差分GPS(DGPS)原理
GPS差分测量技术的原理与应用

GPS差分测量技术的原理与应用近年来,全球定位系统(GPS)在各个领域中得到了广泛的应用。
GPS差分测量技术是其中重要的一种技术手段,它通过对GPS信号的接收和处理,实现精确的位置测量。
本文将介绍GPS差分测量技术的基本原理和应用。
一、GPS差分测量技术的基本原理GPS差分测量技术的原理主要基于卫星与接收器之间的距离测量。
GPS系统中的卫星通过向地面发射射频信号,并携带着自己的精确的位置和时间信息。
接收器接收到卫星发射的信号后,通过计算从卫星到接收器的信号传播时间,便可得到卫星与接收器之间的几何距离。
然而,由于信号在传播过程中受到大气、电离层等因素的影响,导致测量的误差较大。
差分测量技术的基本思想是利用同一时刻接收到的信号来消除测量误差。
在差分测量中,一台接收器处于已知位置的基准站点,将其接收到的信号与真实的位置坐标信息进行比较,得到该位置处的接收器误差。
然后,将该误差信息通过无线电或者网络传输给其他未知位置的接收器,其他接收器便可以通过该误差信息对自身测量结果进行修正。
二、差分测量技术的应用领域1. 测量和地理信息系统(GIS)差分测量技术在测量领域中得到了广泛的应用。
例如,测绘和土地测量需要高精度的位置信息,差分测量技术可以提供米级或者亚米级的位置精度,满足精确测量的需求。
地理信息系统(GIS)则需要大量的地理位置数据,差分测量技术可以提供高质量的地理位置数据作为支撑,提高GIS的精度和效率。
2. 船舶定位和导航在航海领域,精确的船舶定位和导航是确保船只安全航行的重要前提。
差分测量技术可以提供亚米级的位置精度,帮助船舶准确确定自身位置、航向和速度,确保船只安全航行。
3. 农业与农村发展差分测量技术在农业领域的应用也十分广泛。
农业生产需要精确的土地和农田边界信息、作物生长和灌溉信息等。
利用差分测量技术,农民可以获取到高质量的地理位置数据,帮助他们进行种植管理、精确施肥或灌溉,提高农业生产的效益。
5.GPS差分定位基本原理

*可提供改正数及变化率,所以在未得到改正数的空隙内能继 *基准站提供所有卫星改正数,用户只需接收4颗卫星信号,
缺点: *与位置差分相似,伪距差分能将两站公共误差抵消 *但随用户到基准站距离的增加又出现了系统误差,这种误 差用任何差分法都是不能消除的。 *基准站和用户站间距离对伪距差分的精度有决定性影响。 *星历提供的卫星钟与GPS时间不精确同步,卫星实际位置 和计算位置不一致 *两地测量误差始终有无法校正的剩余误差。 结论: *用户站和基准站距离越大,用GPS差分得到的位置精度越 低。 *卫星位置误差与GPS差分误差成正比关系。
差分定位基本原理
基准站
j ɶj ρ Ri = ρ Ri + cδ ti + dion + dtrop + ε ρ
修正量
j ɶj ∆P误差 = ρ Ri − ρ Ri
∆P误差 = cδ ti + d ion + dtrop + ε ρ
ɶj ɶj ρ修正 = ρ Mi − ∆P
j ɶj ρ Mi = ρ Mi + cδ ti + dion + dtrop + ε ρ
* 位置差分
* 差分改正计算的数学模型简单 * 差分数据的数据量少 * 基准站与流动站要求观测完全相同的一组卫星
* 距离差分
* 差分改正计算的数学模型较复杂 * 差分数据的数据量较多 * 基准站与流动站不要求观测完全相同的一组卫星
*位置差分和距离差分的特
点
* 结构 * 基准站(一个)、数据
通讯链和用户
*伪距差分原理
*差分定位在基准站的支持下,利用差分修正参数改正观测
gps差分原理及应用

1. 差分GPS概念与定位原理差分是提高GPS定位精度的有效途径。
差分GPS最早应用于导航用户,所以通常意义下的差分GPS是针对用伪距进行定位的动态用户。
而对用相位进行定位的动态用户,采用差分技术时人们称之为RTK(real time kinematic)。
通过差分的手段把影响定位精度的某些误差消除或减弱,从而提高了导航精度。
要使用差分GPS技术通常需要两台以上接收机,其中至少一台安置在已知坐标的点上(称为基准站或参考站),待定点称为差分站或用户站。
计算基准站的接收数据产生差分改正数通过数据链发送到用户站。
用户站利用差分改正数,可以提高其定位精度。
差分GPS按所采用的技术不同可以分为局部差分和广域差分。
局部差分:对影响定位的卫星星历误差、卫星钟差(含SA影响)、大气影响以及其他误差不进行误差分离,产生的差分改正数是多个误差的总影响(标量改正数)。
由于有些误差的空间相关性,用户站到基准站的距离不能太远(小于100公里)。
局部差分有单(基准)站和多(基准)站之分,但采用的技术是相同的,根据发送的改正数不同分为位置差分和伪距差分。
广域差分:对影响定位的卫星星历误差、卫星钟差(含SA影响)、大气影响以及其他误差进行误差分离,产生的差分改正数包括卫星星历改正、卫星钟差改正和电离层延迟改正(矢量改正数)。
由于空间相关性强的电离层延迟改正已分离为一个独立的改正数,用户站到基准站的距离可以大大增加(达800公里)。
下面介绍常用的位置差分原理、伪距差分原理和相位差分原理。
2. 位置差分原理这是一种最简单的差分方法,也是最早采用一种差分技术,任何一种GPS接收机均可改装和组成这种差分系统。
安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。
由于存在着轨道误差、时钟误差、SA影响、大气影响、多路径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。
把基准站解算坐标与已知坐标的差值作为改正数通过数据链发送出去,由用户站接收。
差分定位的原理及优缺点

差分定位的原理及优缺点
差分定位(Differential Positioning)是一种利用接收由多个卫星发送的信号并进行差分计算的定位方法。
它的主要原理是在一个基准接收器(Reference Receiver)和若干移动接收器(Roving Receivers)之间进行信号差分计算,从而消除由卫星和大气传播引起的误差,提高定位的精度。
差分定位的具体原理如下:
1. 基准接收器接收来自多个卫星的信号,并进行精确的位置计算,得到一个准确的定位结果。
2. 移动接收器也接收同样来自相同卫星的信号,并记录各个测量参数。
3. 移动接收器的测量结果与基准接收器的结果进行差分计算,通过相互之间的差异,得到移动接收器相对于基准接收器的位置偏差。
4. 利用差分计算的结果,对移动接收器进行位置校正,得到精确的移动接收器定位结果。
差分定位的优点包括:
1. 可以提高定位的精度,通常可以达到亚米甚至亚米级的精度。
2. 可以消除大气传播、钟差等误差,使定位结果更加准确可靠。
3. 可以实现实时定位或者后处理定位,具有一定的灵活性和适用性。
4. 可以利用已有的基准接收器进行定位,无需自己建立基准站,降低了成本和复杂性。
差分定位的缺点包括:
1. 需要有一个或多个基准接收器作为参考,如果没有可用的基准接收器,则无法实现差分定位。
2. 移动接收器和基准接收器之间的距离较远时,信号传输可能会有一定的延迟,影响差分计算的准确性。
3. 需要对接收到的信号进行复杂的计算和处理,对硬件和软件要求较高。
总的来说,差分定位是一种有效的提高定位精度的方法,适用于需要高精度定位的应用场景,如航空、航海、地质勘探等领域。
差分GPS测量原理

利用双频接收机或电离层模型对电离层误差进行修正,以 提高GPS定位精度。
大气误差
通过引入大气模型或使用实时气象数据,对大气误差进行 修正,以减小其对GPS定位精度的影响。
04 差分GPS应用
测量工程
总结词
差分GPS技术在测量工程中具有广泛的应用,能够提供高精度、高可靠性的位 置信息。
详细描述
应用领域拓展
01
02
03
智能交通
差分GPS技术将广泛应用 于智能交通领域,为车辆 导航、交通监控等提供高 精度定位服务。
农业现代化
在农业领域,差分GPS技 术可用于精准农业、无人 驾驶拖拉机等领域,提高 农业生产效率。
无人机应用
无人机领域也将受益于差 分GPS技术的发展,实现 无人机的精准定位和导航。
数据链是差分GPS系统中的通信链路,负责传输 差分校正数据和其他相关信息。
数据链通常采用无线电或移动网络进行通信,以 确保数据传输的可靠性和实时性。
数据链的传输速率和稳定性对差分GPS系统的性 能和精度有很大影响。
软件系统
软件系统是差分GPS系统的数据处理和分析工具,负责处理和分析接收到的卫星信 号和差分校正数据。
05 差分GPS发展前景
技术发展趋势
1 2
实时动态差分定位技术
随着通信技术的发展,实时动态差分定位技术将 更加普及,能够提供更高精度的定位服务。
多频段和多系统融合
未来差分GPS技术将向多频段和多系统融合方向 发展,以提高定位精度和可靠性。
3
人工智能和大数据技术的应用
人工智能和大数据技术将应用于差分GPS数据处 理中,提高数据处理效率和精度。
基准站接收到的卫星信号通过数据链传输给流动站,为流动站
DGPS原理以及GPS系统的特点知识介绍

DGPS原理以及GPS系统的特点知识介绍DGPS原理目前GPS系统提供的定位精度是优于10米,而为得到更高的定位精度,我们通常采用差分GPS技术:将一台GPS接收机安置在基准站上进行观测。
根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时将这一数据发送出去。
用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。
差分GPS分为两大类:伪距差分和载波相位差分1.伪距差分原理这是应用最广的一种差分。
在基准站上,观测所有卫星,根据基准站已知坐标和各卫星的坐标,求出每颗卫星每一时刻到基准站的真实距离。
再与测得的伪距比较,得出伪距改正数,将其传输至用户接收机,提高定位精度。
这种差分,能得到米级定位精度,如沿海广泛使用的“信标差分”2.载波相位差分原理载波相位差分技术又称RTK(Real Time Kinematic)技术,是实时处理两个测站载波相位观测量的差分方法。
即是将基准站采集的载波相位发给用户接收机,进行求差解算坐标。
载波相位差分可使定位精度达到厘米级。
大量应用于动态需要高精度位置的领域。
GPS系统的特点GPS系统具有全天候、全方位、高精度、多用途以及方便快捷高效等特点。
1)全天候:指野外观测可不受时间的限制。
不论白天黑夜、刮风下雨、夏暖冬寒,均可获得满意的观测效果。
2)全方位:指野外作业不受空间的限制,只要能同时接收到四颗以上卫星的信号,即可进行定位。
不要求测站间互相通视,可在陆地、海上、水上、空中(航测)测量定位。
既可静态观测,也可动态观测。
3)高精度:单频GPS接收机静态测量(后处理)精度可达±5mm+2ppm·D。
双频GPS 接收机静态测量精度可达±5mm+1ppm·D。
实时动态测量(RTK)精度可达±20mm+2ppm·D。
4)多用途:不仅用于测量定位,还可用于导航以及测速和授时。
差分GPS原理及应用
卫星定位导航实验报告题目:差分GPS原理及应用学院:信息与电气工程学院专业:班级:姓名:学号:2014年10月29日GPS技术前景由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。
随着冷战结束和全球经济的蓬勃发展,美国政府宣布2000年至2006年期间,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。
据有关专家预测,在美国,单单是汽车GPS导航系统,2000年后的市场将达到30亿美元,而在中国,汽车导航的市场也将达到50亿元人民币。
可见,GPS技术市场的应用前景非常可观。
二、差分GPS基本原理1. 伪距差分伪距差分是指采用测距码测距,在基准站上(已知点)上,通过已知距离”(测站坐标和卫星坐标反算的距离)与伪距观测值比较,确定距离改正数后传送给用户,用户据此对观测伪距进行改正,然后用改正后伪距观测值解算测站坐标。
各个卫星的距离改正数是不同的,因为距离改正数中包含了卫星坐标误差的因素,因此只有与基准站同步观测的卫星,才可以得到距离改正。
伪距差分是目前应用广泛的一种差分定位技术。
由于伪距差分可提供单颗卫星的距离改正数,因此用户站可选其中任意4颗相同卫星的伪距改正数进行改正,而不必要求两站观测的卫星完全相同。
伪距改正数是直接在WGS-84坐标系上进行的,是一种直接改正数,不必先变换为当地坐标,定位精度较高,且使用方便。
由于伪距差分定位依赖于两站公共误差的抵消来提高定位精度,误差抵消的程度决定了精度的高低。
而误差的公共性在很大程度依赖于两站距离,随着两站距离的增加,其误差公共性逐渐减弱,用户站离基准站的距离越大,伪距差分后的剩余误差越大,定位精度越低。
第六章GPS差分定位技术基本原理
第六章 GPS差分定位技术基本原理
概述①
? 差分GPS产生的诱因: 绝对定位精度不能满 足要求
? GPS 绝对定位的精度
受多种误差因素的影
响,完全满足某些特
殊应用的要求 ? 美国的 GPS政策对
SA关闭前后GPS 绝对定位精度的变化
GPS绝对定位精度的
影响(选择可用性 SA)
概述②
? 差分GPS(DGPS – Differential GPS)
? 数学模型(差分改正数的计算方法)
? 与普通差分不相同
? 普通差分是考虑的是误差的综合影响 ? 广域差分对各项误差加以分离,建立各自的改正模型
? 用户根据自身的位置,对观测值进行改正
? 特点
? 优点:差分精度高、差分精度与距离无关、差分范围 大
? 缺点:系统结构复杂、建设费用高
静态差分
? 安置在基线端点的接收机固定不动,通过连续观测,取得充分的多 余观测数据,改善定位精度。
GPS
(单位:m) 3.0 2.4 24 24 4.0 0.4
1.0 34.4 103.2
DGPS(单位:m) 间距(km)
0 100 300 500 0000 0 0.04 0.13 0.22 0.25 0.25 0.25 0.25 0 0.43 1.30 2.16 0 0.73 1.25 1.60 0 0.40 0.40 0.40 0.50 0.50 0.50 0.50 0.20 0.20 0.20 0.20 0.59 1.11 1.94 2.79 1.0 1.0 1.0 1.0 1.16 1.49 2.19 2.96 3.5 4.5 6.6 8.9
差分GPS定位原理
gps差分定位
一 工作原理 目前单GPS系统提供的定位精度是优于25米,而为得到更高的定位精度,我们通常采用差分GPS技术:将一台GPS接收机安置在基准站上进行观测。根据基准站已知精密坐标,计算出基准站到卫星的距离改正数,并由基准站实时将这一数据发送出去。用户接收机在进行GPS观测的同时,也接收到基准站发出的改正数,并对其定位结果进行改正,从而提高定位精度。 二 差分分类 根据差分GPS基准站发送的信息方式可将差分GPS定位分为三类,即:位置差分、伪距差分、相位差分。 这3类差分方式的工作原理是相同的,即都是由基准站发送改正数,由用户站接收并对其测量结果进行改正,以获得精确的定位结果。所不同的是,发送改正数的具体内容不一样,其差分定位精度也不同。 1 位置差分原理 这是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。由于存在着轨道误差、时钟误差、SA影响、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正,提高定位精度。以上先决条件是基准站和用户站观测同一组卫星的情况。位置差分法适用于用户与基准站间距离在100km以内的情况。 2 伪距差分原理 这是应用最广的一种差分。在基准站上,观测所有卫星,根据基准站已知坐标和各卫星的坐标,求出每颗卫星每一时刻到基准站的真实距离。再与测得的伪距比较,得出伪距改正数,将其传输至用户接收机,提高定位精度。这种差分,能得到米级的定位精度。 3载波相位差分原理 载波相位差分技术又称RTK(Real Time Kinematic)技术,是实时处理两个测站载波相位观测量的差分方法。即是将基准站采集的载波相位发给用户接收机,进行求差解算坐标。载波相位差分可使定位精度达到厘米级。大量应用于动态需要高精度位置的领域。 三 差分系统介绍 1 基准站-移动站差分系统 基准站-移动站差分是指采用两台GPS接收机。一台是基准站GPS,另一台是用户端GPS,并且知道一个已知点的坐标,原理是在已知坐标的固定点上架设一台GPS接收机(称基准站),通过GPS[1]的定位数据和已知坐标点的数据解算出差分数据(RTCM),再通过数据链将误差修正参数实时播发出去,用户端通过数据链接收修正参数,和自己的定位数据进行修正解算,即可将定位精度提高到米级、甚至厘米级。 2 信标差分系统 信标差分系统不需要用户自己架设基准站,因为考虑到实时差分系统未来的需要,国家交通部海监局在我国沿海从南到北沿海岸线建立了20个信标台站(也就相当于差分系统的基准站),这些信标站24小时发送RTCM差分校正信息,而且不收任何费用,其传输的距离是:在内陆是300KM的覆盖范围,在海上是500KM的覆盖范围。用户端只需要一台移动站的GPS就可以实现高精度的实时定位。 注:SA政策:即selective availability,有选择可用性,美国采取的限制定位精度的政策; 载波相位:是指接收到的具有多普勒频移的载波信号与接收机产生的参考载波信号之间的相位差。(这一定义摘自CNKI概念知识元库)。 Kinematic:运动学的,运动学上的。 信标差分系统原理 GPS信标差分系统实际上就是差分系统,只是信标差分系统不需要用户自己架设基准站,因为考虑到实时差分系统未来的需要,国家交通部海监局在我国沿海从南到北沿海岸线建立了20个信标台站(也就相当于差分系统的基准站),这些信标站24小时发送RTCM差分校正信息,而且不收任何费用,其传输的距离是:在内陆是300KM的覆盖范围,在海上是500KM的覆盖范围。用户端只需要一台移动站的GPS就可以实现高精度的实时定位。
gps漂移抑制算法
gps漂移抑制算法
GPS(全球定位系统)漂移抑制是指通过各种算法和技术来减少
或抑制GPS接收器在信号不稳定或环境变化时引起的位置漂移。
以下是一些常见的GPS漂移抑制算法:
1.卡尔曼滤波器:卡尔曼滤波器是一种递归滤波器,用于估计状态的动态系统。
在GPS中,它可以用于融合多个传感器的信息((比如加速度计、陀螺仪),以提高位置估计的精度并减小位置漂移。
2.差分GPS(DGPS):差分GPS通过基准站与接收器之间的信号对比来抑制漂移。
基准站具有已知准确位置的接收器,通过比较基准站和接收器之间的信号差异,可以纠正接收器的信号漂移。
3.自适应滤波:一些自适应滤波技术可以根据环境变化或信号不稳定性调整滤波参数,以适应不同的条件,从而减小GPS位置估计的漂移。
4.移动平均:移动平均是一种简单的平滑技术,可以减小GPS位置估计中的瞬时波动,从而降低漂移。
5.航向变化检测:通过监测导航系统的航向变化,可以检测和纠正由于方向变化引起的位置漂移。
6.信号强度检测:基于接收到的信号强度变化,可以对位置进行校正或调整,以抑制由信号变化引起的漂移。
7.干扰监测与抑制:监测并抑制外部干扰对GPS信号的影响,以减小干扰对位置估计的影响,进而减小位置漂移。
这些方法可以单独应用或组合使用,以改善GPS定位的准确性并抑制位置漂移。
实际应用中,结合多种方法和传感器数据融合技术,
可以有效地抑制GPS定位中的漂移。
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差分GPS(DGPS)原理
根据差分GPS基准站发送的信息方式可将差分GPS定位分为三类,即:位置差分、伪距差分和相位差分。
这三类差分方式的工作原理是相同的,即都是由基准站发送改正数,由用户站接收并对其测量结果进行改正,以获得精确的定位结果。
所不同的是,发送改正数的具体内容不一样,其差分定位精度也不同。
1. 位置差分原理
这是一种最简单的差分方法,任何一种GPS接收机均可改装和组成这种差分系统。
安装在基准站上的GPS接收机观测4颗卫星后便可进行三维定位,解算出基准站的坐标。
由于存在着轨道误差、时钟误差、SA影响、大气影响、多径效应以及其他误差,解算出的坐标与基准站的已知坐标是不一样的,存在误差。
基准站利用数据链将此改正数发送出去,由用户站接收,并且对其解算的用户站坐标进行改正。
最后得到的改正后的用户坐标已消去了基准站和用户站的共同误差,例如卫星轨道误差、SA影响、大气影响等,提高了定位精度。
以上先决条件是基准站和用户站观测同一组卫星的情况。
位置差分法适用于用户与基准站间距离在100km以内的情况。
2. 伪距差分原理
伪距差分是目前用途最广的一种技术。
几乎所有的商用差分GPS接收机均采用这种技术。
国际海事无线电委员会推荐的RTCM SC-104也采用了这种技术。
在基准站上的接收机要求得它至可见卫星的距离,并将此计算出的距离与含有误差的测量值加以比较。
利用一个α-β滤波器将此差值滤波并求出其偏差。
然后将所有卫星的测距误差传输给用户,用户利用此测距误差来改正测量的伪距。
最后,用户利用改正后的伪距来解出本身的位置,就可消去公共误差,提高定位精度。
与位置差分相似,伪距差分能将两站公共误差抵消,但随着用户到基准站距离的增加又出现了系统误差,这种误差用任何差分法都是不能消除的。
用户和基准站之间的距离对精度有决定性影响。
3. 载波相位差分原理
测地型接收机利用GPS卫星载波相位进行的静态基线测量获得了很高的精度(10-6~10-8)。
但为了可靠地求解出相位模糊度,要求静止观测一两个小时或更长时间。
这样就限制了在工程作业中的应用。
于是探求快速测量的方法应运而生。
例如,采用整周模糊度快速逼近技术(FARA)使基线观测时间缩短到5分钟,采用准动态(stop and go),往返重复设站(re-occupation)和动态(kinematic)来提高GPS作业效率。
这些技术的应用对推动精密GPS测量起了促进作用。
但是,上述这些作业方式都是事后进行数据处理,不能实时提交成果和实时评定成果质量,很难避免出现事后检查不合格造成的返工现象。
差分GPS的出现,能实时给定载体的位置,精度为米级,满足了引航、水下测量等工程的要求。
位置差分、伪距差分、伪距差分相位平滑等技术已成功地用于各种作业中。
随之而来的是更加精密的测量技术—载波相位差分技术。
载波相位差分技术又称为RTK技术(real time kinematic),是建立在实时处理两个测站的载波相位基础上的。
它能实时提供观测点的三维坐标,并达到厘米级的高精度。
与伪距差分原理相同,由基准站通过数据链实时将其载波观测量及站坐标信息一同传送给用户站。
用户站接收GPS卫星的载波相位与来自基准站的载波相位,并组成相位差分观测
值进行实时处理,能实时给出厘米级的定位结果。
实现载波相位差分GPS的方法分为两类:修正法和差分法。
前者与伪距差分相同,基准站将载波相位修正量发送给用户站,以改正其载波相位,然后求解坐标。
后者将基准站采集的载波相位发送给用户台进行求差解算坐标。
前者为准RTK技术,后者为真正的RTK技术。