电力电子复习整理
电力电子基础知识归纳

电力电子基础知识归纳
1. 电力电子的定义
电力电子是一门关于控制和转换电能的学科,研究通过电子器件和电子控制实现电能的有效转换和控制。
2. 电力电子器件
2.1 双向开关器件
- MOSFET(金属氧化物半导体场效应晶体管)
- IGBT(绝缘栅双极晶体管)
2.2 单向开关器件
- 可控硅(SCR)
- 双向可控硅(GTO)
- 快速开关二极管(FRED)
- 二极管
3. 电力电子应用领域
3.1 变频器
变频器是一种通过改变电源频率来控制电机转速的装置,广泛应用于工业驱动运动控制等领域。
3.2 逆变器
逆变器是一种将直流电能转换为交流电能的装置,用于太阳能发电、电动车等领域。
3.3 交流调压器
交流调压器是一种能够调节交流电压的装置,常用于家庭和办公室电器的稳压供电。
4. 电力电子系统的优势
- 高效率:电力电子系统能够提高能源利用效率,减少能源浪费。
- 高精度:电力电子系统可以实现精确的电能控制和调节。
- 可靠性:电力电子系统具有较高的可靠性和稳定性。
以上是对电力电子基础知识的简要归纳,希望对您有所帮助。
如需更详细的信息,请参考相关教材和资料。
电力电子复习整理

第一章电力电子技术的概念根据电力电子器件的特性、采用一种有效的静态变换和控制方法,将一种电能形式转换为另一种电能形式的技术。
电力电子功率变换的分类 AC/DC 变换 整流器 DC/AC 变换 逆变有源逆变 DC/AC 变换时,交流输出与电网相连。
无源逆变 DC/AC 变换时,交流输出直接与负载相连 。
AC/AC 变换 变频器 DC/DC 变换 直流斩波 第二章功率半导体器件分类不可控型: 功率二极管:导通和关断均由电路潮流决定。
半可控型: 晶闸管:在器件在承受正向电压时,由控制信号控制器件的导通,而关断状态由电路潮流决定。
全控型: 可控开关 :由控制信号控制器件的导通和关断。
绝缘栅双极晶体管(IGBT ) 门极可关断晶闸管(GTO ) 电力场效应晶体管(MOSFET ) 双极结型晶体管(BJT )绝缘栅门极换流晶闸管(IGCT )二极管的工作原理、特性和分类当功率二极管承受正向电压时,它的正向导通压降很小,大约在1V 左右。
当功率二极管承受反向电压时,只有极小的漏电流可通过该器件。
正向平均电流IF (AV )设正弦半波电流的峰值为Im ,则额定电流为:()I 1I sin ()2mF AV m I td t πωωππ==⎰额定电流有效值为:I 2m F I ==某电流波形的有效值与平均值之比为这个电流的波形系数:f K =电流有效值电流平均值()F F AV I 1.57I 2f K π==≈额定电流IF(AV)=100A 的电流功率二极管,其额定电流有效值IF =Kf IF(AV)=157A 。
正向压降UF几种常用的功率二极管 肖特基二极管快恢复二极管工频二极管晶闸管的工作原理、特性、分类和选型(电流有效值、波形系数、额定电压和额定电流)晶闸管承受正向电压时,在门极注入正向脉冲电流可将它触发导通。
晶闸管一旦开始导通,门极就失去控制作用。
不论门极触发电流是否存在,晶闸管都保持导通。
通过外电路使阳极电流反向,并且降到接近于零的某一数值,可使已导通的晶闸管关断。
电力电子技术期末考试复习要点

电力电子技术期末考试复习要点课程学习的基本要求及重点难点内容分析第一章电力电子器件的原理与特性1、本章学习要求1.1 电力电子器件概述,要求达到“熟悉”层次。
1)电力电子器件的发展概况及其发展趋势。
2)电力电子器件的分类及其各自的特点。
1.2 功率二极管,要求达到“熟悉”层次。
1)功率二极管的工作原理、基本特性、主要参数和主要类型。
2)功率二极管额定电流的定义。
1.3 晶闸管,要求达到“掌握”层次。
1)晶闸管的结构、工作原理及伏安特性。
2)晶闸管主要参数的定义及其含义。
3)电流波形系数k f的定义及计算方法。
4)晶闸管导通和关断条件5)能够根据要求选用晶闸管。
1.4 门极可关断晶闸管(GTO),要求达到“熟悉”层次。
1)GTO的工作原理、特点及主要参数。
1.5 功率场效应管,要求达到“熟悉”层次。
1)功率场效应管的特点,基本特性及安全工作区。
1.6 绝缘栅双极型晶体管(IGBT),要求达到“熟悉”层次。
1)IGBT的工作原理、特点、擎住效应及安全工作区。
1.7 新型电力电子器件简介,要求达到“熟悉”层次。
2、本章重点难点分析有关晶闸管电流计算的问题:晶闸管是整流电路中用得比较多的一种电力电子器件,在进行有关晶闸管的电流计算时,针对实际流过晶闸管的不同电流波形,应根据电流有效值相等的原则选择计算公式,即允许流过晶闸管的实际电流有效值应等于额定电流I T对应的电流有效值。
利用公式I = k f×I d = 1.57I T进行晶闸管电流计算时,一般可解决两个方面的问题:一是已知晶闸管的实际工作条件(包括流过的电流波形、幅值等),确定所要选用的晶闸管额定电流值;二是已知晶闸管的额定电流,根据实际工作情况,计算晶闸管的通流能力。
前者属于选用晶闸管的问题,后者属于校核晶闸管的问题。
1)计算与选择晶闸管的额定电流解决这类问题的方法是:首先从题目的已知条件中,找出实际通过晶闸管的电流波形或有关参数(如电流幅值、触发角等),据此算出通过晶闸管的实际电流有效值I,考虑(1.5~2)倍的安全裕量,算得额定电流为I T = (1.5~2) I /1.57,再根据I T值选择相近电流系列的晶闸管。
电力电子复习题(包括答案)

一、填空题绪论1、电力变换的四大类整流、直流斩波、交流电力控制变频变相和逆变。
第二章1、电力电子器件一般都工作在开关状态。
2、电力电子器件一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组。
3、电力电子器件的损耗主要为通态损耗和断态损耗,当器件的开关频率较高时,开关损耗会增大。
4、按电力电子器件能够被控制电路信号所控制的程度,可以将电力电子器件分为半控型器件、全控型器件和不可控型器件。
5、晶闸管有阳极A、阴极K和门极G。
6、电力二极管的特性是正向导通和反向截止。
7、要使晶闸管导通必须在阳极可正向电压,在门极加正向电压。
8、在晶闸管的阳极加反向电压时,不论门极加何种电压,晶闸管都截止。
9、多个晶闸管并联要考虑均流问题,多个晶闸管串联要考虑均压问题。
第二章1、单向半波可控整流电路带电阻负载时α角的移相范围0~π,阻感负载α角的移相范围是0~π/2。
2、单向桥式全控整流电路带纯电阻负载时α角的移相范围是0~π,单个晶闸管承受的最大反压是0~π/2,单个晶闸管承受的最大反压是3、三相半波可控整电路中,三个晶闸管的触发脉冲相序互差120°,单个晶闸管承受最大反压带阻感性负载时α角的移相范围是0~π/2。
4、逆变电路中,当交流侧和电网联结时称有源逆变,若要实现逆变必须要用可控整流电路,当0〈α〈π/2时,电路工作在整流状态,π/2〉α〉π时,电路工作在逆变状态。
5、使变流器工作于有源逆变状态的条件有二:①直流侧要有电动势,其极性须和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压;②要求晶闸管的控制角α>π/2,使U d为负值。
第三章1、直流斩波电路是把直流变为直流的电路。
2、斩波电路2种最基本的电路是降压斩波和升压斩波。
3、斩波的三种控制方法是脉冲宽度调制(脉冲调宽型)、频率调制(调频型)和混合型。
4、升降压斩波电路升压的条件是1/2〈α〈1。
第四章1、改变频率的电路叫变频电路。
最全的电力电子复习(有答案)

第一章填空题:1.电力电子器件一般工作在开关状态。
2.在通常情况下,电力电子器件功率损耗主要为通态损耗,而当器件开关频率较高时,功率损耗主要为开关损耗。
3.电力电子器件组成的系统,一般由主电路、驱动电路、控制电路三部分组成,由于电路中存在电压和电流的过冲,往往需添加保护电路。
4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为单极型器件、双极型器件、复合型器件三类。
5.电力二极管的工作特性可概括为单向导通。
6.电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。
7.肖特基二极管的开关损耗小于快恢复二极管的开关损耗。
8.晶闸管的基本工作特性可概括为正向有触发则导通、反向截止。
9.对同一晶闸管,维持电流I H与擎住电流I L在数值大小上有I L大于I H。
10.晶闸管断态不重复电压U DRM与转折电压U bo数值大小上应为,U DRM小于Ubo。
11.逆导晶闸管是将二极管与晶闸管反并联(如何连接)在同一管芯上的功率集成器件。
12.GTO的阴极和门极在器件内并联结构是为了便于实现门极控制关断而设计的。
13.功率晶体管GTR从高电压小电流向低电压大电流跃变的现象称为二次击穿。
14.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的截止区、前者的饱和区对应后者的放大区、前者的非饱和区对应后者的饱和区。
15.电力MOSFET的通态电阻具有正温度系数。
16.IGBT 的开启电压U GE(th)随温度升高而略有下降,开关速度低于电力MOSFET 。
17.功率集成电路PIC分为二大类,一类是高压集成电路,另一类是智能功率集成电路。
18.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电流驱动和电压驱动两类。
19.为了利于功率晶体管的关断,驱动电流后沿应是负脉冲。
20.GTR的驱动电路中抗饱和电路的主要作用是使基极驱动电流不进入放大区和饱和区。
电力电子-复习主要内容

5)PWM整流器工作的基本原理,实现功能。
八
1)电力电子器件的驱动要求;
2)器件串并联使用的特点与注意事项;
3)过电压与过电流保护的分类与功能;
4)缓冲电路的工作原理。
九
1)晶闸管直流电动机系统的原理与直流可逆电力拖动系统的稳态计算;
2)开关电源中电压模式与电流模式的差别;
3)单相功率因数校正的基本原理;
2)晶闸管桥式变流器(单相,三相)的电路结构;R,RL负载下的波形,整流输出电压平均值和电流平均值的计算;各器件波形;输入电流谐波的特点、畸变率、功率因数的计算;
3)换相重叠的概念、原因;换相压降概念;
4)不控整流的概念、基本原理;
5)晶闸管变流器的逆变工作状态:逆变的概念,变流器工作于有源逆变模式的必要条件,逆变角的概念。整流与逆变工作模式的区别。最小逆变角的限制条件,逆变失败的原因和后果。
复习主要内容
章节
重点内容
一
电力电子技术定义;电力(电能)变换的目的和作用;电能变换的种类;电力电子器件的种类;半导体开关的特点。
二
电力电子器件的分类方法;6种主要电力电子器件的基本结构、工作原理、主要特性。
三
1)晶闸管变流器的相位控制原理:自然换流点的定义,触发延迟角的定义(触发脉冲的特殊要求),导通角的定义,移相控制范围的概念;
2)单相交流调压电路的电路构成,在电阻负载和阻感负载时的工作原理和电路特性;
3)交流调功电路和流电力电子开关的基本概念;
4)单相交流斩控原理;
5)单相交交变频的电路构成和实现原理。
七
1)计算法和调制法实现SPWM,包括特定谐波消去法;
2)异步调制和同步调制的概念与区别;
电力电子技术复习题(整理版)

电力电子技术复习题(整理版)电力电子技术复习题一、填空题1、晶闸管是三端器件,三个引出电极分别是:______极、______极和______极。
2、单相半波可控整流电路中,控制角α的最大移相范围是__________。
3、对于同一个晶闸管,其维持电流IH _______擎住电流IL(数值大小关系)。
4、在GTR和IGBT两种自关断器件中,属于电压驱动的器件是_____,属于电流驱动的器件是___。
5、在输入相同幅度的交流电压和相同控制角的条件下,三相可控整流电路与单相可控整流电路比较,三相可控整流电路可获得__________的输出电压。
6、为了使电力晶体管安全、可靠地运行,驱动电路和主电路应该实行_________。
7、把交流电能转换成直流电能称整流,把一种直流电能转换成另一种直流电能称_________,而把直流电能转换成交流电能称_________。
8、可关断晶闸管(GTO)的电流关断增益βoff 的定义式为βoff=___________,其值越______越好。
9、单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=___________。
10、将直流电能转换为交流电能,并把交流电能直接提供给交流用电负载的逆变电路称为___________逆变器。
11、对于普通晶闸管,在没有门极触发脉冲的情况下,有两种因素会使其导通,一是过高,二是_______________。
12、晶闸管一旦导通,门极就失去了控制作用,故晶闸管为器件。
能保持晶闸管导通的最小电流称为。
13、电压型单相桥式逆变电路中,与开关管反并联的二极管起着___________和防止开关器件承受反压的作用。
14、电力电子电路中为了实现主电路与控制电路的隔离,常采用的隔离方法有_________隔离和_________隔离。
15、单相半波可控整流电路中,从晶闸管开始导通到关断之间的角度称为__________。
16、正弦脉宽调制(SPWM)的载波信号波形一般是_________波,基准信号波形为_________波。
电力电子技术知识点总结

电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。
其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。
2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。
可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。
3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。
4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。
5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。
以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。
二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。
常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。
2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。
常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。
3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章电力电子技术的概念根据电力电子器件的特性、采用一种有效的静态变换和控制方法,将一种电能形式转换为另一种电能形式的技术。
电力电子功率变换的分类 AC/DC 变换 整流器 DC/AC 变换 逆变有源逆变 DC/AC 变换时,交流输出与电网相连。
无源逆变 DC/AC 变换时,交流输出直接与负载相连 。
AC/AC 变换 变频器 DC/DC 变换 直流斩波 第二章功率半导体器件分类不可控型: 功率二极管:导通和关断均由电路潮流决定。
半可控型: 晶闸管:在器件在承受正向电压时,由控制信号控制器件的导通,而关断状态由电路潮流决定。
全控型: 可控开关 :由控制信号控制器件的导通和关断。
绝缘栅双极晶体管(IGBT ) 门极可关断晶闸管(GTO ) 电力场效应晶体管(MOSFET ) 双极结型晶体管(BJT )绝缘栅门极换流晶闸管(IGCT )二极管的工作原理、特性和分类当功率二极管承受正向电压时,它的正向导通压降很小,大约在1V 左右。
当功率二极管承受反向电压时,只有极小的漏电流可通过该器件。
正向平均电流IF (AV )设正弦半波电流的峰值为Im ,则额定电流为:()I 1I sin ()2mF AV m I td t πωωππ==⎰额定电流有效值为:I 2mF I ==某电流波形的有效值与平均值之比为这个电流的波形系数:f K =电流有效值电流平均值()F F AV I 1.57I 2f K π==≈额定电流IF(AV)=100A 的电流功率二极管,其额定电流有效值IF =Kf IF(AV)=157A 。
正向压降UF几种常用的功率二极管 肖特基二极管 快恢复二极管 工频二极管晶闸管的工作原理、特性、分类和选型(电流有效值、波形系数、额定电压和额定电流)晶闸管承受正向电压时,在门极注入正向脉冲电流可将它触发导通。
晶闸管一旦开始导通,门极就失去控制作用。
不论门极触发电流是否存在,晶闸管都保持导通。
通过外电路使阳极电流反向,并且降到接近于零的某一数值,可使已导通的晶闸管关断。
晶闸管通过电源电压的正半波控制其导通。
当晶闸管电流开始反向时,电源电压变负,晶闸管所承受的电压也同时反向。
理想晶闸管将会使其电流在t=T/2后立即变为0 。
波形如图所示。
额定电压U R选用晶闸管时,应使其额定电压为正常工作电压峰值UM 的2~3倍,以作为安全裕量。
U R =(2~3)U M根据所使用具体电流波形来计算出允许使用的电流平均值选用晶闸管时,设三相工频半波电流峰值为Im 时的波形,通态平均电流为:()I 1I sin ()2mT AV m I td t πωωππ==⎰正弦半波电流有效值为:2I 1(I sin )()22mm I t d t πωωπ==⎰晶闸管有效值与通态平均电流的比值为:()AV I 1.57I 2T π=≈有效值与平均值的比为(波形系数):()1.57f d T AV I K I I =≈实际电路中,由于晶闸管的热容量小,过载能力低,因此在实际选择时,一般取1.5~2倍的安全系数,故在给定晶闸管的额定电流后,可计算出该晶闸管的任意波形时允许的电流平均值为:()1.57(1.5~2)T AV d fI I K =半导体功率器件开关能量损耗的计算()()01()2s c on c off d s P U I f t t =+可控开关的理想特性描述11cos ϕ⋅⋅=I U P① 关断时,不论正、反向阻断电压有多高,都没有电流流过该器件。
② 导通时,压降为零,此时可传导任意大的电流。
③ 该器件一旦被触发,立即从导通状态到关断状态,反之亦然。
④ 该器件只需很小的电流就能触发。
BJT 、达林顿管、MOSFET 、GTO 和IGBT 的基本原理 IGBT像MOSFET 一样,IGBT 的输入阻抗高,只需很小的能量来开关器件。
如同BJT 一样,即使当它承受较高电压时,它的导通压降也很小。
与GTO 类似,IGBT 能够被设计承受一定的反向压降。
IGBT 的耐压可以做得较高,最大允许电压UCEM 可达4500V 以上。
第三章似稳态过程的概念电力电子技术的应用中非正弦的稳态运行过程。
网络换流整流器单相桥路:视在功率,有功功率,畸变功率和谐波S=UI=UId απcos 22d UI P = απsin 221d UI Q =2122Q P S D --= d I U D ⋅-=281π畸变功率与控制角a 无关,但在电压、电流中产生以下特征频率分量: 网络电流: n = 1,3,5,7,9,11,⋯ 输出电压: m = 0,2,4,6,8,⋯网络换流整流器三相桥路:视在功率,有功功率,畸变功率和谐波交流侧总电流i s 和对应的基波电流有效值i s1分别为:d s I I 32=d s I I π321=2122Q P S D --= d s UI UI S 23== απcos 23d UI P =απsin 231d UI Q =2912π-=d UI D此处的畸变功率与控制角a 无关① 与单相整流桥路相同,但没有3及3的倍数次谐波 n = 1,5,7,11,13,17,19……② 直流电压中的谐波 m = 0,6,12,18……直流电流的谐波次数: m = k ×p , k = 0,1,2,3,⋯交流侧电流中的谐波次数 n = k ×p ±1,k =1,2,3,…以上各式中, p 为每周期的脉冲次数。
稳态下的非正弦波形:THD ,PF, DPF ,浪涌(峰值)系数的计算电流的总谐波含有量为:∑≠⎪⎪⎭⎫⎝⎛⨯=-⨯=⨯=12112121100100100%h s sh s s s s disi I I I I I I I THD 浪涌系数:电流峰值和电流有效值的比值speak s II .=非正弦量的功率因数(PF ): PF=P/S1111cos cos s s s s s s U I φI PF φV I I ==位移功率因数(DPF ): DPS =cos j 1非正弦电流条件下的功率因数 :1s s I PF DPFI =傅立叶级数的展开方法,及其在谐波分析中的应用(基波和谐波的表达式、幅值、有效值的计算) 方波:⎥⎦⎤⎢⎣⎡+++=L )5sin(51)3sin(31)sin(4)(t t t A t f ωωωπ第四章单相桥式二极管整流电路Ls=0 的波形和计算(输出电压、交流侧电流有效值、谐波表达式、基波分量、谐波分量、功率因数).s s U U U 9.02π20d ==Is=Idd d s I I I 9.0221==π为奇数 为偶数01h h /h I I s sh ⎩⎨⎧=谐波总畸变率为:THD=48.43%i s1波形曲线与u s 波形同相位: DPF=1.09.0I I 1==ss DPFPF 右图所示单相二极管整流电路,L s 为零,直流侧为恒定电流,Id =10A 。
试计算负载所吸收的平均功率。
① 若u s 为正弦电压曲线, U s = 120V ,频率50Hz ;② 若us 为下图所示的矩形波。
(1) us 为正弦电压曲线,U s = 120V , ∴Ud =0.9Us =108V Pd =UdId =1080W(2) 根据整流电路的工作原理可知,直流输出电压波形如图所示,所求平均电压和负载吸收的功率分别为:()()V U d 33.13332200180600120200=⨯=︒︒⨯+︒⨯=W I U P d d d 3.1333==单相桥式二极管整流电路Ls>0 的波形和计算(换相重叠角、输出电压)换流:电流从一个二极管转到另一个二极管的过程。
换流重叠角:换流时间所对应的电角度用符号r 表示单相半波:sds U I L 21cos ωγ-=s U U 45.0d0= d sd I L A U π22πωγ==∆d π245.0I L U U ss d ω-=单相全波d s sI U L 221cos ωγ-= π29.0πds d0d I L U A U U s ωγ-=-=分析图中电路的换流基本过程,其中us 为正弦电压曲线,Id = 10A 。
① Us =120V ,频率50Hz ,Ls =0,计算Ud 和平均功率Pd ;② Us = 120V ,频率50Hz ,Ls =5mH ,计算g 、Ud 和Pd ;(1) Ls = 0V U U s d 5412045.029.0=⨯==W I U P d d d 5401054=⨯== (2)Ls =5mH 9074.0120210105502121cos 3=⨯⨯⨯⨯⨯-=-=-πωγs ds U I L ∴ r = 24.85°VI L U U d s s d 5.5110210550212045.0245.03=⨯⨯⨯⨯-⨯=-=-πππωW I U P d d d 515105.51=⨯==三相桥式二极管整流电路Ls=0 的波形和计算(输出电压、交流侧电流有效值、谐波表达式、基波分量、谐波分量、功率因数).六脉动整流电路直流电压由6个线电压的部分区间所形成,每个二极管导通120°LL LL LL π/6π/6d035.12π3)(d cos 23/π1U U t t U U ===⎰-ωω U U d 34.20= 线电流is 的有效值d d s 816.032I I I ==i s 的基波分量is1的有效值为: d d s178.06π1I I I ==i s1与相电压u s 同相位,所以: DPF=1.0h I I h 1s s =h = 5,7,11,13,… 955.0π3PF ==三相桥式二极管整流电路Ls>0 的波形和计算(换相重叠角、输出电压) LLds 221cos U I L ωγ-=d s ds d π33/πI L I L U ωω==∆ d s LL d d0d π335.1I L U U U U ω-=∆-=第五章单相全控桥整流电路Ls=0 (纯电阻负载、阻感负载、反电动势负载)的波形和计算(输出电压、交流侧电流有效值、谐波表达式、基波分量、谐波分量、功率因数)ss s d U U t d t U U 9.022)(sin 210==⋅=⎰πωωππααπωωπαπαcos 9.0cos 22)(sin 21s s s d U U t d t U U ==⋅=⎰+)cos 1(9.00ααα-=-=∆s d d d U U U U交流有效值等于对应的直流电流: Is =I dd d s I I I 9.0221==π h I I s sh 1=位移功率因数为:DPF=cos=cosaαcos 9.01==DPF I I PF ss 单相全控桥整流电路Ls>0 的波形和计算(换相重叠角、输出电压)sds U I L 22cos )cos(ωαγα-=+ πωπγγds d I L A U 2==∆d s s d I L U U ωπα2cos 9.0-=已知图中,交流电的额定电压为230V ,工作频率为50Hz ,线路电感Ls 上的压降为额定电压的5%,线路的传输容量S=5kVA 、控制角a=30o 、有功消耗为3kW 。