圆锥曲线教案课案
圆锥曲线高中数学解读教案

圆锥曲线高中数学解读教案教学内容:圆锥曲线
课时安排:2课时
教学目标:
1. 理解圆锥曲线的定义以及各种形式的表达;
2. 掌握圆锥曲线的性质和特点;
3. 能够应用所学知识解决相关问题。
教学重点:
1. 圆锥曲线的定义和性质;
2. 椭圆、双曲线、抛物线的特点与区别;
3. 圆锥曲线的图像及方程。
教学内容和步骤:
第一课时:
1. 引入学习,了解学生对圆锥曲线的理解和认识;
2. 讲述圆锥曲线的定义及一般方程;
3. 分别介绍椭圆、双曲线和抛物线的定义和特点;
4. 指导学生做相关习题,巩固所学知识。
第二课时:
1. 复习前一节课的内容,解答学生提出的问题;
2. 讲解圆锥曲线的图像和方程的变化规律;
3. 继续指导学生进行练习和讨论;
4. 小结本节课的学习内容,布置相关作业。
教学方法:
1. 教师讲授与学生互动相结合,注重启发式教学方法;
2. 多媒体教学辅助,展示圆锥曲线的图像和方程;
3. 组织学生进行讨论和小组合作,促进彼此之间的交流和学习。
教学评价:
1. 课后布置相关练习和作业,及时进行批改和评价;
2. 观察学生学习情况,及时调整教学进度和方法;
3. 定期进行测试和考查,全面评估学生对圆锥曲线的掌握情况。
高中数学圆锥曲线解读教案

高中数学圆锥曲线解读教案
教学目标:
1. 了解圆锥曲线的基本概念和性质;
2. 掌握圆锥曲线的方程及其图像的特点;
3. 能够通过方程求解圆锥曲线的各项参数。
教学步骤:
一、导入(5分钟)
1. 引入圆锥曲线的概念,介绍圆锥曲线在实际生活中的应用。
2. 提出学习目标,激发学生的学习兴趣。
二、讲解(15分钟)
1. 讲解圆、椭圆、双曲线、抛物线等四种圆锥曲线的定义和性质。
2. 介绍圆锥曲线的方程和各项参数的含义。
3. 分别展示各种圆锥曲线的标准方程及其图像特点。
三、练习(20分钟)
1. 给学生提供几个圆锥曲线的方程,让他们分别绘制出对应的图像。
2. 让学生通过方程求解圆锥曲线的焦点、准线、长轴、短轴等参数。
四、展示(10分钟)
1. 学生展示他们绘制的圆锥曲线图像,并解读图像的特点。
2. 请学生通过求解方程,解读各种参数的意义。
五、总结(5分钟)
1. 总结圆锥曲线的性质和方程求解方法。
2. 强调重点,提醒学生注意常见的错误和解题技巧。
教学反思:
通过这节课的教学,学生能够对圆锥曲线的基本概念和性质有所了解,提高了他们的数学能力和解题技巧。
在未来的教学中,可以适当增加实例分析,激发学生的思维和创造力。
圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料教案章节:第一章至第五章第一章:圆锥曲线概述1.1 圆锥曲线的定义与性质1.2 圆锥曲线的历史发展1.3 圆锥曲线在现实生活中的应用第二章:椭圆2.1 椭圆的定义与性质2.2 椭圆的标准方程2.3 椭圆的应用第三章:双曲线3.1 双曲线的定义与性质3.2 双曲线的标准方程3.3 双曲线的应用第四章:抛物线4.1 抛物线的定义与性质4.2 抛物线的标准方程4.3 抛物线的应用第五章:圆锥曲线之间的联系5.1 圆锥曲线之间的关系5.2 圆锥曲线与其他几何图形的关系5.3 圆锥曲线的进一步研究本教案旨在帮助学生全面了解圆锥曲线的基本概念、性质和应用,通过生动的实例和丰富的互动活动,激发学生对圆锥曲线的兴趣和探究欲望。
在教学过程中,注重培养学生的数学思维能力和创新能力,提高他们解决实际问题的能力。
教学方法:1. 采用问题驱动的教学方式,引导学生主动探究圆锥曲线的性质和规律。
2. 利用多媒体课件和实物模型,直观展示圆锥曲线的形态和特点。
3. 设计丰富的互动环节,让学生在实践中理解和掌握圆锥曲线的知识。
4. 鼓励学生进行小组讨论和合作交流,培养团队协作能力。
教学评价:1. 通过课堂提问、作业和小组讨论,评估学生对圆锥曲线知识的掌握程度。
2. 结合学生的实际应用能力,评估他们在解决与圆锥曲线相关问题时的创新能力。
3. 收集学生对教学过程和教学资源的反馈意见,不断优化教学方案。
教学资源:1. 多媒体课件:包含圆锥曲线的图片、动画和实例,生动展示圆锥曲线的特点。
2. 实物模型:提供圆锥曲线的相关模型,让学生直观感受圆锥曲线的形态。
3. 练习题库:涵盖各种难度的练习题,满足不同层次学生的学习需求。
4. 参考资料:提供相关书籍、论文和网络资源,方便学生深入研究圆锥曲线。
教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:3课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本节课的学习,学生应能掌握圆锥曲线的基本概念、性质和应用,了解圆锥曲线之间以及与其他几何图形之间的关系。
圆锥曲线教案

圆锥曲线教案圆锥曲线教案一、教学目标:1. 理解什么是圆锥曲线,学会在笛卡尔坐标系中表示圆锥曲线。
2. 学会求解圆锥曲线的焦点、直径、离心率等相关性质。
3. 掌握对圆锥曲线进行方程变换、平移、旋转等操作的方法。
二、教学准备:1. 教师准备黑板、彩色粉笔等教学用具。
2. 学生准备笔记本、书籍等学习用具。
三、教学过程:1. 导入新知识:通过展示一张圆锥曲线的图片,询问学生对这个图形有什么了解,引导学生思考圆锥曲线的定义和性质。
2. 理论讲解:(1) 定义圆锥曲线:对圆锥在一个经过顶点的剖面研究所得到的曲线称为圆锥曲线。
(2) 表示方法:在笛卡尔坐标系中,圆锥曲线可由方程表示,例如椭圆的方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
(3) 常见圆锥曲线:椭圆、双曲线、抛物线。
3. 实例演示:以椭圆为例,给出一个椭圆的标准方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,引导学生求解椭圆的焦点、直径、离心率等相关性质。
4. 计算练习:给出多个圆锥曲线的方程,让学生进行计算练习,提高其运算能力。
5. 方程变换:介绍如何对圆锥曲线进行方程变换,包括水平方向和垂直方向的方程变换。
6. 平移与旋转:讲解如何对圆锥曲线进行平移和旋转,以及平移和旋转对方程的影响。
7. 总结归纳:对学过的内容进行总结归纳,梳理知识框架。
8. 解答疑问:解答学生对圆锥曲线相关问题的疑惑。
9. 课堂练习:布置一些课堂练习题,让学生巩固所学知识。
四、教学延伸:1. 引导学生进行实际应用:让学生寻找生活中的圆锥曲线,并分析其性质和特点。
2. 继续深入学习:对于学有余力的学生,可以探究更高级的圆锥曲线知识,如圆锥曲线的参数方程、极坐标方程等。
五、教学评价:1. 课堂练习的成绩。
2. 学生对于圆锥曲线相关问题的提问及解答情况。
3. 学生对于课堂知识的掌握和应用情况。
六、课后作业:1. 完成课堂练习题。
2024-2025学年高二数学上学期第十六周圆锥曲线方法教学设计

知识点梳理
本节课的主要教学内容是圆锥曲线方法,主要包括以下几个方面的知识点:
1. 圆锥曲线的定义与性质:包括圆锥曲线的基本概念、组成元素和性质。讲解圆锥曲线的定义,让学生了解圆锥曲线的基本形状和特点。介绍圆锥曲线的组成元素,如圆锥、椭圆、双曲线等,并解释它们之间的关系。阐述圆锥曲线的性质,如对称性、连续性、单调性等,并通过实例进行演示和证明。
2. 实例分析:我选择了几个典型的圆锥曲线案例进行分析,让学生全面了解了圆锥曲线的多样性或复杂性,并且能够引导学生思考这些案例对实际生活或学习的影响,以及如何应用圆锥曲线解决实际问题。
(二)存在主要问题
1. 课堂互动:虽然我设计了小组讨论和课堂展示环节,但是在实际操作中,我发现学生的互动不够积极,这影响了课堂的效果。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源准备
1. 教材:确保每位学生都有《2024-2025学年高二数学上学期第十六周 圆锥曲线方法教学设计》所需的教材或学习资料,以便学生能够跟随教学进度进行学习和复习。
2. 辅助材料:准备与教学内容相关的图片、图表、视频等多媒体资源,以便在教学过程中进行直观展示和讲解,帮助学生更好地理解和掌握圆锥曲线的性质和方程。
2. 教学内容:虽然我尽量让课堂内容丰富多样,但是在实际教学中,我发现有些学生的理解程度不够,这说明我对教学内容的把握还需要提高。
(三)改进措施
1. 提高课堂互动:我将更加注重课堂的互动,通过提问、小组讨论等方式,激发学生的兴趣和参与度。
2. 调整教学内容:我将根据学生的实际情况,调整教学内容的深度和广度,力求让每一个学生都能跟上教学的节奏,理解并掌握圆锥曲线的知识。
圆锥曲线公开课教案

圆锥曲线--点的轨迹探究与欣赏一、教材分析1.地位和作用圆锥曲线与科研、生产以及人类生活有着密切的联系。
早在16、17世纪之交,开普勒就发现行星绕太阳运行的轨道是一个椭圆;探照灯反射面是抛物线绕其对称轴旋转形成的抛物面,发电厂冷却塔的外形线是双曲线。
本节课是在学生学习了圆锥曲线的定义和基本几何性质后展开的,旨在对圆锥曲线有更加深刻的了解。
2.教学重点难点(1)重点:求动点轨迹的基本方法。
(2)难点:找出相关点之间的内在关系,列出相应的数学式子。
(3)方法:定义法、交轨法,一题多变,发散思维,并用“几何画板”提高课堂效率。
3.教学目的:(1)通过教学活动,使学生掌握求点的轨迹的基本方法。
(2)“兴趣是最好的老师,它永远胜过责任心”(爱因斯坦语),本节课通过《几何画板》演示课本的习题和与圆锥曲线有关的几个精美图片激发学生的学习兴趣。
引导学生自主学习,自我探索,并从中体会到学习数学的乐趣。
(3)想通过本节课的学习也想加大学生的参与度,因为利用电脑,可以得到许多我们事先不知道的结果,正如平时一样,学生可以把上课的软件拷回家,自己课后加以学习研究,再去观察、再认识、再体会,象理化一样,给学生提供了做数学实验的机会。
二、教学过程三、小结与评价:1、本节课结合课本练习,研究了求轨迹的方法的一些方法:定义法、相关法、交轨法等。
2、充分利用《几何画板》的强大功能,动态显示课本习题,由此发现《几何画板》对学习数学的重要作用,并可自己动手实验,得到不同的结论,可以用它来验证我们的猜想和结论正确与否。
3、求轨迹方程时,应注意找出题目所给条件的内在联系,挖掘出它们关系,在化简时注意掌握必要的技巧和方法,并加以类比和总结。
四、练习与作业1、动圆M 过定点P (-4,0),且与圆08:22=-+x y x C 相切,求动圆圆心M 的轨迹方程。
2、M 是抛物线x y =2上一动点,以OM 为一边(O 为坐标原点)作正方形MNPO ,求动点P 的轨迹方程。
圆锥曲线学生公开课教案教学设计课件资料

圆锥曲线学生公开课教案教学设计课件资料一、教学目标1. 知识与技能:理解圆锥曲线的概念和性质。
掌握圆锥曲线的标准方程及其求法。
学会运用圆锥曲线解决实际问题。
2. 过程与方法:培养学生的观察、分析和解决问题的能力。
培养学生的逻辑思维能力和数学美感。
培养学生的合作交流和表达能力。
3. 情感态度与价值观:激发学生对圆锥曲线的兴趣和好奇心。
培养学生对数学美的感知和欣赏能力。
培养学生勇于探索和创新的思维精神。
二、教学内容1. 圆锥曲线的概念与性质引导学生通过观察圆锥的切割和展开,理解圆锥曲线的形成过程。
引导学生探究圆锥曲线的几何性质,如曲率、渐近线等。
2. 圆锥曲线的标准方程引导学生利用圆锥曲线的性质推导出标准方程。
引导学生理解不同类型的圆锥曲线(如椭圆、双曲线、抛物线)的标准方程及其特点。
3. 圆锥曲线的应用引导学生运用圆锥曲线解决实际问题,如测量问题、轨迹问题等。
引导学生运用圆锥曲线方程进行优化问题求解。
三、教学过程1. 导入通过展示圆锥曲线在现实生活中的应用实例,引发学生对圆锥曲线的兴趣。
引导学生回顾之前的数学知识,为新课的学习做好铺垫。
2. 知识讲解利用多媒体课件,生动形象地展示圆锥曲线的形成过程。
引导学生通过合作交流,探究圆锥曲线的几何性质。
利用数学软件,动态展示圆锥曲线的变化,增强学生对圆锥曲线的理解。
3. 例题讲解与练习讲解典型例题,引导学生掌握解题方法。
安排适量练习题,巩固所学知识。
4. 课堂小结总结本节课的主要内容和知识点。
强调圆锥曲线在实际生活中的应用价值。
四、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题评价:通过学生完成的练习题,评估学生对圆锥曲线知识点的掌握程度。
3. 小组讨论评价:评估学生在合作交流中的表现,如观点阐述、团队协作等。
五、教学资源1. 多媒体课件:展示圆锥曲线的形成过程、几何性质和应用实例。
2. 数学软件:动态展示圆锥曲线的变化,增强学生直观感受。
高中数学旧版圆锥曲线教案

高中数学旧版圆锥曲线教案课题:圆锥曲线教学目标:1.了解圆锥曲线的定义和性质。
2.掌握圆锥曲线的方程,并能够根据已知条件求解圆锥曲线的方程。
3.能够应用圆锥曲线解决实际问题。
教学重点:1.圆锥曲线的定义和性质。
2.圆锥曲线的方程。
3.应用圆锥曲线解决实际问题。
教学难点:1.如何根据已知条件求解圆锥曲线的方程。
2.如何应用圆锥曲线解决实际问题。
教学准备:1.教材《高中数学》第一学期教材。
2.多媒体教学设备。
3.课堂练习题。
教学过程:一、导入(5分钟)教师简要介绍圆锥曲线的概念,并引出本节课的学习内容。
二、讲解圆锥曲线的定义和性质(15分钟)1. 圆锥曲线的定义:直角圆锥内所有的点到一个固定点的距离与到一条固定线的距离的比值等于一个常数,这个数称为离心率。
2. 圆锥曲线的性质:包括椭圆、双曲线、抛物线三种,每种都有特定的方程和性质。
三、讲解圆锥曲线的方程及求解(20分钟)1. 根据已知条件列方程。
2. 解方程得到圆锥曲线的方程。
四、应用题训练(15分钟)教师给学生出几道应用题,要求学生应用所学知识解决实际问题。
五、总结(5分钟)教师对本节课的内容进行总结,并提出下节课的预习内容。
六、布置作业(5分钟)布置课后作业,巩固学生的知识。
教学反思:圆锥曲线是高中数学中的一个重要内容,需要学生掌握严谨的数学思维和解题方法。
在教学中,应该注重引导学生理解概念,培养学生的解题能力和应用能力。
同时,通过案例分析和实际问题的应用,激发学生学习的兴趣和主动性。
【教案结束】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆 椭圆及其标准方程◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标(1)预习与引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.(2)新课讲授过程(i )由上述探究过程容易得到椭圆的定义.〖板书〗把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.(ii )椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义. 类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>. (iii )例题讲解与引申例 1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解. 另解:设椭圆的标准方程为()222210x y a b a b+=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591104464a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程. 引申:设定点()6,2A ,P 是椭圆221259x y +=上动点,求线段AP 中点M 的轨迹方程.解法剖析:①(代入法求伴随轨迹)设(),M x y ,()11,P x y ;②(点与伴随点的关系)∵M 为线段AP 的中点,∴112622x x y y =-⎧⎨=-⎩;③(代入已知轨迹求出伴随轨迹),∵22111259x y +=,∴点M 的轨迹方程为()()223112594x y --+=;④伴随轨迹表示的范围. 例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程. 分析:若设点(),M x y ,则直线AM ,BM 的斜率就可以用含,x y的式子表示,由于直线AM ,BM 的斜率之积是49-,因此,可以求出,x y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点(),M x y ,则()55AM y k x x =≠-+,()55BM y k x x =≠-; 代入点M 的集合有4559y y x x ⨯=-+-,化简即可得点M 的轨迹方程. 引申:如图,设△ABC 的两个顶点(),0A a -,(),0B a ,顶点C 在移动,且AC BC k k k ⨯=,且0k <,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当k 值在变化时,线段AB 的角色也是从椭圆的长轴→圆的直径→椭圆的短轴.椭圆 椭圆的简单几何性质◆ 知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.◆ 过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P 48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.(2)新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质①范围:由椭圆的标准方程可得,222210y x b a=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率: 椭圆的焦距与长轴长的比ac e =叫做椭圆的离心率(10<<e ),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 . (iii )例题讲解与引申、扩展例4 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标. 分析:由椭圆的方程化为标准方程,容易求出,,a b c .引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.扩展:已知椭圆()22550mx y m m +=>的离心率为105e =m 的值. 解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有5,,5a b m c m ===-,∴5255m-=,得3m =;②当焦点在y 轴上,即5m >时,有,5,5a m b c m ===-,∴510253m m m -=⇒=. 例5 ,如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程. 解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22221x y a b+=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭圆,近地点A 距地面200km ,远地点B 距地面350km ,已知地球的半径6371R km =.建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254x =的距离的比是常数45,求点M 的轨迹方程. 分析:若设点(),M x y ,则()224MF x y =-+,到直线l :254x =的距离254d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点(),0F c 的距离和它到定直线l :2a x c=的距离比是常数cea=()0a c>>,则点M的轨迹方程是椭圆.其中定点(),0F c是焦点,定直线l:2axc=相应于F的准线;由椭圆的对称性,另一焦点(),0F c'-,相应于F'的准线l':2axc=-.抛物线及标准方程知识与技能目标使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.过程与方法目标情感,态度与价值观目标(1)培养学生用对称的美学思维来体现数学的和谐美。
(2)培养学生观察,实验,探究与交流的数学活动能力。
能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力(1)复习与引入过程回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0<e <1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?2.简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.(2)新课讲授过程(i)由上面的探究过程得出抛物线的定义《板书》平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii) 抛物线标准方程的推导过程引导学生分析出:方案3中得出的方程作为抛物线的标准方程.这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍.由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在黑板上,并讲清为什么会出现四种不同的情形,四种情形中P>0;并指出图形的位置特征和方程的形式应结合起来记忆.即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2.同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号.(iii)例题讲解与引申例1 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程已知抛物线的焦点是F(0,-2),求它的标准方程解因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是x2=-8y例2一种卫星接收天线的轴截面如图所示。