂离子电池安全性要求和测试方法》(GB/T 31241-2014)是规范锂离子电池安全性能的重要标准。
4. UN标准联合国(UN)也制定了一系列标准来规范锂离子电池的安全性能,主要针对电池的包装和运输。
综上所述,锂离子电池的安全性问题备受关注,相关标准规定的制定和实施对于确保锂离子电池的安全性具有关键性作用。
同时,生产、使用锂离子电池时也要严格按照标准规定进行操作,尽可能避免电池对人身和环境造成损害。
未来发展趋势和前景随着科技的不断发展和新能源的广泛应用,锂离子电池的前景越来越广阔。
影响锂离子电池寿命七因素

影响锂离子电池寿命七因素锂离子电池作为目前最常见的可充电电池之一,广泛应用于移动电子设备、电动车辆和能源存储等领域。
然而,由于化学性质的限制以及使用过程中的因素,锂离子电池的寿命存在一定的限制。
影响锂离子电池寿命的主要因素包括以下七个方面:1.充放电循环次数:锂离子电池的寿命通常以充放电循环次数来衡量。
每次循环都会使电池内部材料的结构发生微小的变化,逐渐导致电池容量的降低。
因此,频繁的充放电循环会缩短锂离子电池的寿命。
2.充电速率:快速充电过程中,电池内部的化学反应速度加快,可能会导致电池结构的损坏,甚至引发电池失火、爆炸等安全风险。
因此,过高的充电速率会显著影响锂离子电池的寿命。
3.放电深度:放电深度是指电池容量被使用的程度。
过度深度的放电会引发电池内部材料的腐蚀和损伤,进一步缩短电池寿命。
因此,合理控制电池的放电深度对延长锂离子电池的寿命至关重要。
4.温度:温度是锂离子电池性能的关键影响因素之一、过高的温度会加速电池内部化学反应的速度,损害电池结构,降低电池容量和寿命。
因此,适当的温度管理对保护锂离子电池寿命至关重要。
5.储存条件:在储存过程中,锂离子电池会自然自放电,导致电池容量的损失。
过低的储存温度也会对电池寿命产生负面影响。
因此,适当的储存条件是延长锂离子电池寿命的关键。
6.振动和冲击:振动和冲击会对锂离子电池内部的电解液和电极材料产生损害,并可能导致电池结构的损坏。
因此,在使用和维护过程中应该尽量避免振动和冲击,以保护锂离子电池寿命。
7.高压充电和过充电:过高的充电电压可能会导致电池内部结构的损坏,产生气体和温度过高,从而降低电池寿命。
过充电也会对电池安全性产生不良影响。
因此,合理控制充电电压和充电过程是延长锂离子电池寿命的关键。
综上所述,锂离子电池的寿命受到很多因素的影响,包括充放电循环次数、充电速率、放电深度、温度、储存条件、振动和冲击、高压充电和过充电等。
在使用和维护锂离子电池时,合理控制这些因素,可以延长电池的使用寿命,提高电池的性能和安全性。
锂离子电池的安全性问题
定 性 通 常 较 差 , 易 释 放 出 氧 气 ,而 碳 酸 酯 极 易 与 氧 气 反 应 ,放 出 大 量 的 热 和 气 体 ; 产 生
记 本 电脑 电 池 爆 炸 所 引起 的 。 2 0 年 8 0 6 月计 算机 生产 商戴尔 和苹 果公 司分别 宣布 回收 4 1 0
万 枚 和 1 0 枚 笔 记 本 电 脑 锂 离 子 电 池 , 回 万 8
和体 积 大小 直接 相 关 。 容 量 高 的 电池 通 常对 应较 高 的放 热 量 ,而体 积大 的电池 ( 其散热 堆) 相 对 困 难 ,热 量 更 容 易 被 累积 ,从 而 导 致热
功 制约 锂 离子 电 池 向 大 型化 、高 能 化 方 向发
展的 瓶颈 。
兰整 丝塑兰 堡 ! 困 ! 篁 塑
电 池 外 部 的 氧 气 作 用 ,可 能 发 生 燃 烧 甚 至 爆
过 热 、 破 裂 导 致 起 火 。 而 对 于 更 大 的 动 力 电 池 组 , 安 全 问 题 更 为 突 出 , 因 此 安 全 问 题 成
炸 的 危 险 。 锂 离 子 电 池 的 安 全 性 与 电 池 容 量
材 料 和 设 计 ,一 般 情 况 下 锂 离 子 电 池 储 存 的 总 能 量 和 其 安 全 性 是 成 反 比 的 ,随 着 电 池 容 量 的 增 加 ,电
2 电极 材料 与电解质共 存体 系的热稳定 性 )
锂 离 子 电 池 安 全 性 能 的 另 一 个 更 重 要 的 方 面 即 是其 热 稳 定 性 。在 一 些 滥 用状 态 下 ,如高 温 、
过 充 、针 刺 穿 透 以及 挤 压 等 情况 下 ,导 致 电极 和 有 机 电解 液 之 间 的强 烈 作 用 ,如 有 机 电解 液 的 剧
锂离子电池安全性能测试及其影响因素分析
锂离子电池安全性能测试及其影响因素分析摘要:随着新技术的开发和提高,锂离子电池在国内外的使用也越来越普遍,如汽车,电动自行车,电源设备等。
由于锂电池的应用日益普遍,在应用过程中出现的爆炸、自燃等重大安全事故也相应增加。
所以,必须要做好对锂离子电池安全的检测与评估工作,要和锂离子电池所使用的实际状况相结合,并建立出一个科学合理的检测与评估办法,以便于把重大安全事故的风险减至最小化。
关键字:锂离子电池;安全性能测试;影响因素随着时间的推移,国家经济利益的增加,有关部门对锂离子电池的关注也越来越多。
但是,为了确保锂离子电池的安全性,需要采用陶瓷涂层对其进行覆盖,这样就可以避免在锂离子电池应用过程中产生的问题。
但是,大量使用陶瓷涂层隔膜的公司还很少,很难提高锂离子电池的安全性,因此,这种应用方式还需进一步研究,以使锂离子电池安全的核心性能体现出来。
1锂离子电池安全性测试1.1短路试验举例来说,在60Ah公三原材料电池模块短路测试的流程中,满电态系统的最大电流约为20.4V,而热短路器电阻则为3mΩ,在实际试验中,短路流程中的瞬时最低电流大约为3293A,热电池的持续最高释能电流则约为3000A,而在此时,锂离子脱嵌电池内部就会产生巨大的热量,电池的工作温度在持续提高中,在如此高温条件下,热电池内还会产生正负两极材料、电解质溶液中的放热反应和产气反应。
电池完全蒸发后,电解液和可燃体会一起冲破电池壳层,弥散在附近空气中,当形成高温气体时,就会产生闪点非常低的流线型碳酸酯,从而引起电池内部起火,还可能由于短路而发生电池外壳起火的现象。
1.2过充测试当电压靠近4.8V时,电池的表面温度逐渐增大。
在实验中,缠绕式软包装的电池先是发生了胀气鼓包现象,并于25分钟后完全着火了。
叠片式软包电池在实验时也发生了胀气鼓包的现象,最大工作温度达到96℃。
不过,由于18650形钢壳电池自身的安全阀的功能,在电解液分解后形成的气体温度超过内部耐压下限值的时候,安全阀就将自行开启,由此使得其自身的工作温度大大地降低,最大工作温度达到了70℃,而且也不会产生明显的胀气和漏液情况。
液态电解质对锂离子电池安全性能的影响因素
液态电解质对锂离子电池安全性能的影响因素锂离子电池是目前应用广泛的电池之一,随着电动汽车、无人机、智能手机等应用领域的不断扩大,对锂离子电池的安全性能要求也越来越高。
而液态电解质作为锂离子电池中重要的组成部分,直接影响着锂离子电池的安全性能。
本文将介绍液态电解质对锂离子电池安全性能的影响因素。
1. 电解液种类液态电解质的种类对锂离子电池安全性能有着重要的影响。
当前主流的液态电解质种类有有机电解质和聚合物电解质两种。
1.1 有机电解质有机电解质是锂离子电池中应用最广的电解质,其具有导电性能好、工艺成熟、加工方便等特点。
但是,由于有机电解质本身的易燃性、挥发性等问题,使得锂离子电池在过充、过放、过温等情况下容易引起熔融、燃烧等危险事件。
1.2 聚合物电解质聚合物电解质是近年来发展起来的一种新型电解质。
相比有机电解质,聚合物电解质具有高温、高条件下较好的稳定性,不易燃、不挥发等优点。
但是,聚合物电解质的导电性能相对较差,还存在使用寿命短、加工工艺复杂等问题。
2. 电解液浓度电解液浓度是指电解液中含有的盐类的浓度,是锂离子电池中另一个非常重要的安全性能参数。
过高或过低的电解液浓度都可能导致电池的安全性能下降。
过高的电解液浓度会增加电池的内阻、降低电池的比能量和比功率,导致电池的功率性能下降,安全性能也会受到影响。
同时,过高的电解液浓度还会导致电池内部产生气体,从而增大了电池发生爆炸、火灾等危险事件的概率。
过低的电解液浓度也会影响电池的安全性能。
过低的电解液浓度会使得电解液中锂离子浓度不足,从而降低了电池的比能量和比功率,同时会导致电池内部的过电势增大,从而增大了电池的发生过充或过放的危险。
因此,确定适当的电解液浓度是锂离子电池安全性能优化的重要环节之一。
3. 电解液添加剂添加剂是指向电解液中加入的一些辅助物质,可以改善电池的性能和稳定性,从而提高电池的安全性能。
常见的电解液添加剂有以下几种:3.1 碳酸二甲基碳酸二甲基是有机碳酸酯化合物,常用于锂离子电池的电解液中作为添加剂。
锂离子电池安全性
锂离子电池的安全性在科技飞速发展的今天,各种移动的电子设备在人类生活中大量应用,锂电池也随之迅速发展成为二次电池领域中重要的一个产业。
锂电池在比容量、无记忆效应、长寿命、环保等综合性能远远超过其他二次电池,锂电池被称为“终极电池”,但为什么在大容量电池领域却没有见到锂电池的身影呢?关键问题是受到锂电池的安全性问题的制约。
锂离子电池最大的安全隐患爆炸、漏液等。
一、产生的原因1、内部短路:是锂离子电池的最大的隐患产生的原因,是在锂离子电池生产过程中,由于正负极片出现的毛刺、破损、掉粉、气泡等多方面原因,出现次品,在使用过程中,在过充的情况下(甚至正常充放电时),锂离子在负极堆积形成枝晶,刺穿隔膜,形成内部短路。
2、产生大电流:外部短路,内部短路将产生几百安培甚至更大的过大电流i. 外部短路时,由于外部负载过低,电池瞬间大电流放电。
在内阻上消耗大量能量,产生巨大热量。
ii. 内部短路,主要原因是隔膜被穿透,内部形成大电流,温度上升导致隔膜熔化,短路面积扩大,进而形成恶性循环而使产生爆炸或其他安全问题;3、气体的产生:锂离子电池为达到单只电芯3.0 -4.2V 的高工作电压(镍氢和镍硌电池工作电压为1.2V ,铅酸电池工作电压为2V ),必须采取分解电压大于2V 的有机电解液,而采用有机电解液在大电流,高温的条件下会被电解,电解产生气体,导致内部压力升高,严重会冲破壳体4、燃烧:热量来源于大电流,同时在高电压(超过5V )情况下,正极锂的氧化物也会发生氧化反应,析出金属锂,在气体导致壳体破裂的情况下,与空气直接接触,导致燃烧,同时引燃电解液,发生强烈火焰,气体急速膨胀,发生爆炸。
5、外因作用:如:针刺和撞击温度升高,气体急速膨胀,发生爆炸。
二、采取的措施1、隔膜的遮断电流防止电池的安全隐患起了关键作用,隔膜是短路情况下的保护带,即隔膜在大约130度时电阻会突然增大,从而阻止锂离子在之间传输,隔膜在130度以上时,其保护带越安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂离子电池安全问题概述关键词:热稳定性;电解液;电极;锂离子电池Abstract: Safety issues have been the main obstacle to restrict lithium ion batteries to large scale and high energy density. Safety problems of lithium ion batteries were summarized in this paper. The reasons of the problems were analyzed from thermal runaway and the flammability of organic electrtolyte. Thermal runaway could be supressed by increasing the thermal stability of electrode materials, and combustion and explosion may be prevented by using high safety electrolyte system.Key words: thermal stability; electrolyte; electrode; lithium ion battery1,背景锂离子电池由于具有能量密度高、输出电压高、循环寿命长、环境污染小等优点,在小型数码电子产品中获得了广泛应用,在电动汽车、航空航天等领域也具有广阔的应用前景。
然而,近年来用于手机、数码相机和笔记本电脑中的锂离子电池爆炸伤人事件已经屡见不鲜,锂离子电池的安全问题引起人们广泛的关注。
仅2009年5月份就发生了若干起与锂离子电池相关的安全事故,其中包括HTC Touch Pro原装电池燃烧事件,以及惠普笔记本电脑电池召回事件。
惠普公司给出的召回原因是那些电池存在过热起火和烫伤消费者的隐患,据说该电池组发生过至少两起事故,主要是因为电池过热、破裂导致起火。
目前报道的锂离子电池安全问题集中发生在用于数码产品上的小型锂离子电池,与手机电池相比,笔记本电脑电池由于容量更高,出现问题的几率也相对较高;而用于交通工具上大型的动力电池或电池组,其安全问题更为突出,目前安全问题已成为制约锂离子电池向大型化、高能化方向发展的瓶颈。
2安全问题原因分析2.1 电池系统的安全问题锂离子电池作为一个系统,其安全问题主要源于滥用情况下热失控的发生。
电池系统的热失控即为系统产生的热量大于释放的热量而导致热量积累,温度迅速升高的过程[1]。
锂离子电池发生热失控,主要是由电极和电解液间的化学反应引起。
电解液通常使用的溶剂为有机碳酸酯类化合物,它们具有高活性,极易燃烧。
处于充电态的电池正极材料为强氧化性化合物,同时处于充电态的负极材料为强还原性化合物。
在滥用情况下,如过充、过热和短路等,强氧化性正极材料稳定性通常较差,易释放出氧气,而碳酸酯极易与氧气反应,放出大量的热和气体;产生的热量会进一步加速正极的分解,产生更多的氧气,促进更多放热反应的进行;同时强还原性负极的活泼性接近金属锂,与氧接触会立即燃烧并引燃电解液、隔膜等[2, 3]。
锂离子电池在滥用情况下出现的内部温度升高导致大量放热反应发生,放出的热量来不及散逸,在电池中积累并进一步加剧电池内部放热反应的发生,如此恶性循环导致电池温度迅速升高而失控的过程,即为电池的热失控。
图1是热失控发生过程的放热反应示意图,锂离子电池在初始几次循环过程中负极材料与电解液的界面层会形成一种固体电解质界面膜,通称为SEI膜,它通常是由稳定态物质(如Li2CO3、LiF等)和亚稳态物质(如ROCO2Li、(CH2OCO2Li)2等)组成;亚稳态物质一般会在较低的温度(90~120℃)下放热分解,放热量较小[4]。
SEI分解后,随着温度的升高,电解液发生分解,其主要的分解反应一般发生在200~225℃之间,产生的热量为250J/g左右[5, 6]。
与此同时,电解液与正极之间的反应发生,并伴随大量的热量产生。
而负极嵌锂碳、电极材料中的粘结剂(如PVDF)与电解液在300℃左右常会发生放热反应,此过程的放热量通常较大[7]。
通常,在较低的温度(<150℃)下,电池的热稳定性主要是由负极表面SEI膜的热稳定性决定的;而在较高的温度(>150℃)下,电解液与充电正极的放热反应往往贯穿于热失控发生的整个过程,是导致热失控发生的最主要原因。
图1 热失控发生过程的放热反应示意图锂离子电池的热失控是电池从正常状态到被破坏,并可能导致灾难性后果的一个过程。
当电池热失控发生后,电解液中的易燃溶剂可能导致电池的燃烧甚至爆炸,特别是在电池的封闭体系被打开,电解液在与空气中的氧气接触后,灾难性的后果往往难以避免。
因此,锂离子电池的安全问题可以分为两个层次:一是封闭的锂离子电池体系未被破坏,但是有潜在发生危险的可能,主要涉及到材料的热稳定性,材料热稳定性尤其正极材料的热稳定性与热失控密切相关;二是电池体系已经遭到破坏,易燃的电解液和电池内部产生的氧气或电池外部的氧气作用,可能发生燃烧甚至爆炸的危险。
与热失控相关的锂离子电池的安全性还与电池的构造有较大关系,尤其是电池容量和大小对电池的安全性有重要影响。
容量高的电池通常对应较高的放热量,而体积大的电池(组)其散热相对困难,热量更容易被累积,从而导致热失控。
一部手机用的锂离子电池重约20g,正品手机电池事故率相对较低;而笔记本电脑的6芯锂离子电池重量约为400g,是手机电池的20倍,事故率相对较高;电动自行车所用锂离子电池组的重量约为4公斤,约为手机电池的200倍,电动汽车则要用到更大电池,如福特汽车公司e-Ka的原型车使用的锂离子电池组重280kg,这些用于交通工具的动力电池的安全问题更为突出。
2.2 易燃烧的电解质锂离子电池具有较高的能量密度,在于其较高的输出电压。
在通常的正负极材料的工作电位下,水溶液难以稳定使用,所以锂离子电池电解液使用有机溶剂。
而有机溶剂通常极易燃烧,特别是电解液中的线型碳酸酯具有较高的蒸气压和较低的闪点,使锂离子电池在安全性上背上了沉重的负担。
物质的充分燃烧通常需要满足四个要素:可燃物、助燃物(氧气)、热量和链式反应[8]。
前三者又称为“燃烧三角”,是燃烧发生的必要条件,而充分燃烧,或者剧烈燃烧,甚至爆炸,往往还包含链式反应的发生。
在燃烧的过程中,可燃物体必须先行受热,挥发或分解产生可燃性气体,然后再与氧气进行剧烈化学变化,即为燃烧。
而可燃物与氧气的反应过程中经常包含自由基(Radial)的产生,这样的自由基通常能够引出一系列链式反应的发生,表现为剧烈燃烧或爆炸。
在这个过程中,氧气和可燃性气体的比例往往对燃烧的程度有重要影响,但氧气不足时或可燃性气体不足时,难以达到充分燃烧。
在锂离子电池电解液的安全问题上,电解液本身相当于燃料,即可燃物;而且在一些滥用条件下,电池内部产生足够的热量常使正极释放出氧气,为电解液的燃烧提供了助燃物,但是由于生成的氧气量有限,通常导致电解液的不完全燃烧。
但是这样的燃烧仍然产生大量的热和气体,导致电池系统的破坏,打开一个缺口,然后从电池内部喷出的气体或气溶胶,和空气充分反应,导致剧烈地燃烧,甚至爆炸,如图2所示[9]。
图2 锂离子电池燃烧示意图2.3 电池材料的热稳定性锂离子电池安全性能的另一个更重要的方面即是其热稳定性。
在一些滥用状态下,如高温、过充电、针刺穿透以及挤压等情况下,导致电极和有机电解液的强烈相互作用,如有机电解液的剧烈氧化、还原或正极分解产生的氧气进一步与有机电解液反应等,这些反应产生的大量热量如不能及时散失到周围环境中,必将导致热失控的产生,最终导致电池的燃烧、爆炸。
因此,电极/有机电解液相互作用的热稳定性是制约锂离子电池安全性的首要因素。
就正极和负极与有机电解液相互作用的热稳定性对锂离子电池的安全性的影响而言,正极/电解液反应对锂离子电池的安全性的影响最为重要。
虽然,负极/电解液首先发生反应,但正极/电解液的反应动力学非常快,正极/电解液反应控制着整个电池耐热实验的结果[10]。
通常正极材料在充电状态下很不稳定,容易分解并放出氧气,放出的氧气与电解液发生反应并产生热量,从而导致电池的温度升高,引起更多的反应发生导致热失控。
如果电池的环境温度足以引发正极/电解液反应,就会导致电池的热失控状态,而高活性的不稳定的电解液就像是在电池热失控这把火上浇了一桶油。
3 解决锂离子电池安全问题的途径基于上述关于锂离子电池安全问题的分析,主要有两种途径可用于改善锂离子电池的安全性,甚至从根本上解决锂离子电池的安全问题。
一种是使电池系统更稳定,以避免热失控的发生;另一种是使用更安全的电解质体系,即使热失控发生,也不会因为易燃电解质存在而导致电池燃烧或者爆炸。
3.1 改善电池系统的热稳定性为了避免热失控的发生,电池需要使用稳定的正负极材料和电解质体系。
而正极材料在热失控过程中扮演着极其重要的角色,正极材料和电解液的热反应被认为是热失控发生的主要原因,提高正极材料的热稳定性尤为重要,在产业界正极材料的开发也更受关注,除了有其价格较高、利润较大的原因外,它在电池安全性中的重要地位也是其备受关注的一个重要原因。
LiFePO4由于具有聚阴离子结构,其中的氧原子非常稳定,受热不易释放,因此不会引起电解液的剧烈反应或燃烧,而且我们发现充电态的LiFePO4正极材料对电解液热反应具有一定的抑制效果[6]。
而其他过渡金属氧化物正极材料(如LiCoO2、LiNiO2等),受热或过充时容易释放出氧气,安全性差,而且这些材料对电解液的反应有一定的催化效应。
在过渡金属氧化物当中,LiMn2O4在充电态下以热稳定性较好的λ-MnO2形式存在,所以这种正极材料的安全性也相对较好。
目前三元正极材料如LiNi1/3Co1/3Mn1/3O2具有良好的热稳定性,而且电池综合性能也较好,是一种安全性较高的较有前途的正极材料。
此外,也可以通过体相掺杂、表面处理等手段提高相应正极材料的热稳定性。
通常负极材料热稳定性是由其材料结构和充电负极的活性决定的。
对于碳材料,球形碳材料,如中间相碳微球(MCMB)相对于鳞片状石墨,具有较低的比表面积,较高的充放电平台,所以其充电态活性较小,热稳定性相对较好,安全性高。
而尖晶石结构的Li4Ti5O12,相对于层状石墨的结构稳定性更好,其充放电平台也高得多,因此热稳定性更好,安全性更高[11]。
因此,目前对安全性要求更高的动力电池中通常使用MCMB或Li4Ti5O12代替普通石墨作为负极。
通常负极材料的热稳定性除了材料本身之外,对于同种材料,特别是石墨来说,负极与电解液界面的固体电解质界面膜(SEI)的热稳定性更受关注,而这也通常被认为是热失控发生的第一步。