大数据在电力行业的应用
大数据分析在电力行业中的应用

大数据分析在电力行业中的应用随着科技的不断发展,大数据分析在各个行业中的应用也日益广泛。
电力行业作为国民经济的重要支撑,同样受益于大数据分析的技术进步。
本文将介绍大数据分析在电力行业中的应用,并探讨其带来的价值和挑战。
一、大数据分析在电力运营中的应用1. 智能电网管理大数据分析在智能电网管理中发挥重要作用。
通过对大数据进行收集、存储和分析,电力公司可以实现智能电网的远程监控、故障诊断和优化运营。
通过监测各个环节的数据,电力公司可以实时掌握供电情况、故障信息和负荷情况,提前做出相应的调整,从而提高电网的可靠性和运行效率。
2. 负荷预测和调度利用大数据分析技术,电力公司可以准确地进行负荷预测和调度。
通过对历史负荷数据的分析,结合天气、季节和节假日等因素,可以准确预测未来的负荷需求。
在此基础上,电力公司可以制定合理的负荷调度计划,保证电力供应的稳定性和可靠性。
3. 能源消耗监测与管理大数据分析技术还可以应用于能源消耗的监测和管理。
通过对电力使用数据进行分析,电力公司可以分析出能源的消耗情况及趋势,并找出能耗的高峰时段和高耗能设备,从而制定相应的节能策略。
同时,通过数据分析,还可以检测出潜在能源浪费和损耗的问题,进一步提高能源利用效率。
二、大数据分析在电力安全中的应用1. 电力设备监测与维护大数据分析可以帮助电力公司实现对电力设备的实时监测与预测维护。
通过对设备数据的收集和分析,可以及时判断设备的健康状况,预测设备的故障和损坏风险,并及时采取维护措施,避免设备故障对电力供应的影响,提高设备的可用性和可靠性。
2. 安全事故预警与应急响应大数据分析技术可以帮助电力公司及时掌握潜在的安全隐患,实现安全事故的预警与应急响应。
通过对历史事故数据的分析,结合实时监测数据,可以发现安全隐患的规律和特征,提前采取相应的安全措施。
同时,通过大数据分析,还可以实现对事故的快速反应和处置,减少事故对电力供应造成的影响。
三、大数据分析在电力市场中的应用1. 供需匹配与需求预测大数据分析技术可以帮助电力公司实现供需匹配与需求预测。
大数据分析在电力行业中的应用案例

大数据分析在电力行业中的应用案例随着信息技术的迅速发展,大数据分析逐渐成为各个行业的重要工具。
在电力行业中,大数据分析也发挥着重要的作用。
本文将以一些实际案例为例,介绍大数据分析在电力行业中的应用。
一、用于电网运维管理电力系统是一个复杂的系统,需要对大量的数据进行实时监测和分析,以确保电网的正常运行。
使用大数据分析技术,可以对电网中的各个节点的运行状态进行实时监测,并进行故障预警和智能运维管理。
以某电力公司为例,他们利用大数据分析技术对电网中的各个设备进行监测和数据采集,将实时数据与历史数据进行对比分析,发现了一些异常情况并及时采取措施。
通过对电网运维数据进行分析,他们成功降低了电网故障率,提高了供电可靠性。
二、用于负荷预测和优化电力行业需要根据用户的用电需求来合理调配电力资源,以确保供需平衡和电力系统的稳定运行。
利用大数据分析技术,可以对历史用电数据进行分析,并根据相关因素(如天气、季节等)进行预测,准确预测未来一段时间的负荷需求。
某电力公司利用大数据分析技术,对历史负荷数据进行深度挖掘和分析,并结合天气数据和节假日等因素,建立了负荷预测模型。
通过这种方式,他们可以提前预测未来一段时间的负荷需求,并制定相应的调度计划和资源配置方案,避免了供需失衡和电网过载等问题。
三、用于能源管理与优化电力行业需要对能源进行管理和优化,以提高能源利用效率和减少能源浪费。
利用大数据分析技术,可以对电力系统中的各个环节进行监测和数据分析,并找到能源浪费的原因和潜在改进措施。
以某能源公司为例,他们利用大数据分析技术对供电设备的能效进行评估,并找出能源浪费的原因。
通过优化设备运行参数和调整供电策略,他们成功减少了能源浪费,提高了能源利用效率。
四、用于用户行为分析和服务优化电力行业需要根据用户的用电行为和需求,提供个性化的服务和优化方案。
利用大数据分析技术,可以对用户的用电行为进行分析,并提供相应的服务优化建议。
以某电力公司为例,他们利用大数据分析技术对用户的用电行为进行挖掘和分析,并根据用户的需求提供相应的用电方案和服务建议。
大数据在电力行业的应用研究

大数据在电力行业的应用研究随着科技的不断发展,大数据技术在各行各业的应用也越来越广泛。
电力行业一直是国民经济发展的重要支柱,而大数据技术的应用则给电力行业带来了许多的机遇和挑战。
本文将探讨大数据在电力行业中的应用研究,并分析其对电力行业的重要意义。
一、大数据在电力企业的生产运营中的应用1. 数据采集与监测电力企业拥有大量的设备和系统,如发电机组、输电线路等,这些设备产生的数据量巨大。
通过大数据技术,电力企业可以对这些数据进行采集、监测和分析,实时了解设备的运行状态和性能,并及时发现和解决潜在问题,提高电力设备的效率和可靠性。
2. 负荷预测与优化调度电力行业的负荷预测与优化调度对供电稳定和能源消耗具有重要意义。
通过大数据技术,电力企业可以收集历史数据和实时数据,利用机器学习和数据分析算法进行负荷预测,帮助企业合理调度发电机组和电力输送,最大程度地满足用户需求,并减少能源的浪费。
3. 能源监控与管理大数据技术可以帮助电力企业实时监控电力的生产、输送和消费情况,提高能源的利用效率。
通过对数据的分析和挖掘,电力企业可以发现能源消耗的规律和瓶颈,从而采取相应的措施来提高能源的利用效率,减少电力损耗和浪费。
二、大数据在电力行业的管理决策中的应用1. 基于大数据的决策支持系统电力行业的管理决策需要考虑众多的因素和变量。
通过大数据技术,可以对电力行业的历史数据、市场需求、电力供应等进行综合分析和挖掘,为电力企业的管理决策提供科学的决策依据和支持。
这些汇总数据可以帮助电力企业准确预测市场需求,合理安排发电计划,并优化供电结构,提高电力企业的竞争力和效益。
2. 安全风险评估与预警电力行业存在着诸多的安全风险,如火灾、设备故障等。
通过大数据技术,可以对电力系统中的数据进行监测和分析,及时发现异常情况,并进行预警和风险评估。
这些安全数据可以帮助电力企业避免事故的发生,保障电力系统的安全稳定运行。
三、大数据在电力行业的市场营销中的应用1. 用户行为分析与个性化营销电力企业可以通过大数据技术对用户的用电行为进行分析和挖掘,了解用户的用电习惯和需求,为用户提供个性化的用电计划和服务。
大数据在电力行业的应用

大数据在电力行业的应用随着信息化时代大数据技术的快速发展,电力行业也开始不断地探索大数据的应用。
大数据分析不仅可以帮助电力企业节约成本,提高效率,还可以加强风险管控、优化能源消费结构,为电力行业的转型升级提供有力的支撑。
本文将从电力生产、输配电、市场运营和用户服务等方面探讨大数据在电力行业的应用。
一、电力生产电力生产是电力企业的核心业务,如何提高发电效率成为各大电力企业面临的挑战。
大数据技术可以收集处理各种数据,如机组负载、燃料消耗、天气数据等,帮助电力企业建立基于大数据的智能预测模型,预测未来电力需求和气象变化,优化发电计划和调度方案。
这样既能提高电力企业的发电效率,又能节约成本,降低对环境的影响。
二、输配电输配电业务是电力企业的重要环节,也是电力行业的重要发展方向。
随着智能电网建设的快速推进,对输配电系统的大数据分析越发重要。
通过对输配电系统的大数据采集和分析,实现对各个设备的状态监测、预测故障、发现隐患,及时采取措施解决问题,保障输配电系统的稳定和可靠运行。
同时,通过大数据分析,还可以优化电网能效,提高电力企业的运营效益。
三、市场运营市场运营是电力企业的运营管理方面,关系到企业的盈利,也是电力行业重要的组成部分。
大数据分析可以帮助电力企业了解用户需求,优化供需关系,提高市场竞争力。
例如,结合用户用电需求、天气变化等大数据,提高电力市场的供需预测精度,引导市场运营方向。
此外,对于一些特殊的用电需求,如数据中心、工业产业用电等,也可以通过大数据分析建立专业化销售团队,为企业带来更高的利润。
四、用户服务用户服务是电力企业的重要方面,用户体验的好坏是电力企业长期发展的关键。
大数据分析可以帮助电力企业实现用户需求个性化服务。
例如,通过分析用户数据,了解用户用电习惯、需求,精准定制个性化服务方案。
同时还能通过大数据分析进行营销管理,针对用户特别需求或季节性需求推出相应的营销服务,从而提高用户体验和服务质量。
电力大数据的应用场景

电力大数据的应用场景一、引言随着科技的不断进步和数据的不断积累,电力大数据已经成为了电力行业发展的重要方向。
电力大数据是指通过对电力系统中各种数据进行采集、存储、处理和分析等操作,从而提取出有价值的信息,为电力行业的决策和管理提供支持。
本文将从以下几个方面详细介绍电力大数据的应用场景。
二、智能配电网智能配电网是指通过对配电网进行数字化改造和智能化升级,使其具备自动化控制、安全可靠、高效节能等特点。
在智能配电网中,通过对各种设备进行监测和控制,实现对配电网运行状态的实时监测和调度。
同时,还可以通过对用户用电情况进行分析,为用户提供更加个性化的用电服务。
三、新能源发展新能源是指以太阳能、风能、水能等自然资源为主要来源的清洁能源。
随着新能源技术的不断发展和应用,其在国家经济发展中扮演着越来越重要的角色。
在新能源领域中,通过对各种设备进行监测和控制,实现对新能源发电量的实时监测和调度。
同时,还可以通过对新能源发电成本和市场需求等数据进行分析,为新能源产业提供更加精准的决策支持。
四、用电安全管理用电安全是指在用电过程中,保障人身安全、财产安全和设备安全的一系列措施。
在用电安全管理中,通过对各种设备进行监测和控制,实现对用电设备状态的实时监测和调度。
同时,还可以通过对用户用电行为进行分析,及时发现潜在的安全隐患,并采取相应措施进行预防。
五、智慧城市建设智慧城市是指利用信息技术手段对城市进行数字化改造和智能化升级,从而实现城市资源优化、环境保护、公共服务等目标。
在智慧城市建设中,通过对各种数据进行采集和分析,实现对城市运行状态的实时监测和调度。
同时,还可以通过对城市居民生活习惯、出行方式等数据进行分析,为城市规划和管理提供更加精准的决策支持。
六、能源交易能源交易是指以能源作为交易对象的一种市场行为。
在能源交易中,通过对各种数据进行采集和分析,实现对能源市场的实时监测和调度。
同时,还可以通过对能源供需关系、价格波动等数据进行分析,为电力企业提供更加精准的决策支持。
大数据在电力行业中的应用与能源优化

大数据在电力行业中的应用与能源优化随着科技的不断进步,大数据在各个行业中的应用越来越广泛,电力行业也不例外。
本文将探讨大数据在电力行业中的应用,并重点介绍其在能源优化方面的作用。
一、大数据在电力行业中的应用大数据技术在电力行业的应用,主要体现在以下几个方面:1. 数据采集与监测:电力行业需要采集并监测大量的数据,如电能质量、电流电压、电网状态等。
大数据技术可以帮助电力公司实时采集这些数据,并进行监测和分析,以便及时发现问题并进行处理。
2. 资源调度与运行管理:电力行业需要合理调度各类电力资源,以确保电力供应的稳定。
大数据技术可以基于历史数据和实时数据,进行智能化的资源调度和运行管理,提高电力系统的效率和稳定性。
3. 故障诊断与预测:电力设备的故障对电网的稳定运行有很大影响,也会带来安全隐患。
大数据技术可以通过对设备数据的分析,实现故障的快速诊断和预测,提前采取措施,避免事故的发生。
4. 客户管理与需求预测:电力公司需要了解客户的使用情况和需求,以提供更好的服务。
大数据技术可以帮助电力公司分析客户数据,了解客户的用电习惯和需求,并根据这些数据进行精准的需求预测,提供个性化的服务。
5. 能源交易与市场分析:电力市场的波动对电力公司经营和利润有很大影响。
大数据技术可以对电力市场数据进行分析,预测市场走势,帮助电力公司做出科学决策,提高经营效益。
二、大数据在电力行业中的能源优化在电力行业中,能源优化是一个重要的课题。
大数据技术能够通过对电力系统的数据进行分析,帮助实现能源的优化利用。
1. 节能减排:通过大数据技术对电力系统的数据进行综合分析,可以识别出电力系统中的能源浪费和高耗能的环节,针对性地采取节能措施,减少能源的消耗,降低排放量。
2. 电力负荷预测:大数据技术可以通过对历史数据和实时数据的分析,预测未来的电力负荷。
准确的负荷预测可以帮助电力公司合理安排电力资源,避免资源浪费和供需不平衡现象的发生。
大数据技术在电力系统中的应用

大数据技术在电力系统中的应用在当今时代,随着科技的飞速发展,大数据技术已经成为各个领域的热门话题。
在电力系统中,大数据技术的应用也越来越广泛,为电力行业的高效管理和运维保障提供了强有力的支持。
一、大数据在电力系统中的应用1、电网安全运行电网的安全运行是电力系统的核心任务之一,对于电网故障的判断和修复,以及对电网健康状况的监控和管理,大数据技术起着重要的作用。
通过对电网中大量数据的采集和分析,可以快速判断故障发生的位置和范围,并及时采取措施进行修复,从而保证电力系统的稳定运行。
2、能源管理大数据技术在能源管理方面也有着广泛的应用。
通过对电力系统中能源消耗的实时监测和预测,可以根据实际情况调整电力供应,提高电力系统的能效,同时还可以降低电力系统的能耗,从而实现对能源的可持续发展。
3、智能化控制智能化控制是大数据技术在电力领域中的最大作用之一。
通过对电力系统中的数据进行实时监测和分析,可以及时掌握电力系统的运行状态,实现对电网的智能化控制。
例如,可以通过对电力系统中的数据进行分析,根据实际情况制定合理的停电计划,缩短停电时间,提高停电效率,减少电力系统的损失。
4、预测分析在电力系统中,预测是非常重要的一环。
通过对之前的数据进行分析和处理,可以预测未来电力系统的发展趋势,进而制定对应的应对策略。
例如,可以通过对用电量的分析,预测未来用电趋势,及时进行能源调控和优化,减少资源浪费,提高能源效率。
二、大数据技术在电力系统中的优势大数据技术在电力系统中的应用,不仅能够提高电力系统的安全性和能效性,还有着以下优势:1、提高电力企业的竞争力大数据技术可以帮助电力企业及时了解市场需求和变化,制定合理的营销策略和产品规划方案,提高企业的竞争力和市场占有率。
2、降低营销成本通过对客户需求进行分析和挖掘,可以降低电力企业的营销成本,提高销售效率。
同时,通过营销数据的分析,还可以发现新的营销机会和创新点。
3、提高服务水平通过大数据技术,可以及时监控客户的用电情况,及时处理客户的投诉和建议,提高服务水平和用户体验,增强客户满意度。
电力行业中的大数据应用案例

电力行业中的大数据应用案例随着社会的发展和科技的进步,大数据的应用在各行各业都得到了广泛的应用。
电力行业作为国民经济的重要支柱产业之一,同样受益于大数据技术的发展。
本文将介绍电力行业中的一些大数据应用案例,以展示大数据在电力行业中的巨大潜力和价值。
一、智能电力网随着电力系统规模的不断扩大和用电需求的不断增加,传统的电力网络已经无法满足需求。
大数据技术的应用使得电力网络更加智能化,能够自动监测和调节各个电力节点之间的供需平衡,提高电力系统的效率和稳定性。
例如,美国的智能电网项目,通过大数据分析和人工智能算法,能够实时监测电网状态,预测电力需求,并根据需求进行优化调度,从而提高电力利用率,减少供电中断的风险。
二、智能电表传统的电力计量方式往往需要人工读取电表,效率低下且存在很大的误差。
大数据技术的应用使得电力计量更加智能化和精确化。
智能电表通过内置传感器和通讯模块,可以自动采集用电数据,并通过云端平台进行实时监控和分析。
例如,中国南方电网的智能电表项目,利用大数据技术,在每个电表上都安装了SIM卡和通讯模块,实现了电表数据的实时传输和分析,提供了更加精确和可靠的电力计量服务,同时也降低了用户的用电成本。
三、电力设备预测维护电力设备的故障和损坏会给电力系统带来严重的损失和安全风险。
通过大数据的分析和挖掘,可以对电力设备的运行状态进行实时监测和预测,及时发现潜在故障,并采取相应的维护措施。
例如,德国的电力公司RWE利用大数据分析技术,监测和分析了其电力设备的运行数据,通过建立预测模型,成功预测出了多台设备的故障,并采取及时的维护措施,避免了潜在损失和安全风险。
四、电力市场分析电力市场是一个复杂而庞大的系统,涉及到供需双方的交易和决策。
通过大数据的应用,可以对电力市场的供需状况进行实时监测和分析,为市场参与者提供决策支持和市场交易策略。
例如,美国能源信息管理局利用大数据技术,实时监测和分析电力市场的供需数据、交易价格等信息,为市场参与者提供精确的市场分析报告,帮助他们制定合理的市场交易策略,提高了电力市场的效率和透明度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据在电力行业的应用
发表时间:2018-06-21T10:34:56.343Z 来源:《电力设备》2018年第4期作者:程诚1 马晶晶2 高青1 郭跃霞1 申小霜1 [导读] 摘要:近年来,随着互联网、云计算和移动的飞速发展,“大数据”一词也出现在人们的视野中。
(1.国网山西省电力公司长治供电公司山西长治 046011;2.山西机电职业技术学院山西长治 046011)摘要:近年来,随着互联网、云计算和移动的飞速发展,“大数据”一词也出现在人们的视野中。
随着大数据时代的到来,它给各行各业带来了根本性的变化。
电力电气行业也是如此。
专家学者认为,大数据给电力行业带来的影响被低估了。
本文讨论了大数据在电力工业中的应用。
关键词:大数据;电力行业;应用前言:随着我国的科学技术的进步,一些新的技术已经应用到了各个行业,为这些行业的发展提供了技术支持。
大数据就是在当前应用较为广泛的一项技术,其中对我国的电力行业的发展进步起到了很大的推动性作用。
1什么是电力大数据
近些年来,由于全球能源问题日益严重,智能电网的研究工作已在世界范围内展开。
智能电网的最终目标是建立覆盖电力系统整个生产过程的全景实时系统,包括发电、送电、变电、配电、用电灯许多环节。
且支撑智能电网安全、自愈、绿色、可靠运行的基础是电网全景实时数据采集、传输以及存储,还有累积的海量数据分析。
与智能电网建设的不断深化和发展,由电网操作的数据量和设备检测、监测是生成的数据呈指数级增加,逐渐成为大数据相关的信息科学领域,需要相应的存储和快速处理技术作为支持。
电力工业的大数据是在电力生产和使用过程中产生的,伴随着发电、输电、变电、配电、用电等环节产生。
2大数据技术的基本特点分析在网络的时代,全球互联网巨头在大数据时代的重要意义是对大数据本身有几个重要的特点,是数据中的第一个大数据,从TB级跃升到PB级;在价值密度方面并不高,根据对视频内容展开分析就可以看出来,在连续的监控过程中而切实在数据中发挥作用的也就仅有一两秒时间;另外在数据类型方面比较繁多,其中对图片、视频和地理位置均在其范围内;最后是实时和快速处理的特性,满足与传统的数据挖掘不同一秒定律。
在这几个特点方面将其归纳为四个v,也就是Value,Volume,Velocity,Variety。
3大数据和电力行业的关系分析电力工业是我国的基本能源设施。
它与我们的生活有着非常密切的关系,也是我们国家发展的重要保证。
在当前信息技术的快速发展中,电力企业和电力信息的决策和操作更大的电力信息化已成为重要力量突破传统的操作产生了新的增值服务,管理的模式也有新的发展,这一系列的变化数据中心将发挥作用,将获得更多数据中心功能,如数据分析和决策能力。
最重要的数据和生产数据的管理在电力行业数据的范围更广泛,所以,电力行业在实际开发过程中一些数据背后的价值得到充分理解,在数据管理和数据挖掘等方面进一步加强,从而尽快实现大数据的战略发展,为电力行业的各个环节建设提供技术指导和更科学有效的解决方案。
4电力大数据的关键技术 4.1数据挖掘
电力大数据的分析和数据挖掘主要针对结构化和非结构化数据,可以有效地处理复杂的数据结构和海量数据。
但目前电力行业数据大多是基于小数据集实行计算,这是因为当前大数据行业的主流大数据计算框架内尚未广泛应用于大数据领域,使用传统的方法大规模数据挖掘计算通常需要几天甚至几个月。
这是人们在现实业务场景中不能接受的。
它是一种具有小数据集的数据挖掘操作,其可靠性远低于基于海量数据的挖掘结果。
这也是我们正在进行的研究和发展的重点。
基于HadoppHDFS、HBASE的快速访问,基于Spark的分布式访问和分布式计算,基于R和Sparkmllib的统计、计算、分析,基于Mahout的机器学习,共同构建了基于大数据的高性能流计算的数据挖掘、统计、分析技术框架。
4.2实时计算
电力行业的实时计算在大数据应用领域具有不可忽视的地位。
电力行业的实时数据往往代表着设备的运行参数、生产环境的指标、客户的实时需求等,而这些数据的价值在刚形成时是最大的。
此外,在数据刚形成时,移动、计算和使用数据是最有意义的,这也符合数据应用程序的一般规则。
所以,电力大数据不需注重实时计算场景的应用。
在此阶段,基于传统数据量实现的实时计算框架在电力行业已经更加成熟。
例如在电厂中,电厂的运行参数以秒和分钟的方式采集。
数据收集完成后,将发送实时计算框架。
在框架中,将收集的参数应用于数据挖掘和电力业务专家长期积累的业务规则建立的数据模型,从而实现设备故障检测、故障预警、设备状态评估等。
在实时计算完成后,将计算结果和原始数据保存到数据库中进行后续数据挖掘,在实时计算过程中,挖掘出的规则、知识和数据模型也将被重用,形成一组自相似的完美体系。
因此,电力行业的实时计算迫切需要分布式内存计算,解决了数据量增加时计算性能约束的瓶颈。
5大数据技术在电力行业的应用 5.1大数据对电力能源系统的影响
从新时代的发展来看,在能源、公用事业和其他重要行业出现之前,大数据不能被低估,但现在大数据的到来将对我们的业务产生有效的影响。
采矿、大数据的访问和有效应用,可以促进智能电网的发展和转型,和分布式可再生能源资源,大数据将有助于实现预测和调度,并提高了电力行业的发电效率,在大量的行业管理和操作帮助分析客户需求,改变客户端模型行业和用户提供便利和节能。
在2006年国际商业机器公司就已经提出了关于智能电网的概念,且就此基础上引入了“信息流”的概念,他们认为应该将电能流和信息流良好的融合在一起,才有可能实现传输能源和采集数据同时进行的业务目的。
而电网互联系统是安全运行的客观发展,因此重视技术,研究智能电网的发展是一个不容忽视的问题,为了保证大规模电网技术研究的稳定运行,必须考虑配电网络和微网技术在电力系统中的共享技术。
5.2大数据实现电力企业一体化
目前,利用信息技术来促进企业的发展的电力行业很受欢迎,许多企业为了迎合“十八大”提出了“推动信息化和工业化深度融合”概念,积极提高自己的经营理念和经营方式,这意味着每个企业逐渐在电力行业的整合发展,虽然他们计划集成平台,从本质上说,是大数据背景下的数据挖掘、数据采集、数据分析和数据集成。
这些数据系统框架、集成方法或应用技术都是推动电力企业发展的重要问题,也是实现良好发展和实现一体化的关键。
5.3数据挖掘技术的应用
数据挖掘本质上是一种分析和分析海量数据的技术,并且能够理解数据的规则。
在商店业务中,大数据的研究有助于分析行业业务。
处理后的数据严格处理后,通过有效的数据保留可以获得控制业务的权利和优势。
对于电力行业来说,数据采集不是行业的最终目标,而是挖掘有价值的数据。
大数据可以很好地深化企业的应用,对提高企业的应用水平和加强集团企业的管理和控制能力具有重要的作用。
结语:总而言之,对于电力行业来说,大数据时代的到来是对这个行业发展的挑战,同时也给发展带来了新的机遇。
通过良好的数据管理,使用数据挖掘方法来实施大数据策略,有效地提高了电力生产,市场营销以及电网生产管理水平的其他方面,从而使中国的电力企业继续在世界先进的社会中提供有力的信息技术支持。
参考文献:
[1]任毅.大数据技术在电力运营中的应用分析[J].科技经济导刊,2017(35):30-31.
[2]李思远.大数据在电力行业的应用[J].绿色环保建材,2017(12):248.
[3]赵云山,刘焕焕.大数据技术在电力行业的应用研究[J].电信科学,2014,30(01):57-62.。