风力摆控制系统(B题)2015电子设计大赛

风力摆控制系统(B题)2015电子设计大赛
风力摆控制系统(B题)2015电子设计大赛

全国大学生电子设计竞赛培训系列教程

全国大学生电子设计竞赛培训系列教程 《全国大学生电子设计竞赛培训系列教程——基本技能训练与单元电路设计》 内容简介 本书是全国大学生电子设计竞赛培训系列教程之一——《基本技能训练与单元电路设计》分册。全书共7章,主要介绍了“全国大学生电子设计竞赛”的基本情况、设计竞赛命题原则及要求、历届考题的类型、考题所涉及的知识面和知识点、竞赛培训流程,以及赛前、竞赛期间的注意事项等内容;并较详细地讲解了电子竞赛制作的基础训练、单片机最小系统和可编程逻辑器件系统设计制作;最后介绍了单元电路的工作原理、设计与制作。 本书内容丰富实用,叙述简洁清晰,工程性强,可作为高等学校电子信息科学与工程类专业、电气工程及自动控制类专业的大学生参加“全国大学生电子设计制作竞赛”的培训教材,也可作为各类电子制作、详程设计、毕业设计的教学参考书,以及电子工程技术工程师的参考书。 前言 全国大学生电子设计竞赛是由教育部高等教育司、信息产业部人事司共同主办的面向大学生、大专生的群众性科技活动,目的在于推动普通高等学校的信息电子类学科面向21世纪的课程体系和课程内容改革,引导高等学校在教学中培养大学生的创新意识、协作精神和理论联系实际的学风,加强学生工程实践能力的训练和培养,鼓励广大学生踊跃参加课外活动,把主要精力吸引到学习和能力培养上来,促进高等学校形成良好的学习风气,同时也为优秀人才脱颖而出创造条件。 全国大学生电子设计竞赛自1994年至今已成功举办了七届。深受全国大学生的欢迎和喜爱,参赛学校、队和学生逐年递增。全国大学生电子设计竞赛组委会为了组织好这项竞赛事,编写了电子设计竞赛获奖作品选编,深受参赛队员的喜爱。有许多参赛队员和辅导教师反映,若能编写一部从基本技能训练、单元电路设计直至综合设计系列教程,那将是锦上添花。2006年北京理工大学罗伟雄教授在湖南指导工作时也曾提出这个设想。当时就得到了国防科技大学的领导和教员响应。立即组建了“全国大学生电子设计竞赛培训系列教程编写委员会”。并组织了几十名教员和曾经获得全国大学生电子设计竞赛大奖的在校研究生和博士生对历届的考题(约43题)重新设计制作一次。为这个系列教程编写奠定了理论和实践的基础。 本系列教程分为五个分册,共23章。第一分册为《基本技能训练与单元电路设计》;第二分册为《模拟电子线路设计》;第三分册为《高频电子线路设计》;第四分册为《电子仪器仪表设计》;第五分册为《数字电路与自控系统设计》。 第一分册《基本技能训练与单元电路设计》,又称基础分册,共有7章(第1~7章)。主要介绍了全国大学生电子设计竞赛基本情况,命题原则及要求,竞赛题所涉及的知识面与知识点;全国大学生电子设计竞赛流程;电子设计竞赛制作基本训练;单片机最小系统设计制作;可编程逻辑器件系统设计制作;电子系统设计的基本方法及步骤;常用中小规模集成电路的应用设计课题。 第二分册《模拟电子线路设计》,共有3章(第8~10章)。主要介绍了交直流、稳压电源设计、放大器设计及信号源设计。

简易风力摆报告设计

设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F14单片机为核心,用PW波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在 风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可 以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM B速、MSP43C单片机 风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm的直线段,其线性度偏差不大于土 2.5cm,并且具有较好的重复性; ⑵从静止开始,15s内完成幅度可控的摆动,画出长度在30~60cm间可设置,长度偏差不大于土 2.5cm的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s内按照设置的方向(角度)摆动,画

出不短于20cm的直线段; (4)将风力摆拉起一定角度(30~45 ° )放开,5s内使风力摆制动达到静止状态。 1.2.2发挥部分 (1) 以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s内 需重复3次;圆半径可在15~35cm范围内设置,激光笔画出的轨迹应落在指定半径 ± 2.5cm的圆环内; (2) 在发挥部分(1)后继续作圆周运动,在距离风力摆1~2m距离内用一台50~60W台扇在水平方向吹向风力摆,台扇吹5s后停止,风力摆能够在5s内恢复发挥部分(1)规定的圆周运动,激光笔画出符合要求的轨迹; (3) 其他。 2总体方案设计与选择 2.1单片机选择 方案一:采用STC89S51芯片,该款芯片具有高性能低功耗的特点,具有32位输入/ 输出,可以实现处理、存储等功能⑴,但是其灵活性不高,需实时保护软件现场,否则易丢失信息,存储能力较弱。 方案二:采用MSP430F14芯片,该款芯片具有高性能,低功耗的特点,其抗干扰能力比较强,存储空间较大,稳定性较强。 二者比较之下,选择方案二作为此次设计的核心控制部分。 2.2直流风机选择 方案一:采用12V 4.5A的轴流风机,风力很大,可以将自身轻松吹起,但是体积较大,质量较重。 方案二:采用12V 1.5A的小风机,体积小,质量轻。但是风力足够大,单电机产生 的风力可吹起4个相同电机

简易风力摆报告设计

摘要 设计了一个简易风力摆控制装置,由直流风机组,陀螺仪,直流减速电机以及激光笔等组成。以MSP430F149单片机为核心,用PWM波控制控制电机转速,调节风力大小,并以四个风机上下与左右同面两两并在一起对碳素管及激光笔进行工作,使细杆及激光笔在风机的作用下可进行自由摆动且进一步可控摆动在地上划线,具有很好的重复性,并且可以设定摆动方向且画短线,已经能够在将风力摆拉起一定角度放开后可以在规定时间内达到平衡。 关键词:风力控制摆、陀螺仪、轴流风机、PWM调速、MSP430单片机

风力摆控制系统(B题) 1方案设计与选择 1.1设计内容 要求一个下端悬挂有(2~4只)直流风机的细管上端固定在结构支架上,只由风机提供动力,构成一个风力摆,风力摆上安装一个向下的激光笔。通过单片机代码指令控制驱动风机使风力摆按照一定的规律运动,并使激光笔在地面画出要求的轨迹,风力摆结构图如图1所示。 图1风力摆结构图 1.2设计要求 1.2.1基本要求 (1)从静止开始,15s 内控制风力摆做类似自由摆运动,使激光笔稳定地在地面画出一条长度不短于50cm 的直线段,其线性度偏差不大于±2.5cm,并且具有较好的重复性; (2)从静止开始,15s 内完成幅度可控的摆动,画出长度在30~60cm 间可设置,长度偏差不大于±2.5cm 的直线段,并且具有较好的重复性; (3)可设定摆动方向,风力摆从静止开始,15s 内按照设置的方向(角度)摆动,画出不短于20cm 的直线段; (4)将风力摆拉起一定角度(30~45°)放开,5s 内使风力摆制动达到静止状态。 1.2.2发挥部分 (1)以风力摆静止时激光笔的光点为圆心,驱动风力摆用激光笔在地面画圆,30s 内需重

2019年全国大学生电子设计竞赛暨

年全国大学生电子设计竞赛(安徽赛区)暨 安徽省大学生电子设计竞赛赛项规程 一、赛项名称 赛项名称:年全国大学生电子设计竞赛(安徽赛区)暨安徽省大学生电子设计竞赛 英语翻译:' 赛项组别:本科组、高职组 二、竞赛组织机构 (一)主办和承办单位 主办单位:安徽省教育厅 承办单位:合肥学院 承办单位在组委会指导下负责竞赛组织和测试评审工作。承办单位成立由主管副校长为组长,教务部门和相关院系负责人为副组长的竞赛工作领导小组,全面负责竞赛工作。 各参赛高校在组委会和承办单位指导下参与竞赛工作,其竞赛组织工作由各校教务部门负责。各参赛高校应成立电子设计竞赛工作领导小组,并指定一名负责人,具体负责本校学生的参赛事宜。负责人联系方式应提前向组委会秘书处报备,以便工作联系。 (二)组织委员会 主任:储常连安徽省教育厅副厅长 执行主任: 张剑云解放军国防科技大学电子对抗学院教授

副主任: 梁祥君安徽省教育厅高教处处长 委员: 李辉中国科学技术大学高级工程师 崔琛解放军国防科技大学电子对抗学院教授鲁昌华合肥工业大学软件学院院长 孙玉发安徽大学电子信息工程学院教授 刘晓东安徽工业大学电气信息学院院长 黄友锐安徽理工大学教务处处长 凌有铸安徽工程大学电气工程学院教授 崔执凤安徽师范大学物理与电子信息学院教授李淮江淮北师范大学后勤服务与管理处处长花海安安徽建筑大学高级工程师 高先和合肥学院智能感知技术研究所所长 胡继胜安徽职业技术学院教授 蔡骏安徽电子信息职业技术学院高级工程师钱峰芜湖职业技术学院信息工程学院院长(三)专家委员会 主任: 鲁昌华合肥工业大学软件学院院长 委员: 李辉中国科学技术大学高级工程师 崔琛解放军国防科技大学电子对抗学院教授鲁昌华合肥工业大学软件学院院长

基于STM32的风力摆控制系统的设计

龙源期刊网 https://www.360docs.net/doc/5c1603014.html, 基于STM32的风力摆控制系统的设计 作者:黄一珀丁斌董杨潘嘉睿 来源:《中国新通信》2016年第22期 【摘要】该风力摆控制系统是由单片机控制核心、ADXL345 数字三轴重力加速度芯片、直流电机、电机驱动模块以及液晶显示模块几个部分构成的闭环系统。利用单片机产生不同占空比的PWM波给驱动模块让其产生正弦波驱动为电机提供工作电压,运用相位合成和占空比调节实现对风力摆的运动轨迹控制,通过实际数据试验出风力摆的控制规律,稳定的完成了风力摆的直线运动和曲线运动要求。 【关键词】正弦波角度传感器直流电机 一、设计方案及原理分析 本系统由机械结构、控制模块、电机驱动模块、摆杆角度测量模块、电机和电源等组成,下面分别论证一下几个模块的选择。 1.1机械结构的设计方案 风力摆控制系统是一个完整的测量控制系统,其中的机械结构则是这个测控系统的对象,对象的好坏在很大程度上会影响到后期控制算法的设计,对象制作的越稳定可靠,系统的性能就会越好。所以在制作这样一个精密控制系统的时候,前期的机械结构的制作是非常关键的一步,在制作的时候要尽量确保它的稳定性,例如选用合适的材料、采用尽量好的制作工艺等。该风力摆控制系统中,机械结构大概分成以下几部分,风机、摆杆、摆杆转轴、底座和激光笔。 1.2控制模块方案 采用STM32F103单片机作为主控芯片。STM32F103基于高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex—M3内核,强大的定时、中断功能,方便对传感器模块和电机的控制,可以快速进行复杂的运算。同时具有大容量的RAM和ROM,可存储大容量的程 序。编程时可以直接调用库函数,提高编程效率。能够较为迅速的从传感器中采集数据进行处理,并快速反馈给电机进行下一步动作。 1.3电机驱动模块方案 采用L298N驱动。L298N是一种全桥驱动芯片,它响应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。用该芯片作为电机驱动,操作方便,结合单片机可实现对电机速度的精确控制,调速特性优良、调整平滑、调速范围广、过载能力大,能承受频率的负载冲击,还可以实现频率的无级快速启动、制动和反转。

风力摆控制系统设计报告

2015 全国大学生电子设计竞赛 风力摆控制系统(B题) 【本科组】 2015年8月15日

摘要:本设计是基于STM32F103VE单片机为核心的简易风力摆控制系统,该系统由电源供电模块,直流风机及驱动模块、角度检测模块、信息处理模块、继电器及驱动模块、蜂鸣指示模块和液晶显示模块构成。STM32F103VE通过改变PWM占空比来实现对直流风机速度及方向的控制,该风力摆控制系统能够实现题目要求,简单做直线运动、复杂做圆周运动。 关键字:风力摆角度传感器单片机自动控制系统 一.方案论证: 1.系统结构 1)机械结构如图1所示。 一长约67cm的吸管上端用万向节固定在支架上,下方悬挂4只直流风机,中间安装陀螺仪,构成一风力摆。风力摆下安装一向下的激光笔,静止时,激光笔下端距离地面18cm。 图 1 2)测控电路结构 测控电路结构如图2所示。 编码器按键

图2 2.方案比较与选择 其实整体电路架构上图已经给定,主要是几个关键部分————直流风机选型及架构、直流风机驱动电路、传感器、主控芯片选择,我们分析如下: 1)直流风机的选型 方案一:采样大电流成品直流风机,虽然风力够大,但驱动多个风机所需电流过大,单个电源难以满足要求,而且比较重,多个电机使得惯性过大难以控制。鉴于以上两点,弃用。 方案二:采用小型高速电机加螺旋桨自制直流风机,风力大,体积小,质量轻,而且性价比高。 风力摆控制系统风机质量轻,减小惯性,容易起摆;风力大,风速控制范围大,摆动角度大;体积小,减少外部的干扰;鉴于以上几点,本设计采用方案二。 STM32微处理器 角度传感器 直流风机 电机驱动电路 风机供电 OLED 液晶显示 蜂鸣器

风力摆控制系统设计报告

风力摆控制系统设计报 告 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

大学生电子设计竞赛 风力摆控制系统 学院: 计算机学院 项目:风力摆控制系统 负责人:王贤朝 指导老师:张保定 时间: 2017年5月20日

摘要 本系统采用K60开发板作为控制中心,与万向节、摆杆、直流风机(无刷电机+扇叶)、激光头、反馈装置一起构成摆杆运动状态与风机速度分配的双闭环调速系统。单片机输出可变的PWM波给电机调速器,控制4个方向上风机的风速,从而产生大小不同的力。利用加速度计模块MPU6050,准确测出摆杆移动的位置与中心点位置之间的关系,采样后反馈给单片机,使风机及时矫正,防止脱离运动轨迹。使用指南针模块判别方向,控制系统向指定方向偏移。控制方式采用PID算法,比例环节进行快速响应,积分环节实现无静差,微分环节减小超调,加快动态响应。从而使该系统具有良好的性能,能很好地实现自由摆运动、快速制动静止、画圆、指定方向偏移,具有很好地稳定性。 关键词:K60、空心杯电机、MPU6050、PID、无线蓝牙 目录

风力摆控制系统(B题) 【本科组】 一、系统方案 系统基本方案 控制方案设计 为了实现题目要求我们采用K60单片机做为主控芯片,用加速度计陀螺仪模块MPU6050来计算角度和风机状态,用直流风机带动摆杆运动。当MPU6050检测到摆杆的角度时,可根据三角函数公式计算出摆杆现在距离中心的具体位置(方向、距离),单片机会控制PWM波的输出大小来控制风机的风速与方向,使摆杆达到在特定位置静止或按照一定的轨迹运动。当摆杆处于自然下垂状态时,给四个风机同时上电且风向都向外,此时摆杆仍处于受力平衡——静止状态。此时降低X轴上一个风机的转速,摆杆将会带动激光头在X轴上画一条直线,当达到一定的倾斜角度时,单片机可根据角度计算出此时距离中心的距离是否>=25cm,若达到要求后,此风机减速,X轴反方向上电机逐渐加速,恢复到初始速度,反方向做相同的运动。在此过程中,单片机做出A/D采样,Y轴方向方向风机随时做出矫正,防止发生轨迹偏移。 机械结构方案设计 由于摆杆长度(60cm~70cm)较长,且要求激光头在地面画出15cm~35cm的圆,所以要求横杆的距离要足够长。横杆长度较长加之摆杆重量较大,所以要求底座要有足够的重量来支撑整个系统。如果结构不稳或者重量不够,摆杆运动过程中将会产生倾倒或者抖动等现象,影响测试结果。于是,底座采用了“工”型结构,保证了整个系统的稳定性。摆杆材料方面,我们选用轻便的硬

风力摆控制系统论文

风力摆控制系统 摘要:本系统采用STM32F103ZET6单片机作为控制核心,通过对置于风力摆上的MPU9150陀螺仪采集的角度进行处理得到角度与风力摆位置的关系,再通过驱动输出PWM波控制轴流风机,使风力摆到达指定的位置,做规定的圆周运动。本系统通过PID调试,测试表明,各项功能已达到或超过本题目要求。 关键词:MPU9150;PID;轴流风机

1.系统方案 本系统主要由主控制器,陀螺仪,电机驱动模块,轴流风机,激光笔组成,下面分别对这几个模块进行选择与论证。 1.1陀螺仪的选择 方案一:MPU6050。 9轴运动处理传感器,它集成了3轴MEMS陀螺仪,3轴MEMS 加速度计,以及一个可扩展的数字数字运动处理器DMP,可用I2C接口连接一个第三方的数字传感器,比如磁力计。MPU-6050对陀螺仪和加速度计分别用了三个16位的ADC,将其测量的模拟量转化为可输出的数字量。一个片上1024字节的FIFO,有助于降低系统功耗。但零飘较严重。 方案二:角度传感器。当连结到RCX上时,轴每转过1/16圈,角度传感器就会计数一次。往一个方向转动时,计数增加,转动方向改变时,计数减少。计数与角度传感器的初始位置有关。当初始化角度传感器时,它的计数值被设置为0。角度传感器一般测静态的角度,倾角用加速度计。明显在本系统中角度传感器不如陀螺仪方便使用。 方案三:MPU9150。MPU-9150 是采用系统级封装 (SiP),集合了两个芯片:MPU-6050 和 3 轴数字罗盘 AK8975,其中 MPU-6050 包含 3 轴陀螺仪、3 轴加速计以及能够处理复杂 9 轴 MotionFusion 算法的板载Digital Motion Processor? (DMP?) 。这款元件集成 9 轴 MotionFusion 算法,能够访问所有内部传感器,以收集全套传感器数据。MPU9150测转角的速度的,可以积分得到转的角度,动态性能好,静态差,零飘基本无,很适合本系统。 综合考虑后决定采用方案三。 1.2轴流风机的选择 方案一:四线可测速、包含温控PWM调速轴流风机。此种轴流风机一般重量较大,启动时间长,虽然风量大但明显不适合本系统的实时检测调整的思路。 方案二:三线可测速轴流风机。此种轴流风机重量较轻,启动时间短,直接接驱动即可对其进行控速,风量也很大,比较符合题目各项要求的时间限制。 综合考虑后决定采用方案二。

历年年全国大学生电子设计竞赛题目

历年年全国大学生电子设计竞赛题目 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

2015年全国大学生电子设计竞赛题目 【本科组】 双向DC-DC变换器(A题) 风力摆控制系统(B题) 多旋翼自主飞行器(C题) 增益可控射频放大器(D题) 80MHz-100MHz频谱分析仪(E题) 数字频率计(F题) 短距视频信号无线通信网络(G题) 第一届(1994年) 第一届(1994年)全国大学生电子设计竞赛 A.简易数控直流电源 B.多路数据采集系统 第二届(1995年) 第二届(1995年)全国大学生电子设计竞赛 A.实用低频功率放大器 B.实用信号源的设计和制作 C.简易无线电遥控系统 D.简易电阻、电容和电感测试仪 第三届(1997年) 第三届(1997年)全国大学生电子设计竞赛A.直流稳定电源

B.简易数字频率计 C.水温控制系统 D.调幅广播收音机 第四届(1999年) 第四届(1999年)全国大学生电子设计竞赛 A.测量放大器 B.数字式工频有效值多用表 C.频率特性测试仪 D.短波调频接收机 E.数字化语音存储与回放系统 第五届(2001年) 第五届(2001年)全国大学生电子设计竞赛 A.波形发生器 B.简易数字存储示波器 C.自动往返电动小汽车 D.高效率音频功率放大器 E.数据采集与传输系统 F.调频收音机 第六届(2003年) 第六届(2003年)全国大学生电子设计竞赛 A.电压控制LC振荡器 B.宽带放大器

C.低频数字式相位测量仪 D.简易逻辑分析仪 E.简易智能电动车 F.液体点滴速度监控装置 第七届(2005年) 第七届(2005年)全国大学生电子设计竞赛 A.正弦信号发生器 B.集成运放测试仪 C.简易频谱分析仪 D.单工无线呼叫系统 E.悬挂运动控制系统 F.数控恒流源 G.三相正弦波变频电源 第八届(2007年) 第八届(2007年)全国大学生电子设计竞赛 A.音频信号分析仪 B.无线识别 C.数字示波器 D.程控滤波器 E.开关稳压电源 F.电动车跷跷板 G.积分式直流数字电压表

2015全国电子设计大赛B题风力摆

2015年全国大学生电子设计竞赛风力摆控制系统(B题) 2015年8月15日

摘要 本系统以飞思卡尔K60单片机为控制核心,结合3轴加速度传感器+3轴陀螺仪MMA7361模拟陀螺仪传感器。BTN7971电路作为驱动轴流风机动力模块。根据三维角度传感器采集的角度值反馈到单片机输出PWM控制风机摆按照一定规律运动,得到相应的的轨迹。 关键词:K60;PWM控速;MMA7361;角度采集

目录 一、系统方案 (1) 1、单片机的论证与选择 (1) 2、传感器的论证与选择 (1) 3 驱动电路的论证与选择 (1) 二、系统理论分析与计算 (2) 1、系统理论分析与计算 (2) 三、电路与程序设计 (3) 1、电路的设计 (3) (1)系统板电路原理图 (3) (2)驱动模块电路原理图 (3) (3)传感器电路原理图 (4) (4)电源 (4) 2、程序的设计 (5) (1)程序功能描述与设计思路 (5) (2)程序流程图 (5) 四、测试方案与测试结果 (6) 1、测试方案 (6) 2、测试条件与仪器 (6) 3、测试结果及分析 (6) (1)测试结果(数据) (6) (2)测试分析与结论 (6) 五、结论与心得 (7) 六、参考文献 (7) 附录1:源程序 (8)

风力摆控制系统(B题) 【本科组】 一、系统方案 本设计采用了K60单片机为控制核心,采用BTS7971智能功率芯片驱动电机。MMA7361加速度计测量摆杆的角度,采用双电源供电,由航模电池直接供电驱动电路,电流大。由LM1117-5V等稳压组成的多路稳压模块供给单片机,陀螺仪等模块。 根据MMA7361加速度计采集摆杆运动的角速度,经过互补滤波,PD算法计算得到摆杆的角度,显示在液晶屏。角度作为条件判读依据,根据得到的角度,设定PWM 的输入大小。从而控制不同方向风机的做功,风机的不同倾角会引起风机的加减速使摆杆摆出不同姿势。 1、单片机的论证与选择 方案一:采用ATMEL公司的AT89C51作为控制器。51单片机运算能力强,软件编程灵活,自由度大。但是由于要处理的传感器数量较多,且图像数据较为庞大,51的IO口和运行能力不能达到要求。另外51单片机需要仿真器来实现软硬件调试,较为烦琐。 方案二:采用飞思卡尔半导体公司的kinetis微控制器作为控制核心。采用由Freescale半导体公司生产的Kinetis K60单片机作为主控系统系列微控制器飞思卡尔公司推出的基于ARM Cortex-M4内核的32位微控制器,具有强大的运算处理能力和丰富的片内资源。 由于组员对K60的使用较为熟悉,同时考虑到功能要求,我们选择方案二Kinesis K60芯片作为控制核心。 综合以上二种方案,选择方案二 2、传感器模块的论证与选择 方案一:采用SCA60C倾角传感器,-90o~+90o测量范围。0.5~4.5输出,只能测量单轴角度而且电压输出信号采集不便。 方案二:使用电位器作为角度传感器,由于不同角度输出的电阻值不同,通过AD采样电阻两端电压,计算得到角度对于一般的电位器,线性度较差. 方案三:采用3轴陀螺仪和三轴加速度计MMA7361模块。可以同时采集三个轴的模拟值,精度采集高,单片机可以直接读取,易于操作。 综合以上三种方案,选择方案三 3、驱动模块的论证与选择: 方案一:采用市面易购的电机驱动芯片L298控制风机,该芯片是利用TTL电平进行控制,通过改变芯片控制端的输入电平,,但是风机电流过大,L298耐电流过小,易烧驱动。方案二:采用BTS7971电路驱动电路,BTS7971驱动能力强,耐压值大,最大可通过

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

风力摆控制系统 设计报告

摘要:本系统主要是以STM32单片机为控制芯片控制4只直流轴流风机,从而调节风机转速来控制使风力摆呈现不同状态的控制系统。该系统主要由主控板,无线遥控器,直流轴流风机,摆架框架等四大部分组成风力摆控制系统。 关键字:风力摆无线 STM32单片机直流轴流风机

一.系统方案 1.系统方案论证 本系统主要由遥控模块、控制模块、陀螺仪模块、直流轴流风机组成,添加一些辅助电路作为扩展功能。系统工作有六种工作模式,使用无线遥控切换模式并显示。下面分别论证这几个模块的选择。 1.1直流风机的论证与选择 方案一:使用直流鼓风机。直流鼓风机的机械摩擦非常小,具有较大的精度,并能提供足够的风力进行运动。但在实验过程中,风机启动速度较慢,且由于其自身重量过大,风摆在运动过程中受惯性影响极大,不能有效的完成任务要求。 方案二:采用直流轴流风机。直流轴流风机是在固定位置使空气流动,自身重量和体积都比较小,且出风口大,能够很好的提供动力与控制。在实验过程中能够较快的启动,并能较好的实现任务要求,符合实验需要。 综合以上两种方案,风力摆在运动过程中需要进行实时控制摆杆的姿态,且需要风机启停反应快,故选择方案二。 1.2控制器模块的论证与选择 根据设计要求,控制器主要用于计算摆杆姿态、控制直流轴流风机PWM、使摆杆能完成相应等功能。 方案一:采用STC89C51作为系统控制器。它的技术成熟,成本低。STC89C51是8位的单片机,数据传输速度慢,在用于精密的操作时,不能满足实时控制的要求,且复杂的控制算法难以实现,不利于控制。 方案二:采用意法半导体公司的STM32F103单片机作为控制器。STM32系列单片机是32位、RISC、低功耗的处理器。在进行高精密的操作时,处理能力非常强,运算速度快,具有很好的控制能力,且成本低,更符合实验要求。 综合考虑以上两种方案,采用方案二。 2.系统结构 根据上述方案的论证,我们确定以STC32F103作为控制核心,采用型号为PFB0812XHE的直流轴风机控制摆杆运动,用陀螺仪MPU6050检测状态数据,并将采集到的数据传输给控制板,然后通过单片机计算处理得出摆杆的姿态并调整直

全国大学生电子设计竞赛训练教程

参考文献: 1.全国大学生电子设计竞赛组委会. 第一届(1994年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 2.全国大学生电子设计竞赛组委会. 第二届(1995年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 3.全国大学生电子设计竞赛组委会. 第三届(1997年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 4.全国大学生电子设计竞赛组委会. 第四届(1999年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 5.全国大学生电子设计竞赛组委会. 第五届(2001年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 6.全国大学生电子设计竞赛组委会. 第六届(2003年)全国大学生电子设计竞赛题目. www. https://www.360docs.net/doc/5c1603014.html,.2003.12 7.全国大学生电子设计竞赛组委会. 全国大学生电子设计竞赛获奖作品选编(1994~1995) [M].北京:北京理工大学出版社,1997年第1版. 8.全国大学生电子设计竞赛组委会. 全国大学生电子设计竞赛获奖作品选编(2001)[M]. 北京:北京理工大学出版社,2003年第1版. 9.全国大学生电子设计竞赛组委会. 全国大学生电子设计竞赛获奖作品选编(1999)[M]. 北京:北京理工大学出版社,2000年第1版. 10.高吉祥,黄智伟,陈和.高频电子线路[M]. 北京:电子工业出版社,2003年第1版 11.黄智伟.无线数字收发电路设计[M]. 北京:电子工业出版社,2003年第1版 12.黄智伟.电子电路计算机仿真设计[M]. 北京:电子工业出版社,2004年第1版 13.黄智伟.射频集成电路原理与应用[M]. 北京:电子工业出版社,2004年第1版 14.黄智伟.无线发射与接收电路设计[M]. 北京:北京航空航天大学出版社,2004年第1 版 15.黄智伟.单片无线数据通信IC原理与应用[M]. 北京:北京航空航天大学出版社,2004 年第1版 16.黄智伟.创新素质教育多媒体软件的制作[J]. 电化教育研究,2003年.4:104~105 17.黄智伟.全国大学生电子设计竞赛EDA技术教学方法研究[J]. 南华教育2003年第2期: 64-65

2015年全国大学生电子设计竞赛获奖名单

2015年全国大学生电子设计竞赛获奖名单 2安徽本科A安徽大学朱伟风郝文博许文祥二等奖3安徽本科A安徽大学钱欢李浩南赵颖二等奖4安徽本科A安徽大学付煜欣欧博文王珏二等奖5安徽本科B安徽大学高丽蓉马晓忠刘昆二等奖6安徽本科B安徽大学鲁立宇马自强王宁诚二等奖7安徽本科D安徽大学王侨侨段玉彪李杰二等奖8安徽本科D安徽大学王庆安管州李晨轩二等奖9安徽本科B安徽工程大学解猛阮子良冯紫妍一等奖10安徽本科B安徽工程大学张汇锋卢家付钱文秀一等奖11安徽本科B安徽工程大学翟宇陈强马艳艳二等奖12安徽本科B安徽工程大学彭国梁潘钺高磊二等奖13安徽本科G安徽工程大学江柳董子汉张南飞一等奖14安徽本科C安徽工程大学机电学黄涛李琦刘雄二等奖15安徽本科B安徽工业大学陈小锋沈冬冬陈朋朋二等奖16安徽高职H安徽机电职业技术学恒非非耿威王志强一等奖17安徽高职I安徽机电职业技术学汪瑞李秀王明明二等奖18安徽本科A安徽师范大学李改有李亚张志豪二等奖19安徽本科G安徽新华学院陶冶胡泽报王磊一等奖20安徽本科B合肥工业大学郭延锐金志杰赵薇一等奖21安徽本科B合肥工业大学刘耀东许柯赵廷碧二等奖22安徽本科A合肥学院石响汪程禹芮二等奖23安徽本科B合肥学院龙军华童鹏吴兴林二等奖24安徽本科B河海大学文天学院朱宏伟桂青青二等奖25安徽本科B解放军电子工程学院李云成熊力黄超一等奖26安徽本科D解放军电子工程学院陈乐东许超辛立刚二等奖27安徽高职H芜湖职业技术学院袁川方宇谢朋二等奖28安徽高职I芜湖职业技术学院陈家玉姚震余成林一等奖29安徽高职J芜湖职业技术学院吴杰张中姚俊二等奖30北京本科A北方工业大学吕恒宇李辰佂陈欣月一等奖31北京本科A北方工业大学黄伟超刘东侯宗祥一等奖32北京本科A北方工业大学栾文南罗琦钫张东晨二等奖33北京本科A北方工业大学刘志孟刘强熊振驭二等奖34北京本科G北京电子科技学院成容吴伊冉李城豪二等奖35北京高职H北京电子科技职业学铁丽丽师令李言一等奖36北京本科B北京工业大学孙兴伟邱永康米文昊二等奖37北京本科B北京工业大学卢佳豪赵晋王飞二等奖38北京本科D北京工业大学王岳韩扬周朔一等奖39北京本科D北京工业大学张若杨宋耀东梁佳兴二等奖40北京本科A北京航空航天大学翁启旺谭煜希王聿正二等奖41北京本科A北京航空航天大学秦文渊曹斌陈靖方二等奖42北京本科B北京航空航天大学罗雪松鞠孝亮张晓薇一等奖43北京本科B北京航空航天大学李智康屈珅李恺二等奖44北京本科D北京航空航天大学海钢锋张凯张启明二等奖45北京本科D北京航空航天大学牛泽杨佳颖刘渊二等奖46北京本科D北京航空航天大学刘雅娴王晨焱谢一平二等奖47北京本科D北京航空航天大学谭笑封刘爱东李柳二等奖48北京本科E北京航空航天大学王子钰武迪何涛一等奖49北京本科E北京航空航天大学王达威李伟孙世攀二等奖

风力摆控制系统设计报告

风力摆控制系统设计报 告 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

大学生电子设计竞赛 风力摆控制系统 学院: 计算机学院 项目:风力摆控制系统 负责人:王贤朝 指导老师:张保定 时间: 2017年5月20日

摘要 本系统采用K60开发板作为控制中心,与万向节、摆杆、直流风机(无刷电机+扇叶)、激光头、反馈装置一起构成摆杆运动状态与风机速度分配的双闭环调速系统。单片机输出可变的PWM波给电机调速器,控制4个方向上风机的风速,从而产生大小不同的力。利用加速度计模块MPU6050,准确测出摆杆移动的位置与中心点位置之间的关系,采样后反馈给单片机,使风机及时矫正,防止脱离运动轨迹。使用指南针模块判别方向,控制系统向指定方向偏移。控制方式采用PID算法,比例环节进行快速响应,积分环节实现无静差,微分环节减小超调,加快动态响应。从而使该系统具有良好的性能,能很好地实现自由摆运动、快速制动静止、画圆、指定方向偏移,具有很好地稳定性。 关键词:K60、空心杯电机、MPU6050、PID、无线蓝牙 目录

电路................................................................... .. (3)

风力摆控制系统(B题) 【本科组】 一、系统方案 系统基本方案 控制方案设计 为了实现题目要求我们采用K60单片机做为主控芯片,用加速度计陀螺仪模块MPU6050来计算角度和风机状态,用直流风机带动摆杆运动。当MPU6050检测到摆杆的角度时,可根据三角函数公式计算出摆杆现在距离中心的具体位置(方向、距离),单片机会控制PWM波的输出大小来控制风机的风速与方向,使摆杆达到在特定位置静止或按照一定的轨迹运动。当摆杆处于自然下垂状态时,给四个风机同时上电且风向都向外,此时摆杆仍处于受力平衡——静止状态。此时降低X轴上一个风机的转速,摆杆将会带动激光头在X轴上画一条直线,当达到一定的倾斜角度时,单片机可根据角度计算出此时距离中心的距离是否>=25cm,若达到要求后,此风机减速,X轴反方向上电机逐渐加速,恢复到初始速度,反方向做相同的运动。在此过程中,单片机做出A/D采样,Y轴方向方向风机随时做出矫正,防止发生轨迹偏移。 机械结构方案设计 由于摆杆长度(60cm~70cm)较长,且要求激光头在地面画出15cm~35cm的圆,所以要求横杆的距离要足够长。横杆长度较长加之摆杆重量较大,所以要求底座要有足够的重量来支撑整个系统。如果结构不稳或者重量不够,摆杆运动过程中将会产生倾倒或者抖动等现象,影响测试结果。于是,底座采用了“工”型结构,保证了整个系统的稳定性。摆杆材料方面,我们选用轻便的硬质铁质材料与风机进行刚性连接,既

2015年全国大学生电子设计竞赛题目风力摆控制系统(B题)

2015年全国大学生电子设计竞赛试题 参赛注意事项 (1)8月12日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高 职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。 (2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生 身份的有效证件(如学生证)随时备查。 (4)每队严格限制3人,开赛后不得中途更换队员。 (5)竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设 计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 【本科组】 一、任务 一长约60cm~70cm 的细管上端用万向节固定在支架上,下方悬挂一组(2~4只)直流风机,构成一风力摆,如图1所示。风力摆上安装一向下的激光笔,静止时,激光笔的下端距地面不超过20cm 。设计一测控系统,控制驱动各风机使风力摆按照一定规律运动,激光笔在地面画出要求的轨迹。 二、要求 1. 基本要求 (1) 从静止开始,15s 内控制风力摆做 类似自由摆运动,使激光笔稳定地 在地面画出一条长度不短于50cm 的直线段,其线性度偏差不大于±2.5cm ,并且具有较好的重复性; (2) 从静止开始,15s 内完成幅度可控的摆动,画出长度在30~60cm 间可设 置,长度偏差不大于±2.5cm 的直线段,并且具有较好的重复性; (3) 可设定摆动方向,风力摆从静止开始,15s 内按照设置的方向(角度) 摆动,画出不短于20cm 的直线段; (4) 将风力摆拉起一定角度(30°~45°)放开,5s 内使风力摆制动达到静 止状态。

2015年电子设计大赛综合测评题课程设计解析

郑州轻工业学院 电子技术课程设计 题目: 2015年电赛测评试题 姓名:王苗龙 专业班级:电信13-01 学号: 541301030134 院(系):电子信息工程学院 指导教师:曹卫锋谢泽会 完成时间: 2015年10月 29日

郑州轻工业学院 课程设计任务书 题目 2015年电子设计大赛综合测评试题 专业电信工程13-1 学号 541301030134 姓名王苗龙 主要内容、基本要求、主要参考资料等: 主要内容 1.阅读相关科技文献。 2.学习电子制图软件的使用。 3.学会整理和总结设计文档报告。 4.学习如何查找器件手册及相关参数。 技术要求 1、使用555时基电路产生频率20kHz-50kHz连续可调,输出电压幅度为1V的方波Ⅰ; 2、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度为1V的方波Ⅱ; 3、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度峰峰值为3V的三角波; 4、产生输出频率为20kHz-30kHz连续可调,输出电压幅度峰峰值为3V的正弦波Ⅰ; 5、产生输出频率为250kHz,输出电压幅度峰峰值为8V的正弦波Ⅱ;方波、三角波和正弦波的波形应无明显失真(使用示波器测量时)。频率误差不大于5%;通带内输出电压幅度峰峰值误差不大于5%。 主要参考资料 1.何小艇,电子系统设计,浙江大学出版社,2010年8月 2.姚福安,电子电路设计与实践,山东科学技术出版社,2001年10月 3.王澄非,电路与数字逻辑设计实践,东南大学出版社,1999年10月 4.李银华,电子线路设计指导,北京航空航天大学出版社,2005年6月 5.康华光,电子技术基础,高教出版社,2006年1月 完成期限: 2015年10月30日 指导教师签章: 专业负责人签章: 2015 年 10月26日

2015全国大学生电子设计竞赛风力摆控制系统论文.

2015年全国大学生电子设计竞赛风力摆控制系统(B题) 2015年8月15日

摘要 系统为由STC 12单片机控制模块、姿态采集模块、风力摆模块、液晶显示模块、人机交互系统以及风力摆机械结构组成的闭环控制系统。MPU6050采集风力摆的姿态角,单片机处理姿态角数据后通过PID精确算法调节直流风机以控制风力摆。本系统实现了风力摆在仅受直流风机为动力控制下快速起摆、画线、恢复静止的功能,并能准确画圆,且受风力影响后能够快速的恢复画圆状态,具有很好的鲁棒性,另外,本系统具有良好的人机交互界面,各参数及测试模式可有按键并通过液晶显示,性能好,反应速度快。 关键词:PID算法 MPU6050 STC 12单片机人机交互

目录 一、系统方案 (1) 1.1主控制器件的论证与选择 (1) 1.2 姿势采集的论证与选择 (1) 二、系统理论分析与计算 (2) 2.1 风力摆控制系统的分析 (2) 2.2、基础部分功能实现的分析与计算 (3) 2.2.1 基础一功能实现的分析与计算 (3) 2.3、发挥部分功能实现的分析与计算 (4) 三、电路与程序设计 (5) 3.1电路的设计 (5) 3.2 基础部分系统框图与电路原理图 (5) 3.2.1基础部分系统框图 (5) 3.3 发挥部分系统框图与电路原理图 (6) 3.3.1系统框图 (6) 3.4 电源 (6) 3.5程序的设计 (6) 3.5.1程序功能描述与设计思路 (6) 3.5.2 程序流程图 (6) 四、测量方案与测量结果 (7) 4.1测量工具 (7) 4.2 测试方案及结果 (7) 五、结论与心得 (8) 六、参考文献 (9) 附录1:电路原理图 (10) 附录2:源程序(部分) (11)

2015全国大学生电子设计大赛F题一等奖--数字频率计

2015 年全国大学生电子设计竞赛 全国一等奖作品 设计报告部分错误未修正,软 件部分未添加 竞赛选题:数字频率计(F 题)

摘要 本设计选用FPGA 作为数据处理与系统控制的核心,制作了一款超高精度的数字频率计,其优点在于采用了自动增益控制电路(AGC)和等精度测量法,全部电路使用P CB 制版,进一步减小误差。 AGC 电路可将不同频率、不同幅度的待测信号,放大至基本相同的幅度,且高于后级滞回比较器的窗口电压,有效解决了待测信号输入电压变化大、频率范围广的问题。频率等参数的测量采用闸门时间为1s 的等精度测量法。闸门时间与待测信号同步,避免了对被测信号计数所产生±1 个字的误差,有效提高了系统精度。 经过实测,本设计达到了赛题基本部分和发挥部分的全部指标,并在部分指标上远超赛题发挥部分要求。 关键词:FPGA 自动增益控制等精度测量法

目录 摘要 (1) 目录 (2) 1. 系统方案 (3) 1.1. 方案比较与选择 (3) 1.1.1. 宽带通道放大器 (3) 1.1.2. 正弦波整形电路 (3) 1.1.3. 主控电路 (3) 1.1.4. 参数测量方案 (4) 1.2. 方案描述 (4) 2. 电路设计 (4) 2.1. 宽带通道放大器分析 (4) 2.2. 正弦波整形电路 (5) 3. 软件设计 (6) 4. 测试方案与测试结果 (6) 4.1. 测试仪器 (6) 4.2. 测试方案及数据 (7) 4.2.1. 频率测试 (7) 4.2.2. 时间间隔测量 (7) 4.2.3. 占空比测量 (8) 4.3. 测试结论 (9) 参考文献 (9)

相关文档
最新文档