物理化学公式大全
物理化学公式大全

物理化学公式集热力学第一定律功:δW=δWe+δWf(1)膨胀功δWe=p外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δWf=xdy非膨胀功为广义力乘以广义位移。
如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。
热 Q:体系吸热为正,放热为负。
热力学第一定律:△U=Q—W 焓 H=U+pV理想气体的内能和焓只是温度的单值函数。
热容 C=δQ/dT(1)等压热容:Cp=δQp/dT=(?H/?T)p(2)等容热容:Cv=δQv/dT=(?U/?T)v常温下单原子分子:Cv,m=Cv,mt=3R/2常温下双原子分子:Cv,m=Cv,mt+Cv,mr=5R/2等压热容与等容热容之差:(1)任意体系 Cp —Cv=[p+(?U/?V)T](?V/?T)p(2)理想气体 Cp —Cv=nR理想气体绝热可逆过程方程:pVγ=常数TVγ-1=常数 p1-γTγ=常数γ=Cp/ Cv理想气体绝热功:W=Cv(T1—T2)=(p1V1—p2V2)理想气体多方可逆过程:W=(T1—T2)热机效率:η=冷冻系数:β=-Q1/W可逆制冷机冷冻系数:β=焦汤系数:μJ-T==-实际气体的ΔH和ΔU:ΔU=+ΔH=+化学反应的等压热效应与等容热效应的关系:Qp=QV+ΔnRT当反应进度ξ=1mol时,ΔrHm=ΔrUm+RT化学反应热效应与温度的关系:热力学第二定律Clausius不等式:熵函数的定义:dS=δQR/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU=TdS-pdV dH=TdS+VdpdF=-SdT-pdV dG=-SdT+Vdp(2)Maxwell关系:==-(3)热容与T、S、p、V的关系:CV=T Cp=TGibbs自由能与温度的关系:Gibbs-Helmholtz公式=-单组分体系的两相平衡:(1)Clapeyron方程式:=式中x代表vap,fus,sub。
物理化学公式大全

物理化学公式集热力学第一定律功:δW=δWe+δWf(1)膨胀功δWe=p外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δWf=xdy非膨胀功为广义力乘以广义位移。
如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。
热 Q:体系吸热为正,放热为负。
热力学第一定律:△U=Q—W 焓 H=U+pV理想气体的内能和焓只是温度的单值函数。
热容 C=δQ/dT(1)等压热容:Cp=δQp/dT=(?H/?T)p(2)等容热容:Cv=δQv/dT=(?U/?T)v常温下单原子分子:Cv,m=Cv,mt=3R/2常温下双原子分子:Cv,m=Cv,mt+Cv,mr=5R/2等压热容与等容热容之差:(1)任意体系 Cp —Cv=[p+(?U/?V)T](?V/?T)p(2)理想气体 Cp —Cv=nR理想气体绝热可逆过程方程:pVγ=常数TVγ-1=常数 p1-γTγ=常数γ=Cp/ Cv理想气体绝热功:W=Cv(T1—T2)=(p1V1—p2V2)理想气体多方可逆过程:W=(T1—T2)热机效率:η=冷冻系数:β=-Q1/W可逆制冷机冷冻系数:β=焦汤系数:μJ-T==-实际气体的ΔH和ΔU:ΔU=+ΔH=+化学反应的等压热效应与等容热效应的关系:Qp=QV+ΔnRT当反应进度ξ=1mol时,ΔrHm=ΔrUm+RT化学反应热效应与温度的关系:热力学第二定律Clausius不等式:熵函数的定义:dS=δQR/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU=TdS-pdV dH=TdS+VdpdF=-SdT-pdV dG=-SdT+Vdp(2)Maxwell关系:==-(3)热容与T、S、p、V的关系:CV=T Cp=TGibbs自由能与温度的关系:Gibbs-Helmholtz公式=-单组分体系的两相平衡:(1)Clapeyron方程式:=式中x代表vap,fus,sub。
(完整word版)物理化学重要概念公式总结

第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。
二、基本定律热力学第一定律:ΔU =Q +W 。
焦耳实验:ΔU =f (T ) ; ΔH =f (T )三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程: W =nRT 1221ln ln p p nRT V V =2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功)等压热:Q p =ΔH (封闭系统不作其他功)焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容 热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p热容与温度的关系:C p =a +bT +c’T 2四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ;利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。
摩尔反应热的求算:)298,()298(B H H m f B mr θθν∆=∆∑ 反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。
物理化学公式总结

物理化学公式总结物理化学是研究物质变化及其中发生的物理现象的学科,公式是物理化学研究的基础工具之一。
本文将对一些常用的物理化学公式进行总结和解析,帮助读者更好地理解这些公式的实际应用。
1. 状态方程状态方程描述了物质的状态及其性质与条件之间的关系。
其中,最为著名的状态方程是理想气体状态方程:PV = nRT。
它表达了气体的压强(P)、体积(V)、摩尔数(n)与温度(T)之间的关系,其中 R 是气体常数。
2. 阿伏伽德罗定律阿伏伽德罗定律是描述理想气体摩尔浓度与分压之间的关系的公式。
根据阿伏伽德罗定律,理想气体的摩尔浓度与其分压成正比:C = kP,其中 C 是摩尔浓度,P 是分压,k 是比例常数。
3. 物质的摩尔浓度物质的摩尔浓度表示单位体积或单位质量物质中包含的物质的量。
它可以用以下公式表示:C = n/V,其中 C 是摩尔浓度,n 是物质的摩尔数,V 是溶液的体积。
4. 热力学公式热力学是研究能量转化和能量变化规律的学科。
热力学公式中最为著名的是热力学第一定律:ΔU = q + w,其中ΔU 是系统内能的变化量,q 是系统吸热量,w 是系统对外做功。
5. 熵的变化熵是描述系统混乱程度的物理量,它可以用来分析物质在化学反应中的状态变化。
熵的变化可以用以下公式表示:ΔS = ΔS_prod - ΔS_react,其中ΔS 是熵的变化量,ΔS_prod 是生成物的总熵变,ΔS_react 是反应物的总熵变。
6. 酸碱中和反应酸碱中和反应是常见的化学反应类型之一。
在酸碱中和反应中,酸和碱反应生成盐和水。
一些重要的酸碱中和反应公式包括酸的离解方程式(例如 HCl -> H+ + Cl-)和碱的离解方程式(例如NaOH -> Na+ + OH-)。
7. 溶解度平衡常数溶解度平衡常数是描述溶液中溶质的溶解程度的物理化学参数。
对于一般的溶液,溶解度平衡常数可以用以下公式表示:Ksp =[A+]^m[B-]^n,其中 Ksp 是溶解度平衡常数,[A+] 是阳离子的浓度,[B-] 是阴离子的浓度,m 和 n 是阳离子和阴离子在化学方程式中的系数。
物理化学,考试重点,公式大全

Kp=(pG .pH )/(pA .pB )。K f=KpKy(p )
Θ
g
h
a
Hale Waihona Puke bΘΘ -ΣvB
。Kx=KpP
-ΣvB
。Kp=Kc(RT)
Θ g
ΣvB
K c= K p(c RT/p )
Θ h Θ a
Θ
Θ
Θ
Θ
-ΣvB
反 应 等 温 式 μ=μΘ ( T ) +RTln(p’g/p ), 上 边 △GTp 的 式 子 令 Qp=(pG/p ) (pH/p ) /(pA/p ) (pB/p ) 。 △GTp=-RTlnK p+RTlnQp,=Qp 平衡,>Qp 自发 (平衡常数计算)△rGm =-RTlnK p=产物-反应物=△rH m-T△rS m(吉布斯焓变近似 计算)=-zFE 反应有利温度 T=△rH m298/△rS m298 . △rGm 是+-关系 K 是乘除关系 吉—赫公式(∂△rG m/∂T)p=(△rG m-△rH m)/T。 范特霍夫等压式(∂lnK p/∂T)p=△rH m/RT
a b
零级 r=k;反应速率与反应物初始浓度无关 x=k0t,t1/2=a/2k0 一 级 r=k ( a-x ) ; ln(a/(a-x))=k1t ; ln(1/1-y)=k1t,y 反 应 速 率 or 反 应 掉 的 =x/a ; a-x=ae^(-k1t) ; t1/2=ln2/k1=0.6932/k1 二级 r=k(a-x)^2; 1/(a-x)-1/a=k2t , t1/2=1/k2a(a 初始浓度或者是气相中 p) 初始浓度不同 1/(a-b).ln(b(a-x)/a(b-x))=k2t n 级 1/(n-1).[1/(a-x) -1/a ]=kt ;t1/2=(2 -1)/(n-1)Ka^(n-1) 级别 n=1+[lg(t’1/2/t”1/2)/lg(a”/a’)] 气相 ap0”/p0’ 。动力学算:-(dp/dt)=kp(pA)^a.(pB)^b 范特霍夫近似规则 KT+10/kT=2~4。k1t1=k2t2 ,lnt1/t2=lnk1/k2=Ea/R(1/T1-1/T2); 阿累尼乌斯 K (反应速率) =Ae^(-Ea/RT)(T,K,r 一起增减)lnk=-Ea/RT+lnA。 A 指前因子表碰撞频率, Ea 活化能 Ea △rHΘm),ln(k2/k1)=Ea/R(1/T1-1/T2);
最全物理化学公式集

最全物理化学公式集以下是一个详细的物理化学公式集合,包含了许多常用的公式和方程式。
这些公式可以帮助学生更好地理解物理化学的理论,并应用于解决相关问题。
1.经典力学:-牛顿第一定律:物体保持匀速直线运动或静止,直到有外力作用。
-牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。
-牛顿第三定律:对于任何两个物体,彼此之间的作用力大小相等,方向相反。
-动能定理:物体的动能等于其质量乘以速度的平方的一半。
-动量定理:物体的动量变化等于作用在其上的力乘以时间间隔。
-弹性碰撞:在碰撞中,总动量和总动能守恒。
2.热力学:-热力学第一定律:能量不会自行产生或消失,只会转化为其他形式。
-热容量公式:物体吸收或释放的热量与其质量、温度变化以及物体的热容量有关。
-理想气体状态方程:PV=nRT,其中P是压力,V是体积,n是物质的摩尔数,R是气体常数,T是温度。
-熵变方程:ΔS=Q/T,其中ΔS是系统的熵变,Q是吸收或释放的热量,T是温度。
3.电化学:-法拉第定律:通过电解的物质的质量与通过电解的电荷数成正比。
-电动势公式:电动势等于化学反应中产生的能量与电荷数的比值。
- 纳尔斯特方程:E = Eo - (RT/nF)ln(Q),其中E是电池的电动势,Eo是标准电动势,R是气体常数,T是温度,n是电子转移数,F是法拉第常数,Q是反应物的活性。
4.量子力学:-布罗意波长:λ=h/p,其中λ是波长,h是普朗克常数,p是物体的动量。
-不确定性原理:ΔxΔp≥h/(4π),其中Δx是位置的不确定度,Δp是动量的不确定度,h是普朗克常数。
5.光学:- 折射率公式:n₁sinθ₁ = n₂sinθ₂,其中n₁和n₂是介质的折射率,θ₁和θ₂是光线的入射和折射角度。
-焦距公式:1/f=1/u+1/v,其中f是透镜的焦距,u是物体的距离,v是像的距离。
6.分析化学:-摩尔浓度公式:C=n/V,其中C是溶液的摩尔浓度,n是溶质的物质的摩尔数,V是溶液的体积。
物理化学公式总结
物理化学公式总结物理化学是研究物质的结构、性质和变化的科学,它使用数学和物理的原理来解释化学现象。
在物理化学的研究过程中,涉及到许多重要的公式,这些公式是揭示物质性质和相互作用规律的基础。
下面我将为大家总结一些物理化学中常见的公式。
1. 热力学公式热力学公式描述了物质在热平衡状态下的性质和能量转化规律。
其中最基本的公式是热力学第一定律(能量守恒定律):∆U = q + w其中,∆U表示系统内能的变化,q表示传递给系统的热量,w 表示系统对外界做的功。
2. 热力学第二定律热力学第二定律描述了能量的定向流动规律。
其中最著名的公式是卡诺热机效率公式:η = 1 - Tc/Th其中,η表示卡诺热机的效率,Tc表示冷热源的温度,Th表示热源的温度。
3. 热力学公式一般表达式根据热力学第一定律,可以推导出一般的热力学公式:dU = TdS - PdV其中,dU表示系统内能的微小变化,T表示温度,dS表示系统的熵变化,P表示压力,dV表示体积的微小变化。
4. 热力学常用关系根据热力学公式一般表达式,可以得到一些重要的热力学关系:Gibbs自由能(G)与焓(H)的关系:G = H - TS其中,G表示Gibbs自由能,H表示焓,T表示温度,S表示熵。
5. 气体状态方程气体状态方程描述了理想气体和实际气体之间的关系。
最常见的气体状态方程是理想气体状态方程:PV = nRT其中,P表示压力,V表示体积,n表示气体的摩尔数,R表示气体常数,T表示温度。
6. 麦克斯韦速率分布定律麦克斯韦速率分布定律描述了气体分子速度的分布规律。
根据麦克斯韦速率分布定律,可以得到气体分子的平均动能(等于温度的能量):KE = (3/2) kT其中,KE表示气体分子的平均动能,k表示玻尔兹曼常数,T表示温度。
7. 热容公式热容公式描述了物质温度变化时的热量和温度之间的关系。
最常用的热容公式是:C = q/∆T其中,C表示热容,q表示吸收或释放的热量,∆T表示温度变化。
最全物理化学公式集
热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =Hp T ⎪⎪⎭⎫⎝⎛∂∂=-()p T C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BA B A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。
物理化学公式集合
物理化学公式集合物理化学公式整理范德华方程:(p+a/V 2m )(V m -b)=RT (p+n 2a/V 2)(V-nb)=nRT 维锂方程:pV m =RT(1+Bp+Cp 2+Dp 3+……) 或pVm=(1+B ’/V m +C ’/V 2m +D ’/V 3m +……)压缩因子:pV=ZnRT 或 pV m =ZRT Z=V m (真实)/V m (理想) 临界压缩因子Z c =p c V m,c /RT c ,对比压力p r =p/p c 对比体积V r =V m /V m,c 对比温度 T c =T/T cZ=pVm /RT=pcVm,c /RT c ·prVr /Tr=Zc ·prVr /Tr热力学第一定律为能量守恒定律;热力学第二定律解决变化的方向,限度问题δW=-F ·dl=-p zmb dV热力学第一定律:ΔU=Q+W 对于无限小:dU=δQ+Δw恒容热Q v Q v =ΔU (dV=0, W '=0) 指系统进行恒容且无非体积功的过程中与环境交换的热,它与过程的ΔU 在量值上相等。
ΔU 只取决于始末态,故恒容热也只取决于系统的始末态。
恒压热Q p 及焓焓:H ——U+pV 单位:J Qp=ΔH(dp=0, W '=0摩尔定容热容:Cv,m=(1/n)·(δQv /dT) 单位:J ·mol -1·K -1Q v =ΔU=n ∫T1T2C v,m dT摩尔定容热容:Cp,m Qp=ΔH=n ∫T1T2C p,m DtH=U+pV=U+n RT对理想气体:Cp,m-Cv,m=R; 对单原子理想气体C v,m=3R /2,C p,m=5R/2 ;双原子气体:C v,m=5R/2, C p,m=7R/2摩尔相变焓单位:J·mol-1或kJ·mol-1Δαβ=nΔαβH m 反应进度:dξ——dn B/νB化学反应方程式写法不同,则反应进度也不相同。
物理化学公式大全
物理化学公式集热力学第一定律 功:δW=δW e +δW f1膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负. 2非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移.如δW 机械功=fdL,δW 电功=EdQ,δW 表面功=rdA.热 Q :体系吸热为正,放热为负.热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数. 热容 C =δQ/dT1等压热容:C p =δQ p /dT = H/T p 2等容热容:C v =δQ v /dT = U/T v 常温下单原子分子:C v,m =C v,m t =3R/2 常温下双原子分子:C v,m =C v,m t +C v,m r =5R/2 等压热容与等容热容之差:1任意体系 C p —C v =p +U/V T V/T p 2理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v T 1—T 2=p 1V 1—p 2V 2 理想气体多方可逆过程:W =T 1—T 2 热机效率:η= 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ -T ==- 实际气体的ΔH 和ΔU: ΔU=+ ΔH=+化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius 不等式:熵函数的定义:dS=δQR/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式:1组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU=TdS-pdV dH=TdS+VdpdF=-SdT-pdV dG=-SdT+Vdp2Maxwell关系:==-3热容与T、S、p、V的关系:CV =T Cp=TGibbs自由能与温度的关系:Gibbs-Helmholtz公式=-单组分体系的两相平衡:1Clapeyron方程式:=式中x代表vap,fus,sub.2Clausius-Clapeyron方程式两相平衡中一相为气相:=3外压对蒸汽压的影响: pg 是在惰性气体存在总压为pe时的饱和蒸汽压.吉不斯-杜亥姆公式:SdT-Vdp+=0dU=TdS-pdV+ dH=TdS+Vdp+dF=-SdT-pdV+ dG=-SdT+Vdp+在等温过程中,一个封闭体系所能做的最大功等于其Helmbolz自由能的减少.等温等压下,一个封闭体系所能做的最大非膨胀功等于其Gibbs自由能的减少.统计热力学波兹曼公式:S=klnΩ一种分布的微观状态数:定位体系:ti =N 非定位体系:ti=波兹曼分布:=在A、B两个能级上粒子数之比:=波色-爱因斯坦统计:Ni =费米-狄拉克统计:Ni=分子配分函数定义:q=-i为能级能量q=-i为量子态能量分子配分函数的分离:q=q n q e q t q r q v能级能量公式:平动:εt=转动:εr =振动:εv=分子配分函数表达式:平动:当所有的平动能级几乎都可被分子到达时一维:q t=二维:q t=A 三维:q t=转动:线性q r===为转动特征温度非线性q r=振动:双原子分子q V===为振动特征温度多原子线性:q V=多原子非线性:q V=+1电子运动:q e=2j+1 原子核运动:q n=2Sn热力学函数表达式:F=-kTlnq N定位 F=-kTln非定位S=klnq N+NkT定位 S=kln+NkT非定位G=-kTlnq N+NkTV定位G=-kTln+NkTV非定位U=NkT2 H=NkT2+NkTV=P=NkT CV一些基本过程的ΔS、ΔG、ΔF的运算公式W=0f一些基本过程的W、Q、ΔU、ΔH的运算公式Wf =0溶液-多组分体系体系热力学在溶液中的应用溶液组成的表示法:1物质的量分数:2质量摩尔浓度:3物质的量浓度:4质量浓度拉乌尔定律亨利定律:化学势的各种表示式和某些符号的物理意义:气体:1纯理想气体的化学势标准态:任意温度,p=pφ=101325Pa.μφT为标准态时的化学势2纯实际气体的化学势标准态:任意温度,f=pφ且复合理想气体行为的假想态即p =pφ,γ=1,μφT为标准态时的化学势.3混合理想气体中组分B的化学势因为所以不是标准态时的化学势,是纯B气体在指定T、p时的化学势.溶液:1 理想溶液组分的化学势所以不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯液体B的化学势.2 稀溶液中各组分的化学势溶剂:不是标准态时的化学势而是温度为T、溶液上方总压为p时,纯溶剂A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当xB =1,mB=1molkg-1,cB=1moldm-3时且服从亨利定律的那个假想态的化学势.4非理想溶液中各组分的化学势溶剂:不是标准态的化学势,而是aA,x =1即xA=1,γA=1的纯组分A的化学势.溶质:,,均不是标准态时的化学势,均是T,p的函数,它们分别为:当aB,x =1,aB,m=1,aB,c=1时且服从亨利定律的那个假想态的化学势. 4活度a的求算公式:ü 蒸汽压法:溶剂aA =γAxA=pA/pA溶质:aB=γBxB=pA/kcü 凝固点下降法:溶剂ü Gibbs-Duhem公式从溶质剂的活度求溶剂质的活度. 5理想溶液与非理想溶液性质:理想溶液:非理想溶液:超额函数:溶液热力学中的重要公式:1 Gibbs-Duhem公式2 Duhem-Margule公式:对二组分体系:稀溶液依数性:1凝固点降低:2沸点升高:3渗透压:化平衡学化学反应亲和势:A=-化学反应等温式:平衡常数的表达式:温度,压力及惰性气体对化学平衡的影响:电解质溶液法拉第定律:Q=nzF m=t+=====r+为离子移动速率,U+U-为正负离子的电迁移率亦称淌度.近似:浓度不太大的强电解质溶液离子迁移数:tB===+=1电导:G=1/R=I/U=kA/l电导率:k =1/ρ 单位:S·m -1 莫尔电导率:Λm =kV m =k/c 单位S·m 2·mol -1科尔劳乌施经验式:Λm = 离子独立移动定律:= 奥斯特瓦儿德稀释定律:= 平均质量摩尔浓度:=平均活度系数:= 平均活度:== 电解质B 的活度:a B == m +=v +m B m -=v -m B 离子强度:I =德拜-休克尔公式:lg =-A|z +z --| 可逆电池的电动势及其应用 Δr G T,p =-W f,max Δr G mT,p =zEFNernst Equation :若电池反应为 cC +dD =gG +hH E =E φ-标准电动势E φ与平衡常数K φ的关系:E φ= 还原电极电势的计算公式:=计算电池反应的有关热力学函数变化值:= =-zEF + Q R =T = zF zF =电极书面表示所采用的规则:负极写在左方,进行氧化反应是阳极,正极写在右方,进行还原反应是阴极 电动势测定的应用:1求热力学函数变量Δr G m 、Δr G m Φ、、及电池的可逆热效应Q R 等. 2求氧化还原反应的热力学平衡常数K Φ值:K Φ= E Φ=E =3求难溶盐的溶度积K sp 、水的离子积K w 及弱酸弱碱的电离常数等. 4求电解质溶液的平均活度系数和电极的值.5从液接电势求离子的迁移数.Pt,H 2p|HClm|HClm’| H 2p,Pt 1-1价型:E j =E =E c +E j = 高价型:M z+A z -m 1|M z +A z -m 2 E j =6利用醌氢醌电极或玻璃电极测定溶液的pH 电解与极化作用E 分解=E 可逆+ΔE 不可逆+IRΔE不可逆=η阴+η阳η阴=φ可逆-φ不可逆阴η阳=φ不可逆-φ可逆阳φ阳,析出=φ阳,可逆+η阳φ阴,析出=φ阴,可逆-η阴η=a+blnjE实际分解=E理论分解+η阴+η阳+IR对电解池,由于超电势的存在,总是使外加电压增加而多消耗电能;对原电池,由于超电势的存在,使电池电动势变小而降低了对外作功的能力.在阴极上,还原电势愈正者,其氧化态愈先还原而析出;同理,在阳机上,则还原电势愈负者其还原态愈先氧化而析出.需外加电压小化学反应动力学半衰期法计算反应级数:kp =kcRT1-n Ea-Ea’=Q化学反应动力学基础二:ZAB==μ=若体系只有一种分子:ZAA==碰撞参数:b=dABsinθ碰撞截面:反应截面:kSCTT=kSCTT==几个能量之间的关系:Ea =Ec+RT/2=E+mRT=式中是反应物形成活化络合物时气态物质的代数和,对凝聚相反应,=0.对气相反应也可表示为:Ea=式中n为气相反应的系数之和原盐效应:弛豫法:%界面现象与T的关系:两边均乘以T,,即的值将随温度升高而下降,所以若以绝热方式扩大表面积,体系的温度必将下降.杨-拉普拉斯公式:ps为曲率半径,若为球面ps =,平面 ps.液滴愈小,所受附加压力愈大;液滴呈凹形,R‘为负值,ps为负值,即凹形面下液体所受压力比平面下要小.毛细管:ps==Δρgh Δρgh=R为毛细管半径开尔文公式:p0和p分别为平面与小液滴时所受的压力对于液滴凸面R‘>0,半径愈小,蒸汽压愈大.对于蒸汽泡凹面R‘<0,半径愈小,蒸汽压愈小.两个不同液滴的蒸汽压:溶液越稀,颗粒越大.液体的铺展:非表面活性物质使表面张力升高,表面活性物质使表面张力降低.吉不斯吸附公式:为表面超额若,>0,正吸附;,<0,负吸附.表面活性物质的横截面积:Am=粘附功:Wa值愈大,液体愈容易润湿固体,液固界面愈牢.内聚功:浸湿功:铺展系数: ,液体可在固体表面自动铺展.接触角:Langmuir等温式:θ:表面被覆盖的百分数.离解为两个分子:混合吸附:即:BET公式:弗伦德利希等温式:乔姆金吸附等温式:吸附剂的总表面积:S=Am Ln n=Vm/22400cm3mol-1气固相表面催化反应速率:单分子反应:产物吸附很弱产物也能吸附双分子反应:AB都吸附AB均吸附,但吸附的B不与吸附的A反应B不吸附胶体分散体系和大分子溶液布朗运动公式:D为扩散系数球形粒子的扩散系数:渗透压:渗透力:F=扩散力=-F沉降平衡时粒子随高度分布公式:瑞利公式:电势表面电势 Stern电势电解质浓度增加电势减小.电泳速度: k=6时为电泳,k=4时为电渗.大分子稀溶液渗透压公式不是吧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 热力学第一定律的数学表示式W Q U +=∆或 'ambδδδd δdU Q W Q p V W =+=-+系统得功为正,对环境作功为负。
上式适用于封闭体系的一切过程。
2. 焓的定义式 3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有恒压下)()(12V V p pV -=∆在数值上等于体积功。
(2) 2,m 1d p H nC T ∆=⎰此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。
5. 恒容热和恒压热V Q U =∆ (d 0,'0)V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式 (1)定压热容和定容热容δ/d (/)p p pC Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂ ,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。
(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。
(4) ,m ,m p V C C R -= 此式只适用于理想气体。
,m//p p p c C m CM==pVU H +=2,m 1d V U nC T∆=⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p TH T H T C T ∆=∆+∆⎰式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。
8. 体积功(1)定义式 V p W d amb -=∂ 或Vp W d amb ∑-=(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。
(3) )(21amb V V p W --= 适用于恒外压过程。
(4))/ln()/ln(d 121221p p nRT V V nRT V p W V V =-=-=⎰适用于理想气体恒温可逆过程。
(5) ,m 21()V W U nC T T =∆=-适用于,m V C 为常数的理想气体绝热过程。
9. 理想气体可逆绝热过程方程,m2121(/)(/)1V C RT T V V = ,m2121(/)(/)1p C RT T p p -=1)/)(/(1212=rV V p p 10. 反应进度B B /νξn ∆=B ν为B 的反应计量系数,其量纲为一。
ξ的量纲为mol 。
11. 标准摩尔反应焓θθθr m B f m B c m (B,)(B,)H H H νβνβ∆=∆=-∆∑∑式中θf m(B,)H β∆及θc m (B,)H β∆分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。
上式适用于ξ=1 mol ,在标准状态下的反应。
12. θm r H ∆与温度的关系21θθr m2r m1r ,m ()()d T p T HT HT C T ∆=∆+∆⎰式中 r ,m ,m B (B)p p C C ν∆=∑,适用于恒压反应。
13.范德华方程RT b V V a p =-+))(/(m 2mnRTnb V V an p =-+))(/(22式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。
14.压缩因子的定义 )/()/(m RT pV nRT pV Z ==1. 热机效率 1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。
W 为在循环过程中热机中的工质对环境所作的功。
2. 熵的定义3. 克劳修斯不等式d S {//Q T Q T =>δ, δ, 可逆不可逆4. 熵判据 amb sy s iso S S S ∆+∆=∆{0, 0, >=不可逆可逆5. 环境的熵变6. 熵变计算的主要公式222r111δd d d d Q U p V H V p S T T T+-∆===⎰⎰⎰ 对于封闭系统,一切0=W δ的可逆过程的S ∆计算式,皆可由上式导出 ((1 ) ,m 2121ln(/)ln(/)V S nC T T nR V V ∆=+,m 2112ln(/)ln(/)p S nC T T nR p p ∆=+,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ∆=+上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2) T 2112ln(/)ln(/)S nR V V nR p p ∆==此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。
(3) ,m 21ln(/)p S nC T T ∆=此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。
7.相变过程的熵变此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。
TH S /βαβα∆=∆r d δ/S Q T=amby s amb amb amb //S T Q T Q s -==∆)B (Bm B m r ∑=∆θθνS S8.标准摩反应熵2r m 2r m 1r ,m 1()()(/)d p S T S T C T T θθ∆=∆+∆⎰上式中r ,m p C ∆=B ,m B(B)p C ν∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔反应熵的计算。
9.亥姆霍兹函数的定义 10. 吉布斯函数的定义 11. 热力学基本方程式d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p =-=+=--=-+热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。
12. 克拉佩龙方程m m d /d /()p T H T V ββαα=∆∆此方程适用于纯物质的α相和β相的两相平衡。
13. 克劳修斯-克拉佩龙方程2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)p p H RT T p p H R T T =∆=∆-此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *V 相比可忽略不计,在21T T -的温度范围内摩尔蒸发焓可视为常数。
对于气-固平衡,上式vap m H ∆则应改为固体的摩尔升华焓。
TS U A -=TSH G -=一些基本过程的ΔS、ΔG、ΔF的运算公式(W f=0)基本过程ΔS ΔG ΔF 理想气体等温可逆过程12VVnRln12ppnRlnΔF T=-W R=-12VVnRln任意物质等压过程dTTC21TTp⎰ΔH-Δ(TS)()dTTS21TT⎰-ΔU-Δ(TS)任意物质等容过程dTTC21TTV⎰ΔH-Δ(TS)ΔU-Δ(TS)()dTTS21TT⎰-理想气体绝热可逆过程0 ΔH-SΔT ΔU-SΔT理想气体从p1V1T1到p2V2T2的过程1)12V12TTlnCVVnRln+2)12p21TTlnCppnRln+3)12p12V VVlnCpplnC+ΔH-Δ(ST)ΔU-Δ(ST)等温等压可逆相变TH相变∆0 -W R等温等压化学反应()BSmB∑Φγ()()()dTTBCTSTS21TTmpB1mr2mr⎰∑ΦΦ∆∆,+=γΔr G m=Δr H m-TΔr S mΔr G m=-RTlnΦpK+RTlnQ pΔU-TΔS一些基本过程的W、Q、ΔU、ΔH的运算公式(W f=0)过程W Q ΔU ΔH 理想气体自由膨胀0 0 0 0 理想气体等温可逆12VVnRTln12VVnRTln0 0等容可逆任意物质理想气体0⎰dTCV⎰dTCVQ V⎰dTCVΔU+VΔp⎰dTCp过程W Q ΔU ΔH等压可逆任意物质p外ΔV ⎰dTCp⎰dTCpQ p-pΔV Q p理想气体 p 外ΔV⎰dT CV⎰dT Cp理想气体绝热过程 C V (T 1-T 2) 1V p V p 2211--γ⎰dT C V⎰dT C p理想气体多方可逆过程pV γ=常数 δ-)-(1T T nR 12ΔU +W⎰dT CV⎰dT Cp可逆相变(等温等压)p 外ΔV Q p Q p -W Q p (相变热)化学反应(等温等压)p 外ΔVQ pQ p -W Δr U m = Δr H m -RT BB∑γQ p Δr H m =()B H m f BBΦ∆∙∑γGibbs 相律 2+-=P C F法拉第定律:Q =nzF m =M zFQ dE r U dl ++= dE r U dl--= t +=-+I I =-++r r r +=-+U U U ++=m,m ∞+∞ΛΛ=()FU U F U ∞∞+∞+-+r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。
近似:m,m,∞++Λ≈Λ +∞+≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液)离子迁移数:t B =I I B=QQ B ∑B t =∑+t +∑-t =1 电导:l A κR G s==1电导率:k =1/ρ 单位:S ·m -1摩尔电导率:Λm =κV m =κ/c 单位S ·m 2·mol -1∞-∞++∞+=,-m , m m ΛνΛνΛ∞∞--∞-∞∞++∞+==mm,mm,;ΛΛνt ΛΛνtcell lR K Aρρ== cell 1K R R κρ==杨-拉普拉斯公式:p s ⎪⎪⎭⎫ ⎝⎛‘’+=21R 1R 1γ ‘’21R R 为曲率半径,若为球面’‘’==R R R 21 接触角:s g l sl gcos γγθγ----=。