江苏省环境水质(地表水)自动监测预警系统

江苏省环境水质(地表水)自动监测预警系统
江苏省环境水质(地表水)自动监测预警系统

江苏省环境水质(地表水)自动监测预警系统

附件2

江苏省环境水质(地表水)自动监测预警系统

验收办法(试行)

目录

1 前言 (6)

2 验收工作分工 (6)

3 验收步骤与内容 (6)

3.1 验收分预验收及最终验收 (6)

3.2 预验收 (6)

3.3 最终验收 (7)

4 申请验收条件 (7)

4.1 一般条件 (7)

4.2 功能指标 (8)

4.3 建立完整的技术档案 (8)

4.4 建立水站运行管理制度及人员岗位职

责等 (8)

4.5 完成试运行期间的工作总结及最终验

收技术报告 (8)

4.6 集成商提交验收材料 (8)

5 自动监测仪器设备验收 (9)

5.1 交货验收 (9)

5.2 仪器验收标准及要求 (9)

5.3 仪器基本性能测试方法 (11)

5.4 仪器考核办法及内容 (11)

6 采水、配水系统基本功能 (15)

7 数据采集、传输与控制系统基本功能 (15)

8 系统有效数据累计捕捉率 (15)

9 质量保证与质量控制 (15)

10 文件资料归档 (15)

11附表 (16)

附表1 江苏省环境水质(地表水)自动监测

预警系统验收意见 (16)

附表2 国家有关水质自动分析仪技术要求

一览表 (17)

附表3 部分实际样品比对实验室监测分析

方法一览表 (17)

12、验收记录表 (18)

表1 自动监测仪器交接验收表 (18)

表2 仪器安装、通电、预热情况记录表 . 18 表3 仪器初始化设置记录表 (20)

表4仪器基本功能核查表 (21)

表5 仪器准确度与精密度考核表 (22)

表6仪器空白值和检出限考核表 (23)

表7 仪器标准曲线的测定 (24)

表8 仪器零点漂移考核表 (24)

表9 仪器量程漂移考核表 (26)

表10 仪器响应时间测试结果考核表 (28)

表11 仪器重复性或重复性误差考核表 (28)

表12 仪器故障记录表 (29)

表13 取水口实际样品测试与实验室比对结果统计汇总表 (29)

表14 采水、配水系统基本功能考核表 (30)

表15 数据采集、传输、控制系统考核表31 表16 仪器试运行情况记录表 (32)

表17 仪器有效数据获取率统计表 (32)

填表说明: (32)

1 前言

1.1 为保证江苏省环境水质(地表水)自动监测预警系统(以下简称水站)建设的工程质量和技术质量,确保水站的正常运行,特制定本规定。

1.2 本办法将作为水站竣工验收依据。

2 验收工作分工

2.1 由江苏省环保厅牵头,组织有关人员按国家环保行业标准、《江苏省环境水质(地表水)自动监测预警系统建设技术要求》(以下简称《技术要求》)和招、投标文件及合同内容等,对水站所提供物品的数量和技术指标进行逐项验收,验收专家小组填写“附表1江苏省环境水质(地表水)自动监测预警系统验收意见”。

2.2 集成商按合同要求负责实施系统集成工作,负责现场安装、调试工作,并对省站、托管站技术人员进行系统培训,负责编制系统运行操作手册和单台仪器及设备的运行维护方法与规定。

2.3 托管站负责到货仪器及设备的托收与保管,配合集成商完成系统安装、调试工作,接受仪器设备及系统操作的现场培训并应熟练掌握,对固定资产进行登记保管,负责水站的日常运行、安全保卫、QA/QC及水质周报工作,完成水站考核,对要验收的内容进行现场测定和实验室比对分析,并形成最终验收技术报告及工作报告,协助江苏省环保厅实施验收考核。

3 验收步骤与内容

3.1 验收分预验收及最终验收

3.2 预验收

包括货物的检验与验收、安装及调试工程质量验收、仪器基本功能核查、系统基本功能核查

等。

3.3 最终验收

在系统通过预验收,正常运行90天后进行,着重考核系统运行的稳定性、可靠性及仪器数据的准确性。在此期间须对系统及所有仪器的基本性能进行测试、对比试验、标准溶液核查、有效数据累计捕捉率统计等。在COD Mn分析仪和TOC分析仪同时存在的水站,除进行上述内容考核外,应增加COD Mn和TOC相关性研究,在条件允许的情况下应增加TOC自身对比试验,并形成最终验收技术报告及工作报告。

系统通过验收后投入正式运行,发布水质周报。

4 申请验收条件

系统经过90天运行考核后若运行正常,各托管站应及时对有关技术资料、说明书、安装调试和运行考核原始数据及现场记录进行收集、整理并编写验收报告,申请验收。系统申请验收必须具备以下基本条件:

4.1 一般条件

4.1.1 仪器设备及零配件按合同清单核查无误,仪器设备机箱外壳表面无裂纹、变形、划痕、污浊毛刺等现象,无腐蚀、生锈、脱落及磨损现象,仪表箱体密封防护及防潮,当环境条件比较差时,必须具有防腐蚀功能。

4.1.2 系统电、气、配水管路布局合理、安全,且便于校准、维护及维修。

4.1.3 材料选择符合国家或行业有关性能、安全、环保、节能等标准;所选工艺、设备、仪器符合招标文件、合同或约定要求。

4.1.4 运行、维护、维修等规程具有可操作性,固定资产按要求进行登记与标识。

4.2 功能指标

根据招标文件或合同要求,完成系统及仪器测试,测试结果符合要求。

4.3 建立完整的技术档案

包括各类设计、竣工图纸和完整的检测记录等。

4.4 建立水站运行管理制度及人员岗位职责等

4.5 完成试运行期间的工作总结及最终验收技术报告

托管站验收报告应包括以下内容:

4.5.1 前言

4.5.2 水站概括(地理位置及经纬度,周边情况,站房建设情况及土建费用,站点代表性等)

4.5.3 系统配置、仪器型号、生产厂家说明等4.5.4 仪器设备开箱检验情况

4.5.5 系统及仪器设备安装调试和试运行考核情况(技术性能指标考核、对比实验、现场记录、系统运行情况等)

4.5.6 问题与讨论(试运行期间出现问题、解决方法、还存在问题等)

4.5.7 水站日常管理

4.5.8 结果与建议

4.5.9 水站年运行费用估算(水电费、试剂消耗、通讯、交通等内容)

4.5.10 站房及仪器、设备照片

4.6 集成商提交验收材料

4.6.1 工程建设工作总结

4.6.2 工程建设技术总结(含系统设计方案,仪器设备配置及目前运行状况等)

4.6.3 仪器设备(含软件)相关文件(含说明书与维护手册,计量器具型式批准证书或其他证明文件)。

4.6.4 完整的现场仪器设备数据通讯协议、传输协议、系统接口、系统集成软件的数据库结构等

说明材料。

4.6.5 有关规程、制度(含系统运行维护操作规程,系统常见故障与维修操作规程,试剂配制和使用说明,事故应急处置规程,售后服务与技术支持系统等)。

5 自动监测仪器设备验收

5.1 交货验收

填报“表1自动监测仪器交接验收表”。

5.2 仪器验收标准及要求

内容验收标准备注

1 仪器方

法原理见《技术要求》或采

购文件

2 仪器基

本功能见《技术要求》或采

购文件

3 准确度≤+/-10%(连续8次

质控样测定)

4 精密度≤+/-10%(连续8次

质控样测定)

5 检出限见《技术要求》或采

购文件

6 标准曲

线

相关系数r≥0.9990

7 对比实

验见下表

项目电导率pH DO 水温

相对误

差10% 0.1单

0.5mg/L 0.2℃

项目高锰酸

盐指数氨氮总磷总氮

相对误15% 15% 15% 15%

项目总有机

碳酚浊度

相对误

差15% 15% 根据HT/T98-2003

暂不做

仪器名称重复

性误

备注说

pH √√√

电导

√√√√

浊度√√√

溶解

√√√√

高锰

酸盐

指数

√√√

氨氮√√√√

总磷√√√

总氮√√√

总有

机碳

√√√√

5.3 仪器基本性能测试方法

仪器基本性能测试方法参见国家有关水质自动分析仪技术要求,具体见“附表2 国家有关水质自动分析仪技术要求一览表”。

5.4 仪器考核办法及内容

5.4.1 仪器基本性能测试方法及内容

5.4.1.1 仪器安装、通电、预热测试

由供应商按仪器设备说明书的要求进行安装,安装完毕后由供应商安装调试人员和托管站技术人员一起检查供电系统是否正常,仪器设备安装是否正确,并在检查无误的情况下进行通电试验和仪器设备预热,填报“表 2 仪器安装、通电、预热情况记录表”。

5.4.1.2 仪器初始化测试

在通电试验和仪器设备预热无误的情况下,按说明书要求进行仪器设备初始化设置,填报“表3 仪器初始化设置记录表”。 5.4.1.3 仪器基本功能核查

填报“表4 仪器基本功能核查表”。

5.4.1.3 仪器的准确度、精密度

采用经国家认可的质量控制样品[或按规定方法配制的标准溶液,选择测量范围中间浓度值或0.2C 、0.8C (C 为检测仪器量程),溶解氧进行饱和值检验,浊度、电导率不进行此项核查],在仪器校准后分别进行8次测定,根据测定结果计算仪器的准确度和精密度。

● 准确度以相对误差(RE )表示,计算公式如下:

式中:x ——质控样品8次测定平均值 c ——真值(质控标样值)

● 精密度以相对标准偏差(RSD )表示,计算公

式如下:

根据测试结果,填报“表 5 仪器准确度与精密度考核表”。

5.4.1.4 仪器的检测限

仪器的检测限采用实际获得的检测限,计

算公式如下:

式中,k ——常数,取k=3;

b ——校准曲线的斜率;

100(%)?-=

-

c

c

x RE 100

)(11(%)1

2?--=

-

=-∑x

x x n RSD n

i i

Sb ——空白和配制的低浓度

标准溶液(Xb )的标准偏差,按仪器3倍检测

限浓度配制标准溶液,测定次数为8次。

根据测试结果,填报表“6 仪器空白值和

检出限的考核表”。 5.4.1.5 标准曲线检查

按仪器规定的测量范围均匀选择7个浓度的标准溶液(包括空白)按样品方式测试,并计算其相关系数,标准溶液配制后必须在实验室进行回滴以验证数值。根据测试结果,填报“表7 仪器标准曲线的测定”

5.4.1.6 零点漂移、量程漂移和响应时间检查 按照国家水质自动分析仪技术要求进行,根据测试结果,填报“表8 仪器零点漂移考核表”、“表9 仪器量程漂移考核表”和“表10 仪器响应时间测试结果考核表”。

5.4.1.7 重复性或重复性误差检查

按照国家水质自动分析仪技术要求进行,根据测试结果,填报“表11 仪器重复性或重复性误差测试结果考核表”。 5.4.1.8 可靠性指标

以平均无故障连续运行时间检查可靠性指标,该指标应满足国家水质自动分析仪技术要求或标书的约定内容。填报“表12仪器故障记录表”。 5.4.1.9 其他指标

其它指标的验收按照招、投标文件,合同

或仪器出厂技术指标要求进行。

5.4.2 实际样品对比实验方法和内容

各项目均须进行实际样品比对实验,以检查与标准方法测定结果的可比性。对比实验步骤如下:

5.4.2.1 水样采集与处理

原则上,对比实验应与自动监测仪器同步采

b S b

k DL ?=

样。若仪器需要过滤水样,则对比实验水样可采用相同过滤材料过滤(但不得改变水体污染物的成分和浓度)。采样位置与自动监测仪器的取样位置尽量保持一致。

5.4.2.2 采样频次与样品测定

实际样品比对实验连续5天进行。

采集瞬时样,每天于自动监测仪器采样时,人工间隔采样6次,每次采集2个水样(平行样),用于对比实验分析。同步记录自动监测仪器读数。

将实验室方法的测定结果平均值与自动监测仪器的测定结果填入表中,其测定误差的计算公式见下式:

式中:xi ——为自动监测仪器测定值 x1——为对比方法的测定值

(两次测定平均值)

将CODMn 的实验室方法与TOC 自动监测仪器的对比结果填表计算,换算关系按y=a+bx 计算,其中y 代表标准方法CODMn 值;x 代表仪器法TOC 的值,a 、b 均取3位有效数字。

5.4.2.3 对比实验内容

各托管站应根据各自的监测项目,按照规定的监测分析方法进行实验室分析,并与仪器法的测定结果进行对比,填报“表13取水口实际样品测试与实验室比对结果统计汇总表”。

5.4.2.4 对比实验监测分析方法

见“附表3 部分实际样品比对实验室监测分析方法一览表”。

5.4.3 其它设备及仪器

本验收规范未包含的其它设备及仪器,按照招、投标文件,合同和仪器出厂技术指标要求进

100(%)?-=

l

l

i x x x RE

行,并填写相应验收记录。

6 采水、配水系统基本功能

填报“表14 采水、配水系统基本功能考核表”。

7 数据采集、传输与控制系统基本功能

填报“表15 数据采集、传输和控制系统考核表”。

8 系统有效数据累计捕捉率

在试运行考核结束时,系统有效数据获取率不能小于90%,填报“表16仪器试运行情况记录表”、“表17 仪器有效数据获取率记录表”。

有效数据获取率(%)=(有效运行时数÷运行考核总时数)×100%

有效运行时数= 运行考核总时数-无效数据时数

其中:有效运行时数为系统所有仪器设备运行正常时其监测数据有效的时数总和。仪器设备预热、停电、校准和公共通讯线路故障等引起的无效数据时数不计入运行考核总时数和无效数据时数中。

9 质量保证与质量控制

对比实验的质量保证和质量控制严格按计量认证的有关要求进行。

10 文件资料归档

验收文件资料由江苏省环境监测中心及时归档,建设集成商须提供一式1份正版仪器资料与文件,其他验收文件须一式3份(其中电子版1份),所有原始记录由托管站归档保存。

11 附表

附表1 江苏省环境水质(地表水)自动监测预警系统验收意见

江苏省(X X)环境水质(地表水)自动监测预警系统验收意见

验收日期:年月日姓名职称/职

务单位电话签名

附表2 国家有关水质自动分析仪技术要求一览表

序号有关技术要求标准号

1 pH水质自动分析仪技术要求HJ/T96—2003

2 电导率水质自动分析仪技术要求HJ/T97—2003

3 浊度水质自动分析仪技术要求HJ/T98—2003

4 溶解氧(DO)水质自动分析仪技术要求HJ/T99—2003

5 高锰酸盐指数水质自动分析仪技术要求HJ/T100—2003

6 氨氮水质自动分析仪技术要求HJ/T101—2003

7 总氮水质自动分析仪技术要求HJ/T102—2003

8 总磷水质自动分析仪技术要求HJ/T103—2003

9 总有机碳(TOC)水质自动分析仪技术要求HJ/T104—2003

10 紫外(UV)吸收水质自动在线监测仪技术要求HJ/T191—2005

11 声学多普勒流量测验规范SL337-2006 附表3 部分实际样品比对实验室监测分析方法一览表

序号

项目

(缩写)

单位

小数点

后位数

对比实验方法

1 水温(T)o C 1 温度计法(GB/T13195-91)、现场监测

2 pH 无量纲 2 玻璃电极法(GB/T6920 -86)、现场监测

3 溶解氧(DO)mg/L 2 电化学探头法(GB/T1913-89)、现场监测

4 电导率(EC)μS/cm 1 电导率仪法*、现场监测

5 浊度(TB)NTU 1 浊度计法*

6 高锰酸盐指数

(CODMn)

mg/L 2 酸性高锰酸盐指数氧化法(GB/T11892-89)

7 氨氮(NH3-N)mg/L 2 纳氏试剂比色法(GB/T7479-87)

8

总磷

(TP,以P计)

mg/L 3 钼酸氨分光光度法(GB/T11893-89)

9 总氮(TN)mg/L 2 碱性过硫酸钾消解紫外分光光度法(GB/T11894-89)

10 总有机碳

(TOC)

mg/L 2

非分散红外吸收法(GB/T13193-91)或燃烧氧化-非分散红

外吸收法

11 挥发酚(phon)mg/L 3 4-氨基安替比林比色法(GB/T7490-87)

12 氟化物(F-)mg/L 2 离子选择电极法(GB/T7484-87)或离子色谱法

(HJ/T84-2001)

13 流量(S)m3/s 2 声学多普勒流量测验规范(SL337-2006)

14 石油类(Oils)mg/L 2

15 粪大肠菌群

(ECO)

个/L 0 多管发酵法或滤膜法*

16 藻类密度万个/L 2 浮游生物的测定*

17 叶绿素a ug/L 0 比色法*

*:参见《水和废水监测分析方法》(第四版),中国环境科学出版社,2002年。

*:溶解氧的单位为mg/L,如果仪器输出单位为

饱和率(%),则需按下式换算。

DOmg/L=DO%×

(-0.00005222t3+0.006708t2-0.38797t+14.5346)/100

其中:t为水温,单位℃。

12 验收记录表

表1 自动监测仪器交接验收表

序号系统

配置仪

生产

厂家

交接

时间

是否符合

开箱检验

条件(可

附页)

托管

签字

供货

签字

1

……

表2 仪器安装、通电、预热情况记录表

仪器名称仪

备注

说明

(可

附页)

pH 溶解氧电导率浊度氨氮高锰酸盐指

数总磷

总氮总有机碳总酚自动采样器……

表3 仪器初始化设置记录表

仪器名称仪

称1

称2

……

备注说

(可附

页)

pH 溶解氧电导率浊度高锰酸盐指数氨氮总磷总氮总酚总有机碳自动采样器……

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

水环境监测现状研究及发展方向的探析

水环境监测现状研究及发展方向的探析 发表时间:2015-01-22T16:32:38.507Z 来源:《工程管理前沿》2015年第2期供稿作者:王义安1 李琼2 杨柳3 [导读] 对其监测的发展越来越受人类重视。在线监测、动态监测以及遥感监测将成为水环境监测的主要技术手段。 王义安1 李琼2 杨柳3 (1.2.宜昌市水文水资源勘测局;3.贵州省水利水电勘测研究设计院) 摘要:水环境监测在防治水污染、制定水环境标准方面发挥重要作用。我国水环境依然处于不断恶化之中,相应的监测任务越发重大。水环境监测历经八年的发展历史,已经取得一定成绩,常规监测日趋成熟,水质自动监测正有计划地逐步开展。我国水环境监测方法可以归为三类:自动监测,按照国家环境保护局批准的水质自动监测技术规范进行;常规监测,执行《地表水环境质量标准》中规定的标准分析方法;应急监测,凡有国家认可标准方法的项目,必须采用标准方法,没有标准方法的项目,采用等效方法进行测定。在水环境污染现状日益严峻的今天,对其监测的发展越来越受人类重视。在线监测、动态监测以及遥感监测将成为水环境监测的主要技术手段。 关键词:水环境监测;在线监测;动态监测 目前,我国地表水监测网络由260 个重点监测站组成,监测250条河流、18 个湖泊和10 个水库,监测断面759 个;全国省控以上站网监测1868 条河流、182 个湖泊和440 个水库,共设置监测断面9000多个。全国的监测站网主要是以常规监测为主,还未形成水质自动监测网。与发达国家相比有一定差距。美国在各州有水质自动监测网,分为国家水质监测网和州及地区水质监测网,前者主要分布于美国主要河流流域中,后者按照《清洁水法》中规定的目标设立。 1 水环境监测现状研究 在水环境监测的发展历史中,有关人员做了大量工作。先后完成了两次全国性水质调查评价任务。在目前水污染严重的情况下,水环境监测仍然存在一些问题: 1.1 选取监测参数不能全面反映水环境状况。我国城市河流及各大水系均以有机污染为主。监测指标中表征有机物的项目均为综合性指标,不能平等地反映各断面的水质污染情况。水质监测的主要水质参数有无机、重金属离子、营养物和微生物,传统方法是利用化学分析和仪器分析及生物方法来测定其浓度,其中一些参数只能对水质起描述作用,并不能全面反映水质问题。一方面水环境监测项目缺乏针对性,出现对某一些污染程度较轻的项目进行反复地、重复监测的问题。 1.2 缺乏统一管理。以流域为单元对水资源实行管理是当前国际上水资源管理的共同做法,我国环境监测从原来的点源、区域监测转变到流域监测管理。长期以来“分割管理,各自为政”所形成的惯性,一些区域水资源管理者过分注重区域利益,忽视全流域的利益,流域管理的理念还没有被完全接受。实现流域控制与区域控制有机结合,仍然是面临的一个大问题。两者在微观上的结合,就是要建立科学合理的水资源评价体系,根据不同流域、流域内不同河段、不同的水利水电工程对流域经济社会发展的重要程度以及对流域全局的影响程度,划定流域机构的直管范围,做到责、权、利的有机统一。 1.3 监测站网需优化。国控站点经过两次优化,从宏观上可以反映我国的整体水环境质量状况。但是,依靠现行的水系国控站点不能及时反映“三河”与“三湖”治理效果,还应按行政区划分为省控和市控点。由于我国存在水利与环保两种监测系统,对同一水域出现重复监测的现象,切需要更高的管理层来实现监测站网的优化配置,应该出现以流域管理为中心监测网络体制,根据特定的监测目的布设具有代表性的断面,以求全面反映水质变化状况。对不同水体采用固定一致的布点方法和频率是不够科学合理的,水体的布点兼顾一定的布点原则,如在大量废水排入河流的主要居民区、工业区的上游和下游,湖泊、水库、河口的主要出口和入口,河流主流、河口、湖泊和水库的代表性位置等,监测频率可依水量水情而定。 1.4 水环境监测分析方法有待进一步完善。目前,水和废水监测分析方法还没有达到一个项目一个标准分析方法的最低要求。现有的标准分析方法不配套。对于国家重点控制的水中污染物也缺乏简易、快速的现场分析方法,造成在应急监测中对污染事故往往不能及时判断、分析。发达国家在水环境监测分析方法上已经形成了系列化,考虑到一些国外仪器不适合我国水污染严重的国情,摆在企业面前的重要任务是开发出适合我国水质监测的系列仪器,使一些国外仪器国产化。要缩小与发达国家的差距,仪器的研发仍然任重而道远。 1.5 水环境监测质量有待于提高。水环境监测站的质量保证是目前存在的一个问题。监测队伍的素质也有待于进一步提高,特别是水环境监测是一种政府行为,更需要有专业水平的技术人员参与。水质监测报告仅是我国水环境的一张“化验单”,没有建立相应的水环境监测数据库,对已有的水环境监测数据综合利用不够,缺乏对数据的深入利用,这是我国的水环境监测数据缺乏权威性的根本所在。由于技术条件的限制,我国水环境数据不能及时上报,造成水环境信息的采集与处理的实时性不强。 2 水环境监测发展方向 对于今后的水环境监测工作,我们应当认真汲取历史教训,科学治污,尽量少走弯路。从决策上预防污染,防患于未然。尽管我们一再强调不能走西方国家“先污染、后治理”的老路,但真正做到统筹考虑,最大限度地减少新污染源的产生。还是要经历一个较长的过程;建立和完善与市场经济相适应的环境政策和环境法规,强化经济手段、法律手段;加强综合防治。全面实行清洁生产,做到既节约资源、提高效益,又削减污染。保障足够的生态用水;加强监测和科研,提高投资效益比。监测是基础,只有准确快速的监测网络,才能摸清底数,对症下药。未来监测的主要发展方向体现在以下: 2.1 动态监测。随着科技的发展及自动化程度的提高,对水环境的监测应实行水污染的动态监测。水污染动态监测是在常规水质监测的基础上发展起来的,是针对水污染特点,在时间或水质水量方面进行动态的同步监测。在监测项目、时间、频率以及监测范围方面,是根据各河道污染的主要水质指标,分河段按不同水情和污染状况,采取不同监测频率,对河道水污染进行跟踪性或监视性监测,以确定污染的影响范围与程度,便于管理部门及时采取对策。同时,动态监测能及时掌握河道水量水质变化。水污染动态监测信息传递,要做到迅速、准确,以提高监测资料的时效性。 2.2 在线监测。积极发展在线监测,提高监督监测能力。经过不断实践,在取得丰富的在线监测技术基础上,废水CEMS 将会在全国各地全面铺开。建立有效的生态监测机制,全面真实地反映环境质量变化状况。生态监测克服了理化监测的缺陷,它有理化监测所不能替代的作用和所不具备的一些特点,在环境监测中占有特殊的地位,它的优点主要表现在以下四个方面:能综合地反映环境质量状况;具有连续监测的功能;具有多功能性;监测灵敏度高。建立监督监理快速反映队伍,为监理执法撑硬腰杆。合理利用水资源、切实改善水环

地表水水质自动监测系统简介

地表水水质自动监测系统简介 随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1、地表水水质自动监测系统的选址: 地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 2、地表水水质自动监测系统建设需考虑: 必须保证电力供应、通讯畅通、自来水供应。 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 周围环境的交通便利。 站点建设费用较大,在选址是考虑长期使用性。 3、地表水水质自动监测系统基本功能: 仪器基本参数和监测数据的贮存、断电保护和自动恢复 时间设置功能、设定监测频次。

水污染连续自动监测系统

第二节水污染连续自动监测系统 水质污染的连续自动监测一般要比空气污染的连续自动监测困难,这是因为水环境中的污染物种类更多,成分更复杂,从而导致基体干扰严重,通常都要进行化学前处理,而且污染物的含量往往是痕量的,要求建立可行的提取、分离,富集和痕量分析方法,所以这些均为连续自动监测技术带来一系列困难。根据目前水质污染连续自动监测技术的发展,首先连续自动监测那些能反映水质污染的一般指标和综合指标项目,然后再逐步增加其他污染物项目。 一、水污染连续自动监测系统的组成 与空气污染连续自动监测系统类似,水污染连续自动监测系统也由一个监测中心站、若干个固定监测站(子站)和信息,数据传递系统组成。中心站的任务与空气污染连续自动监测系统相同。水污染连续自动监测系统包括地表水和废(污)水监测系统。 各子站装备有采水设备、水质污染监测仪器及附属设备,水文、气象参数测量仪器,微型计算机及无线电台。其任务是对设定水质参数进行连续或间断自动监测,并将测得数据作必要处理;接受中心站的指令;将监测数据作短期贮存,并按中心站的调令,通过无线电传递系统传递给中心站。 采水设备由网状过滤器、泵、送水管道和高位贮水槽等组成,通常配备两套,以便在一套停止工作清洁时自动开启备用的一套。采水泵常使用潜水泵和吸水泵,前者因浸入水中而易被腐蚀,故寿命较短,但适用于送水管道较长的情况;吸水泵不存在腐蚀问题,适合长期使用。采水设备在微机控制下可自动进行定期清洗。清洗方式可用压缩空气压缩喷射清洁水、超声波或化学试剂清洗,视具体情况选择或结合使用。水样通过传感器的方式有两种,一种是直接浸入式,即把传感器直接浸入被测水体中;另一种是用泵把被测水抽送到检测槽,传感器在检测槽内进行检测。由于后一种方式适合于需进行予处理的项目测定,并能保证水样通过传感器时有一定的流速,所以目前几乎都采用这种方式。

工业废水在线监测系统

工业废水在线监测系统 背景介绍 1、项目背景 各地环保局在进行污水排放管理的时候会经常遇到下列问题:一是环保管理人员少,巡检周期比较长,不能随时掌握各企业污水排放的情况;二是排污费拖欠严重,排污单位不积极交纳费用。 为了解决上述问题,我公司建立一套“工业废水在线监测系统”。系统建成后,环保管理可以实现以下两个目标:第一,在监测中心实时监测所辖单位的污水排放情况,必要时可远程关闭排污阀门;第二,改变传统的收费模式,排污单位需要持IC卡到环保局交费,做到先交费后排污。 2、建设依据 GB11914-89 《水质化学需氧量测定重铬酸盐法》 HJ/T 15-2007 《环境保护产品技术要求超声波明渠污水流量计》 HJ/T 377-2007 《环境保护产品技术要求化学需氧量(CODcr)水质在线自动监测仪》HJ/T 353-2007 《水污染源在线监测系统安装技术规范(试行)》 HJ/T 354-2007 《水污染源在线监测系统验收技术规范(试行)》 HJ/T 355-2007 《水污染源在线监测系统运行与考核技术规范(试行)》 HJ/T 356-2007 《水污染源在线监测系统数据有效性判别技术规范(试行)》 HJ/T 212 《污染源在线监控(监测)系统数据传输标准》 ZBY120-83 《工业自动化仪表工作条件温度、湿度和大气压力》 GB50168-92 《电气装置安装工程电缆线路施工及验收规范》 GB50093-2002 《自动化仪表工程施工及验收规范》 3、系统建设目标 1)实时监测各企业排污口污水COD 含量和污水排放量。 2)实时监测电动阀门的开、关状态。

3)远程控制电动阀门的开启和关闭。 4)IC卡预付费充值管理功能,做到先交费后排污,欠费自动停止排污。 5)可设定污水COD上限值,COD监测数据越限时系统可自动停阀,停止排污。 6)远程监测控终端的安防状态。 7)利用多样的图形展示手段,进行实时、历史数据的展示,达到直观、清晰的效果。 8)对采集链路、通讯网络进行诊断,使工作人员可随时了解通讯及数据传输状态。 9)具备实时数据、历史数据、报警数据的查询功能;现场设备在网络中断、网速过慢时将数据缓存,待恢复后实现断点续传,确保数据完整性。 一、建设方案 1、系统概况 1.1系统组成 本系统由环保局监控中心、通信网络、监控设备、计控设备四部分组成。 监控中心:由计算机、IC卡读写器、GPRS数据传输模块、监测管理系统软件组成。 通信网络:移动公司GPRS-VPN 专网;非接触式IC卡。 监控设备:污水排放测控终端。 计控设备:电磁流量计、COD 在线分析仪、电动阀门。 2、功能特点 2.1监测中心配置 监测中心设备主要由计算机、IC卡读写器、GPRS数据传输模块组成。GPRS数据传输模块和IC卡读写器与计算机之间通过串口线连接,计算机上安装操作系统软件、数据库软件、监控管理系统软件。 监控管理系统软件主要由开户业务、IC卡收费业务、报修管理、实时数据显示、历史数据查询、统计分析、信息告警、远程控制、权限管理等功能模块组成。 2.2通信网络 利用中国移动公司提供GPRS VPN 专网业务平台,建立一个VPN专网,为各测控终端内使用的SIM卡据卡绑定一个固定的IP 地址,设置统一的接入点名称,监测数据只在VPN专

水质自动监测系统综述

水环境质量自动监测技术的发展(2004-4-23) 水质污染自动监测系统(WPMS)是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、 自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 WPMS可尽早发现水质的异常变化,为防止下游水质污染迅速做出预警预报,及时追踪污染源,从而为管理决策服 务。 1 国内外现状 1.1 国外发展概述 水质自动监测在国外起步较早。1959年美国开始对俄亥俄河进行水质自动监测;1960年纽约州环保局开始 着手对本州的水系建立自动监测系统;1966年安装了第一个水质监测自动电化学监测器;1973年全国水质监测 系统分为12个自动监测网,每个自动监测网由4—15个自动监测站组成;1975年在全国各州共有13000个监测 站建成为水质自动监测网。在这些流域和各州(地区)分布设置的监测网中,由150个站组成联邦水质监测站网 ——即国家水质监测网(NWMS)。 日本1967年开始考虑在公共水域设立水质自动监测器;1971年以后,由环境厅支持,开始在东京、大阪等 地建立水质自动监测系统;到1992年3月,已在34个都道府县和政令市设置了169个水质自动监测站。除此之外 ,建设省在全国一级河流的主要水域也设置了130个水质自动监测站。 英国泰晤士河是世界上水环境污染史最长的河流,至19世纪末河道鱼虾绝迹。1974年成立泰晤士水务管理

局(TWA),取代了原来200多管水机构。为了加强水环境监测,1975年建成泰晤士河流域自动水环境监测系统。 该系统由一个数据处理中心(监控中心站)和250个子站组成。 欧美及日本等国在20世纪70年代已有便携式水质监测仪出售,但属于瞬时测定仪。连续多参数水质测定仪 是在80年代才开始使用的。在监测设备方面,广泛应用现代尖端的微电子技术、嵌入式微控制器技术,并做到 智能化的数据采集、分析和运算,水质监测完全实现了自动化。目前,世界上已建成的WPMS类型较多,既有全 自动联机系统,也有半自动脱机系统,例如澳大利亚GREENSPAN公司,德国GIMAT 公司,美国的ISOC、HYDROLAB 等公司,日本日立制作所和卡斯米国际株式会社等都生产有技术成熟的在线水质自动监测系统,但大部分是以监 测水质污染的综合指标为基础的,包括水温、混浊度、pH值、电导率、溶解氧、化学需氧量、生化需氧量、总需 氧量和总有机碳等。 单项污染物浓度自动监测系统还处于研究试验阶段,挪威科技大学(NTNU)开发出了重金属连续远程监控 技术。该技术使用以牙汞合剂为电极材料的阳极脉冲溶出伏安法,监测重金属含量,测定灵敏度可达到ppb(μg /L)级。美国SENTEX公司研制出了挥发性有机物(VOCs)连续监测系统,附有报警功能,它利用吹扫捕集-气 相色谱法自动监测大气、水及土壤中VOCs,测定灵敏度可达到ppb(μg/L)级。 总的来看,在现有水污染连续自动监测系统中,水质污染监测项目尚有限,尤其是单项污染物浓度监测项目 还是比较少,例如重金属、有毒有机物项目的自动监测仪器较缺乏。现有单项污染物浓度检测仪器在性能方面还

水污染自动监测复习题

环境保护部连续自动监测(水污染)练习题 一、判断题 1、水样中亚硝酸盐含量高,要采用高锰酸盐修正法测定溶解氧。( × ) 2、纳氏试剂应贮存于棕色玻璃瓶中。( × ) 3、在K2Cr2O7法测定COD的回流过程中,若溶液颜色变绿,说明水样的COD适中,可继续进行实验。(×) 4、在分析测试中,空白实验值的大小无关紧要,只需以样品测试值扣除空白实验值就可以抵消各种因素造成的干扰和影响。(×) 5、实验室产生的高浓度含酚废液可用乙酸丁酯萃取、重蒸馏回收 (√ ) 6、蒸馏是利用水样中各污染组分沸点的不同而使其分离的方法。(√) 7、萃取是利用水样中各污染组分在溶剂中溶解度的不同而使其分离的方法。(√) 8、对于排放水质不稳定的水污染源,不宜使用总有机碳自动分析仪。( √ ) 9、绝对误差是测量值与其平均值之差;相对偏差是测量值与真值之差对真值之比的比值。(×) 10、氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值(√)。 11、测定DO的水样可以带回实验室后再加固定剂。(×) 12、COD测定时加硫酸银的主要目的是去除Cl-的干扰。(×) 13、钠氏试剂中碘化汞与碘化钾的比例对显色反应灵敏度没有影响。( × ) 14、绘制标准曲线标准溶液的分析步骤与样品分析步骤完全相同的是标准曲线(×) 15、二苯碳酰二肼分光光度法测定六价铬时,显色酸度高,显色快。(√ ) 16、实验室中铬酸溶液失效变绿后,应加碱中和后排放。(× ) 17、当采用流动注射(FIA)式COD分析仪分析水样时,必须加入硫酸银。( × ) 18、蒸发浓缩可以消除干扰组分的作用。( × ) 19、根据GB19431-2004,2003年12月31日之前建设的味精厂,其COD排放限值是200mg/L。( × ) 20、在线监测仪器计数急剧变化时,该数据应剔除不计。(× ) 21、测定水样中的氮、磷时,加入保存剂HgC12的作用是防止沉淀。(×) 22、测定水样中的pH,可将水样混合后再测定。(×) 23、Cr(VI)将二苯碳酰二肼氧化成苯肼羧基偶氮苯,本身被还原为Cr(Ⅲ)。(√) 24、测定pH时,玻璃电极的球泡应全部浸入溶液中2分钟以上。(√) 25、冷原子荧光测定汞时,每次测定均应同时绘制校准曲线。(√) 26、TOC分析仪一般分为干法和湿法两种。(√) 27、实验室内质量控制是合保证测试数据达到精密度与准确度要求的有效方法之一。(√) 28、流动注射分析法测COD比手工滴定法不仅测量速度快而且所用试剂少。(√) 29、测定水中总磷时,为防止水中含磷化合物的变化,水样要在微碱性条件下保存。(×) 30、测定水中总氮,是在碱性过硫酸钾介质中,120~124℃进行消解。(√) 31、当水样中硫化物含量大于1mg/1时,可采用碘量法。(√) 32、紫外法测定NO3-N时,需在220nm和275nm波长处测定吸光度。(√) 33、分光光度法测定浊度是在680nm波长处,用3cm比色皿,测定吸光度。(√) 34、溶解氧测定时,亚硝酸盐含量高,可采用NaN3修正法。(√) 35、电导率是单位面积的电导。(×) 36、COD测定的回流过程中,若溶液颜色变绿,可继续进行实验。(×) 37、操作各种分析仪之前都不必阅读仪器的使用说明书。(×) 38、分光光度法中,校准曲线的相关系数是反映自变量与因变量之间的相互关系的。(×) 39、在分析测试时,空白实验值的大小无关紧要,只需以样品测试值扣除空白值就可以了。(×) 40、进行加标回收率测定时,只要准确加标就可以了。(×) 41、缺失CODCr、NH3-N、TP 监测值以缺失时间段上推至与缺失时间段相同长度的前一时间段监测值的最大值替代。(×) 42、COD测定时的回流条件下,水样中全部有机物可被氧化。(×) 43、电极法测定pH时,溶液每变化一个单位,电位差改变10mv。(×) 44、溶解氧测定时,Fe2+含量高,可采用KMnO4修正法。(√ ) 45、pH值为5的溶液稀释100倍,可得pH为7的溶液。(√ ) 46、如水样混浊,可过滤后再测定。(√ ) 47、室间精密度反映的是分析结果的再现性。(√ ) 48、空白实验值的大小仅反映实验用水质量的优劣。(×) 49、 COD测定时,用硫酸亚铁铵滴定,溶液颜色由黄色经蓝绿色变为棕红色即可。(√ ) 50、水温、pH等在现场进行监测。(√ ) 51、间歇排放期间,总磷水质自动分析仪根据厂家的实际排水时间确定应获得的监测值,监测数据数不少于污水累计排放小时数。(√) 52、环境监测质量保证是对实验室的质量控制(×)。 53、在分析测试时,空白实验值的大小无关紧要,只需以样品测试值扣除空白值就可以了。(×) 54、校准曲线的相关系数是反映自变量和因变量的相互关系的(√)。

水污染源在线监测系统运行与考核技术规范资料

中华人民共和国环境保护行业标准 HJ/T3552007 水污染源在线监测系统运行与考核技术规范(试行) Technicalspecificationsfortheoperationandassessmentofwastewater onlinemonitoringsystem(ontrial) 20070712发布20070801实施 国家环境保护总局发布 HJ/T355—2007 中华人民共和国环境保护 行业标准 水污染源在线监测系统运行与考核技术规范(试行) HJ/T355—2007 中国环境科学出版社出版发行 (100062北京崇文区广渠门内大街16号) 网址:http://wwwcespcn 电子信箱:bianji4@cespcn 电话:010-67112738 印刷厂印刷 版权专有违者必究 2007年10月第1版开本880×12301/16 2007年10月第1次印刷印张1 字数40千字 统一书号:1380209·123 定价:1200元

国家环境保护总局 公告 2007年第49号 为贯彻执行《中华人民共和国环境保护法》,保护环境,保障人体健康,促进科技进步,提高污 染源自动监控管理水平,现批准《环境污染源自动监控信息传输、交换技术规范》(试行)等七项标 准为国家环境保护行业标准,并予发布。 标准名称、编号如下: 一、环境污染源自动监控信息传输、交换技术规范(试行)(HJ/T352—2007) 二、固定污染源烟气排放连续监测技术规范(试行)(HJ/T75—2007) 三、固定污染源烟气排放连续监测系统技术要求及检测方法(试行)(HJ/T76—2007) 四、水污染源在线监测系统安装技术规范(试行)(HJ/T353—2007) 五、水污染源在线监测系统验收技术规范(试行)(HJ/T354—2007) 六、水污染源在线监测系统运行与考核技术规范(试行)(HJ/T355—2007) 七、水污染源在线监测系统数据有效性判别技术规范(试行)(HJ/T356—2007) 以上标准为指导性标准,自2007年8月1日起实施,由中国环境科学出版社出版,标准内容可 在国家环保总局网站(www.sepa.gov.cn/tech/hjbz/bzwb)查询。 自以上标准实施之日起,下列标准废止: 一、火电厂烟气排放连续监测技术规范(HJ/T75—2001)

水质在线监测仪器发展现状(DOC)

水质在线监测仪器发展现状 水质在线监测仪器作为水质在线自动监测系统的核心,运用现代传感器技术、自动测量技术、自动控制技术等,采用化学法、电化学法、光谱法等分析方法,能对水质参数进行实时连续在线测量和分析。水质在线监测仪器主要监测对象有:化学需氧量(COD)、氨氮、总氮、总有机碳(TOC)、总磷、锑、砷、铜、汞、铬、金属离子、pH值、电导率、浊度、溶解氧等。 1 COD在线监测仪器发展现状 化学需氧量(COD)是指水体中易被强氧化剂氧化的还原性物质所消耗的氧化剂的量,以氧的mg/L来表示,反映了水体中受还原性物质污染的程度,这个指标是为了了解水中的污染物将要消耗多少氧。 1.1 COD在线监测仪器的技术原理 目前COD在线监测仪器的主要技术原理有6种: 1)重铬酸盐法-光度比色法; 2)重铬酸盐法-库仑滴定法; 3)重铬酸盐法-氧化还原滴定法; 4)电化学氧化法-氢氧基及臭氧(混合氧化剂)氧化法; 5)电化学氧化法-臭氧氧化法; 6)紫外吸收法(UV法)。 为便于比较,可将以上6种技术原理归为三类:重铬酸盐法、电化学氧化法和紫外吸收法(UV法)。 1.1.1 重铬酸盐法 1)重铬酸盐法根据测得数值的方法不同分为光度比色法、库仑滴定法、氧化还原滴定法。通常在一定的温度下,在强酸溶液中用一定量的重铬酸钾氧化水样中还原性物质,经过高温消解后,Cr6+被水中还原性物质还原为Cr3+。再使用分光光度计、库仑滴定、氧化还原等方法测得数值,利用该数值与试样中氧化还原物质浓度的关系进行定量分析。

2)该类是国家推荐使用的方法,有测量准确、测量范围广、技术成熟等优点。 3)但该类仪器也存在以下问题:①测量时间相对较长,一旦水质突变,有可能无法及时监测;②通常采用加温或加压的办法提高消解速度,增加了设备的复杂性,易故障;③产生强腐蚀性、含有毒的重金属离子废液,易腐蚀管路,同时会产生二次污染。 1.1.2 电化学氧化法 1)电化学氧化法根据所使用的氧化剂不同分为氢氧基及臭氧(混合氧化剂)氧化法和臭氧氧化法。电化学氧化法采用三电极设计,包括工作电极、辅助电极和参比电极。工作电极(即阳极):该电极头表面镀PbO2,接电源正极,发生的是氧化还原反应。在一定的工作电压下,溶液中的OH-在PbO2的表面放电产生OH 基,具有很强的氧化性。辅助电极(即阴极):该电极也是铂电极,接电源负极,发生的是还原反应。信号电流通过阴、阳两极。参比电极:该电极独立于信号电流以外,自身电位稳定,作为工作电极的电位参照,当水样与电解液定量进入测量池时,有机物被工作电极表面所产生的OH基所氧化,而氧化过程所消耗的电流大小与水样的COD值的大小成线性关系。只要将氧化所消耗的电流信号通过检测、放大与处理就可知与水样浓度相对的COD值。 2)电化学氧化法测量时间较短,运行可靠,OH基通常能将有机物100%氧化,不存在选择性问题,测量范围较广,适用于各种场合的废水。采用该原理的在线监测仪器结构相对简单,由于是链式反应,基本上不消耗电解液。 3)电化学氧化法不属于国标或推荐方法,在应用时,需要将其分析结果与国标方法进行比对试验并进行适当的校正。同时电化学氧化法的在线监测仪器需要添加温度补偿。 1.1.3 紫外吸收法(UV法) 1)UV是Ultraviolet Ray(紫外线)的简称,UV计是应用紫外线吸光度原理,用双波长吸光度测定法测量水中的有机污染物浓度的一种自动在线监测仪器。由于各种有机物对254nm的紫外光大多有吸收,通过测定污水对UV254的吸收程度得到UV吸收值,在通过UV值与COD之间的线性关系式就可以自动换算出所测水样的COD值。同时UV计利用波长为550nm的参比光可以自动校正浊度、电源的波动、元器件老化等因素对测量结果的干扰,从而提高测量精度。 2)UV法不用试剂,不用取样,对样品条件没有任何限制,不需要样品的预处理,因此结构简单,故障率低。适用于市政污水宏观监测、水质变化比较稳定的环境,对水中的一大类芳香族有机物和带双键有机物尤为灵敏,对苯类、苯环

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

HJT 356-2007水污染源在线监测系统数据有效性判别技术规范

水污染源在线监测数据有效性判别技术规范 1 适用范围 1.1 本标准规定了水污染源排水中化学需氧量(CODCr)、氨氮(NH3-N)、总磷(TP)、pH 值、温 度和流量等监测数据的质量要求,数据有效性判别方法和缺失数据的处理方法。 1.2 本标准适用于水污染源排水中化学需氧量(CODCr)、氨氮(NH3-N)、总磷(TP)、pH 值、温度和流量等监测数据的有效性判别。 2 规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。GB 6920 水质pH 值的测定玻璃电极法 GB 7479 水质铵的测定纳氏试剂比色法 GB 7481 水质铵的测定水杨酸分光光度法 GB 11893 水质总磷的测定钼酸铵分光光度法 GB 11914 水质化学需氧量的测定重铬酸盐法 GB 13195 水质水温的测定温度计或颠倒温度计测定法 HBC 6-2001 环境保护产品认定技术要求化学需氧量(CODCr)水质在线自动监测仪 HJ/T 70 高氯废水化学需氧量的测定氯气校正法 HJ/T 96-2003 pH 水质自动分析仪技术要求 HJ/T 101-2003 氨氮水质自动分析仪技术要求 HJ/T 103-2003 总磷水质自动分析仪技术要求 HJ/T 104-2003 总有机碳(TOC)水质自动分析仪技术要求 HJ/T 191-2005 紫外(UV)吸收水质自动在线监测仪技术要求 HJ/T 355-2007 水污染源在线监测系统运行与考核技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1数据有效性 指从在线监测系统中所获得的数据经审核符合质量保证和质量控制要求,在质量上能与标准方法可比。 3.2自动分析仪

水质无线监测系统方案

水质无线监测系统方案 上海正伟数字技术有限公司授权网络免费发布 https://www.360docs.net/doc/5c18476656.html, 一、概述 环境监测是环境保护工作的重要组成部分,是环境管理的基础和技术支持。随着我国工业化和城市化的迅速发展,环境保护也相应大力发展起来。这样就迫切需要加快全国环境管理基础能力的建设,提高环境监测能力和环境监督执法管理水平。 排污口水环境实时自动监测系统的研制在我国刚刚起步,欧美一些发达国家在这方面已趋向成熟,例如美国等一些工业发达国家,几乎在每个排污口都安装了有关监测仪器,对污水处理设施的运行情况以及排污流量、PH值、DO、电导、烛度、温度等值进行自动监控,在监控中心可以随时知道排污口染物的排放情况。在韩国已有50%的企业做到了对以下四项指标的实时自动监控:污水处理设备运行情况、流量、PH值和溶氧。 我国目前大部分地区的水环境监测主要是以化学化为主。即人工定期(或不定期)的现场采样、化验、水质分析。这样工作量大且具有随机性,不能准确反映整个水量水质的变化过程,因而不能做到为水环境评价和环境治理的可靠依据。 由于我国经济发展过程中出现越来越多的水环境污染问题,近年来国家已充分重视和加强对环境污染的治理。为了配合这项工作,改进水环境监测手段和方法已显得尤为重要。上海正伟数字技术有限公司在充分调研、考察、征询客户意见等基础上,研制开发了集自动化、即时化、智能化于一体的经济实用的水质量无线监测系统。该系统可以对排污口污水的PH值、DO、温度、电导和排污流量进行实时监控,通过GPRS/CDMA无线终端将数据传送到监控中心和环境管理部门,工作人员可以在监控中心或办公室进行远程监测,随时得到即时数据报告,实现远端无人值守。 二、系统组成、工作原理 系统主要是由一个监测中心,若干个固定监测站和专用GPRS/CDMA无线终端组成。监测中心对各个监测站进行控制指挥,各监测站收集各种污染参数,两者间的控制信号和监

水质自动监测系统介绍(精)

水质自动监测系统介绍 一、水质自动监测系统概述 水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感技术、自动测量技术,自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测体系。 水质自动监测系统能够自动、连续、及时、准确地监测目标水域的水质及其变化状况,数据远程自动传输,自动生成报表等。相对于手工常规监测,将节约大量的人力和物力,还可达到预测预报流域水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况以及排放达标情况等目的。大力推行水质自动监测是建设先进的环境监测预警系统的必由之路。 目前,全国水利和环保系统已建立数百座水质自动监测站,已经形成了国家层面的水质自动监测网。环保部已在七大水系上建立了一百多座水质自动站,已实现100座自动站联网监测,发布七大水系水质监测周报。新疆相对落后,还没有建成1座水质自动监测站。 现在,国家将投资在伊犁河、额尔齐斯河上各建设1座水质自动监测站,将填补我区的空白。今后,我区还将在其他一些重要水体上(博斯腾湖、乌拉泊水库、塔里木河等)陆续建设水质自动站。 二、水质自动监测系统的组成 (一)自动监测系统组成 水质自动监测系统是在一个水系或一个地区设置若干个有连续自动监测仪器的监测站,由一个中心站控制若干个固定监测子站,随时对区域的水质状况进行连续自动监测,形成一个连续自动监测系统。 子站内装有传感器,用于测定各种污染物的单项指标、综合指标以及气象参数的分析仪器,数据采集通信控制器及通信设备。

中心站是各子站的网络指挥中心,又是信息数据中心,它配有功能齐全、存贮容量大的计算机系统,由通信联络设备及数据显示、分析、传输和接收的管理软件构成。中心站的主要功能:数据通信、实时数据库、报警、安全管理、数据打印。 (二)自动监测站组成 自动监测站分为几大部分: (1)采样单元:通过采样泵在水面取样,送入分析系统; (2)预处理单元:把原水经沉砂、过滤、杀菌等处理之后送入分析仪表; (3)分析单元,通过各种分析仪表对水样进行分析的综合单元; (4)控制单元:通过PLC控制整个系统的工作流程和各个单元的协调工作; (5)数据采集单元:通过数据采集模块采集分析仪表对水样的分析结果; (6)数据处理单元:把采集到的数据经过A/D转换之后发送给控制中心站。(三)自动站其他设备 1、UPS和发电机 由于市电经常可能停电,导致系统工作不正常,因此为系统配上UPS和发电机显得尤为重要。 2、采样器 当有参数异常以后,我们希望系统能自动采集异常的样品,拿回去供我们分析。这就需要用到采样器。 当参数异常时,工控机首先检查到,并把异常告诉给PLC,PLC接受到异常信号,就触发采样器工作,收集异常的样品。 3、空调 由于分析仪表对工作环境要求非常高,温度太高或太低都会影响其正常工作。因此需要为系统配置一台空调,保证环境温度适合。 4、水深流速计 测量水深和流速的一种仪器。测量出来的数据送入工控机,一起发送给中心

湖泊水环境实时监测网络系统

湖泊水环境实时监测网络系统 摘要 湖泊水资源是现今非常重要的淡水资源,关系周边大城市用水安全。因此,实时监控湖泊的水质状况是必要的。随着科技的发展,早期的人工监测已经基本被淘汰,人工监测不但成本高,而且对于大型湖泊来说效率低下。相对于人工检测,利用现代手段的自动监测系统优势极其明显。自动监测系统通过在湖泊周围和水面防放置传感器监测装置,实时感知水质变化,通过无线电装置把数据传送到邻近基站进行初步处理,再通过电缆把初步处理得数据传送到几公里外的工作站,然后通过计算机做最终处理与分析后发布到显示装置上,达到实时监测的目的。 关键词:实时监控人工监测自动监测传感器传送 自动监测网络系统设计 1.1、方案对比 方案一: 所有监测点均安装无线电传输设备,直接把数据传送到监测中心进行分析; 优点:减少了设备的投入,例如监测基站等; 缺点:数据传输距离远,导致所需无线电设备成本高昂,容易受到环境干扰。方案二: 湖泊中的监测点安装无线电设备,岸边监测点采用电缆连接,所有监测点的数据先传送到离湖泊500米(共四个,均匀分布在湖泊四周)的监测基站,进行初步数据处理,把处理后的数据再通过铺设电缆传送到5公里外的监测中心进行分析; 优点:成本低,受环境干扰弱; 缺点:网络结构复杂。 经过方案对比,最终选择了方案二,虽然网络结构复杂,但是成本低,这是重要的。

1.2、系统设计准备 1.2.1需要监测的水文参数 水体温度、水体盐度、水体PH值、水体有害金属元素浓度、化学物质含量、水体浮游生物数量、湖泊水位、水面风速与风向、水面温度与湿度等。 1.2.2设备安置 需要监测的XX湖泊面积为500*500(平方米),共要安置100个监测点: 1)用沉箱法把30个已经安装无线电传输设备的传感器沉到湖泊底层,均匀布置,用于监测湖泊底层水体温度、盐度、PH值、有害元素和化学物质等; 2)用漂浮法把30个已经安装无线电传输设备的传感器均匀分布在湖面,并用装置把它们固定在一定水面范围,并设置水面标识,避免湖面船只碰撞,用于监测湖泊顶层水体温度、盐度、PH值、有害元素、化学物质、浮游生物数量并同时监测水面风速、风向和湖泊水位; 3)用打桩法把40个传感器装置均匀布置在湖泊岸边,并用电缆把它们连接起来,用于监测湖泊周围的温度、风速风向、湿度、空气物质等。 1.3、系统设计 1.3.1系统结构和工作原理 本系统主要由XX湖泊水环境监测中心主站、通信网络、现场监测设备三部分组成,利用前端设备监测、数据远传通讯和中心系统软件平台来实现。采集数据,使监测中心通过简单而又经济的计量手段,实现对整个地区监测点数据进行监测并分析,进而实现良好的社会效益和经济效益。

水污染源在线监测系统安装技术规范

水污染源在线监测系统安装技术规范 1适用范围 1.1本标准规定了水污染源在线监测系统中仪器设备的主要技术指标和安装技术要求,监测站房建设的技术要求,仪器设备的调试和试运行技术要求。 1.2本标准适用于安装于水污染源的化学需氧量(CODCr )水质在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV )吸收水质自动在线监测仪、氨氮水质自动分析仪、总磷水质自动分析仪、pH水质自动分析仪、温度计、流量计、水质自动采样器、数据采集传输仪的设备选型、安装、调试、试运行和监测站房的建设。 2规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 11914 水质化学需氧量的测定重铬酸盐法 GB 50093 自动化仪表工程施工及验收规范 GB 50168 电气装置安装工程电缆线路施工及验收规范 HBC 6-2001 环境保护产品认定技术要求化学需氧量(CODCr )水质在线自动监测仪 HJ/T 15 超声波明渠污水流量计 HJ/T 70 高氯废水化学需氧量的测定氯气校正法 HJ/T 96-2003pH水质自动分析仪技术要求 HJ/T 101-2003 氨氮水质自动分析仪技术要求 HJ/T 103-2003 总磷水质自动分析仪技术要求 HJ/T 104-2003 总有机碳(TOC)水质自动分析仪技术要求 HJ/T 191-2005 紫外(UV )吸收水质自动在线监测仪技术要求 HJ/T 212污染源在线自动监控(监测)系统数据传输标准 JB/T 9248 电磁流量计 ZBY 120 工业自动化仪表工作条件温度、湿度和大气压力 3术语和定义 下列术语和定义适用于本标准。 3.1水污染源在线监测仪器 指在污染源现场安装的用于监控、监测污染物排放的化学需氧量(CODCr )在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV )吸收水质自动在线监测仪、pH水质自动分析仪、氨氮水质自动分析仪、总磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器和数据采集传输仪等仪器、仪表。 3.2水污染源在线监测系统 本标准所称的水污染源在线监测系统由水污染源在线监测站房和水污染源在线监测仪器组成。 3.3超声波明渠污水流量计 用于测量明渠出流及不充满管道的各类污水流量的设备,采用超声波发射波和反射波的时间差测量标准化计量堰(槽)内的水位,通过变送器用ISO流量标准计算法换算成流量。 3.4电磁流量计

相关文档
最新文档