水力学网上辅导材料7
水力学网上辅导材料8

水力学辅导材料8:一、第7章过流建筑物的水力计算【教学基本要求】1、了解堰流、闸孔出流的流动特点和区别,掌握堰流和闸孔出流互相转化的条件。
2、掌握堰流的分类和计算公式,掌握实用堰、宽顶堰的水力计算方法,会进行流量系数、侧收缩系数、淹没条件和淹没系数的确定方法,重点掌握宽顶堰流的水力计算。
3、了解桥、涵过流的水力特征和水力计算方法。
4、掌握闸孔出流的计算公式和水力计算方法,能正确确定闸孔出流的流量系数和淹没系数。
5、了解泄水建筑物下游的水流特点和衔接消能方式,掌握底流消能的水力设计方法,会进行消力池尺寸的计算。
【内容提要和学习指导】这一章的主要任务是学习堰、闸和桥涵的过流特性和水力计算以及水跃消能的水力设计。
学习本章我们要了解堰流和闸孔出流的特点和互相转化的分界条件,以便正确选择对应的公式进行设计计算。
本章有众多的经验公式和经验系数,我们要了解公式中各种系数的物理意义和影响因素,众多的经验公式不必强记,但要会利用公式或图表来确定计算中所需的流量系数、淹没系数、侧收缩系数的数值。
7.1 堰流、闸孔出流的特点和区别(1)堰流和闸孔出流的特点:堰流和闸孔出流都属于急变流,都是壅高水位以后,靠重力作用形成的水流运动,其能量损失以局部水头损失为主。
堰和闸都是属于控制建筑物,用于控制水位和流量。
(2)堰流和闸孔出流的区别:堰流的上部不受闸门控制,水流自由表面是连续光滑的;而闸孔出流正好相反,由于受到闸门的控制,自由表面被闸门截断。
堰流和闸孔出流的这种差异导致它们的水流特征、过水能力和规律都不相同。
(3)堰流与闸孔出流是密切相关的,当闸门开度e大于一定值,闸门底缘对水流没有约束时,闸孔出流转化为堰流。
其判别标准是:闸底坎为平顶宽顶堰时:e/H≤0.65为闸孔出流,e/H>0.65为堰流;闸底坎为曲线型宽顶堰:e/H≤0.75为闸孔出流,e/H>0.75为堰流。
7.2 堰流的分类根据堰顶的宽度δ与堰顶水头H 的比值可以将堰分为三类:当δ/H <0.67为薄壁堰,薄壁堰具有稳定的水位流量关系,常用于流量的量测;当0.67<δ/H <2.5为实用堰,用于水利枢纽的挡水和泄水建筑物;当2.5<δ/H <10为宽顶堰,在渠系中广有泛应用。
水力学网上辅导材料7,8,9

水力学网上辅导材料7:一、第6章 明渠恒定流动(2)6.9水跃和水跌(1)水流从缓流向急流过渡,水面经过临界水深h k ,形成水跌现象。
水跌经常发生在跌坎处、由缓坡向陡坡过渡及水流由水库进入陡坡渠道等地方。
水流从急流跨过临界水深h k 变成缓流,形成急剧翻滚的旋涡,这种水力突变现象称为水跃,常发生在闸、坝的下游和由陡坡向缓坡的过渡。
(2)水跃存在急剧翻滚的表面旋涡要消耗大量的能量,是水利工程中经常采用的一种消耗水流多余能量的方式。
(3)在棱柱体水平明渠中,水跃的基本方程式为(6—17) 即 J (h 1)=J (h 2) (6—18)J (h )称为水跃函数,水跃方程表明跃前断面的水跃函数值等于跃后断面的水跃函数值。
我们把满足水跃方程的跃前断面水深h 1和跃后断面水深h 2称为一对共轭水深,。
(4)水跃共轭水深的计算是这一部分的重点。
对于一般形状断面的明渠可以采用试算法和图解法。
矩形断面明渠的共轭水深计算依据下列公式(要求掌握并记住)。
(6—19) 或 (6—20)请注意:根据水跃函数曲线,跃前断面水深越小,,跃后断面的水深越大。
同时还要求能依据教材上提供的公式进行水跃能量损失和水跃长度的计算。
(5)水跌也是急变流,当水流从缓流向急流过渡时,水深是连续地逐渐减小的。
因此必定在某个位置水深正好等于临界水深h k ,通常这个位置在跌坎和从缓坡转向陡坡的变坡处略靠上游处,但距离很小。
为方便分析起见,我们就认为跌坎和变坡处的水深为临界水深h k ,也就是认为当发生水跌现象时,跌坎或变坡处的水深就是已知水深h k 。
在后面将要讨论的明渠恒定非均匀流水面曲线的分析中,我们把已知水深的断面称为控制断面。
水面线分析就是从已知水深的控制断面为起点,向上游或下游推进。
所以在进行水面曲线分析中,首先需要确定控制断面。
6.10棱柱体明渠恒定非均匀渐变流水面曲线分析(1)棱柱体明渠渐变流水面曲线分析的基本方程是(6—21)(2)明渠水流中存在两条水深线:即正常水深线N —N 和临界水深线K —K ;明渠中存在5种底坡:即缓坡、陡坡、临界坡、平坡和逆坡。
水力学复习资料汇总

第零章绪论0.1水力学的任务与研究对象(了解)水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学.0.2液体的粘滞性(理想液体与实际液体最大的差别)粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力.0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即.0.4牛顿内摩擦定律的另一种表述(了解)P70.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的)0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3)0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑)0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化)0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象.0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,50.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质)0.12把液体看作连续介质的意义如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.0.13理想液体所谓理想液体,就是把液体看作绝对不可压缩,不能膨胀,没有粘滞性,没有表面张力的连续介质.0.14表面力和质量力表面力表面力是作用于液体的表面,并于受作用的的表面面积成比例的力.质量力质量力是指通过所研究液体的每一部分质量而作用与液体的,其大小和液体的质量成比例的力(质量力又称体积力)课后习题0.2第一章水静力学1.1液体在平衡状态下.没有内摩擦力的存在,因此理想液体和实际液体都是一样的,故在静水中没有区分的必要.1.2静水压力静止(或处于平衡状态)的液体作用在与之接触的表面上的水压力称为静水压力,常以表示.1.3静水压强取微小面积,令作用在上的静水压力为,则面上单位面积上所受的平均静水压力为称为面上的平均静水压强,当无限趋近与一点时,比值的极限值定义为该点的静水压强.1.4静水压强的两个重要特性⑴静水压强的方向与受压面垂直并指向受压面(若不垂直,则必存在一个与液面平行的分力,这样必会破坏液体的平衡状态;静水压强若不指向受压面而是背向受压面,则必会受到拉力,同样不能保持平衡状态)⑵作用在同一点上的静水压强相等(推导过程:在平衡液体内分割出一块无限小的四面体,倾斜面的方向任意选取,为简单起见,建立如图所示的坐标系,让四面体的三个棱边与坐标轴平行,并让轴与重力方向平行,各棱边长为,四面体四个表面上受有周围液体的静水压力,因四个作用面的方向各不相同,如果能够证明微小四面体无限缩小至一点时,四个作用面上的静水压强都相等即可.令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力, 令为作用在面上的静水压力.又假定作用在四面体上单位质量力在三个坐标方向的投影为,则总质量力在三个坐标方向的投影分别为…因为液体处于平衡状态,由力的平衡条件得:+若…以分别表示四面体四个面的面积,则…将上式都除以,并且有化简可得,上式中分别表示面上的平均静水压强, ,如果微小四面体无限缩小至一点时,均趋近于0,对上式取极限有,同理可证,故作用在同一点上的静水压强相等)1.5等压面在平衡液体中可以找到这样一些点,他们具有相同的静水压力,这些点连成的面称为等压面(对于静止的液体其等压面是水平面,对于处于相对平衡的液体,其等压面与自由液面平行,例如称有液体的圆柱形容器绕桶轴做等角速度旋转,其等压面就是抛物面)1.6等压面的两个性质⑴在平衡液体中等压面即为等势面.⑵等压面与质量力正交.1.7绝对压强和相对压强绝对压强以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强.相对压强把当地大气压作为零点剂量的压强,称为相对压强.1.8P29图1.11中各字母表示的含义1.9真空及真空度真空当液体中某点的绝对压强小于当地大气压强,即相对压强为负值时,就称该点存在真空.真空度真空度是指该点绝对压强小于当地大气压强的数值.(例题1.4 1.5 .16) 1.10压强的液柱表示法1.11水头与单位势能1.12液体的平衡微分方程式(欧拉平衡微分方程式)的推导过程P20,以及重力作用下静水压强的基本公式的推导过程P24.1.13压强的测量(各种压差计的计算)计算中找等压面须注意:①若为连续液体,高度相等的面即为等压面.②若为不连续液体(如液体被阀门隔开或者一个水平面穿过了不同介质,则高度相等的面不是等压面③两种液体的接触面是等压面.1.14作用于矩形平面上的静水总压力,为压强分布图面积.(压力中心的位置:当压强为三角形分布时, 压力中心离底部距离为当压强分布为梯形分布时,压力中心离底部距离为)1.15作用于曲面上的静水总压力分为水平方向和竖直方向计算,水平方向方法同作用于矩形平面上的静水总压力(将曲面投影在方向的图形即为矩形,则=为形心点处的压强),竖直方向需画出压力体(压力体包括六个面:曲面本身,自由液面或者其延长面,曲面四个边延长至自由液面的四个面.这里注意自由液面必须是只受到大气压强作用的液面),则,其中为压力体的体积.1.16几种质量力同时作用下的液体平衡1.17作用于物体上的静水总压力,潜体与浮力的平衡及其稳定性第二章液体运动的流束理论2.1描述液体运动的两种方法(拉格朗日法和欧拉法)P632.2流线和迹线迹线某一液体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,即迹线就是液体质点运动时所走过的轨迹线流线它是某一瞬时在流场中绘出的一条曲线,在该曲线上所有点的速度向量都与该曲线相切,所以流线表示除了瞬间的流动方向.流线的基本特性P672.3恒定流与非恒定流恒定流如果在流场中所有的运动要素都不随时间而改变,这种水流称为恒定流(也就是说,在恒定流的情况下,任一空间点上,无论哪个液体质点通过,其运动要素都是不变的.运动要素仅仅是空间坐标的函数,而与时间无关)非恒定流如果在流场中所有的运动要素都是随时间而改变的这种水流称为非恒定流.注:本章只研究恒定流.2.4流管在水流中任意取一微分面积,通过该面积周界上的每一给点,均可以作一根直线,这样就构成了一个封闭的管状曲面,称为流管.2.5微小流束充满以流管为边界的一束液流称为微小流束(按照流线不能相交的特性,微小流束内的液体不会穿过流管的管壁向外流动,流管外的液体也不会穿过流管的管壁向流束内流动,当水流为恒定流时,微小流束的形状和位置不会随时间而改变,在非恒定流中,微小流束的形状和位置将随时间而改变.微小流束的很横断面积是很小的,一般在其横断面上各点的流速或动水压强可看作是相等的)2.6总流任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流(总流可以看作由无限多个微小流束所组成)2.7过水断面与微小流束或总流的流线成正交的横断面称为过水断面.2.8流量2.9均匀流与非均匀流均匀流当水流的流线为相互平行的直线时,该水流称为均匀流(直径不变的管道中的水流就是均匀流的典型例子)非均匀流若水流的流线不是相互平行的直线时,该水流称为非均匀流.如果流线虽然相互平行但不是直线(如管径不变的弯管中的水流)或者流线虽直线但不相互平行(如管径沿程缓慢均匀扩散或收缩的渐变管中的水流)都属于非均匀流.2.10均匀流的特性⑴均匀流的过水断面为平面,且过水断面的形状和尺寸沿程不变⑵均匀流中,同一流线上不同点的流速相等⑶均匀流过水断面上的动水压强分布规律与静水压分布规律相同2.11均匀流过水断面上的动水压强分布规律与静水压分布规律相同的推导过程2.12渐变流和急变流渐变流当水流的流线虽然不是相互平行的直线,但几乎近于平行直线称为渐变流急变流若水流的流线之间夹角很大或者流线的曲率半径很小,这话水流称为急变流.2.13恒定总流连续性方程的推导P712.14理想液体恒定流微小流束能量方程的推导P722.15实际液体恒定总流的能量方程的推导P782.15恒定总流动量方程的推导P94第三章液流形态及水头损失3.1沿程水头损失和局部水头损失沿程水头损失在固体边界平直且无障碍物的水道中,单位重量的液体自一断面流至另一断面所损失的机械能叫做沿程水头损失,常用表示.局部水头损失当固体边界发生改变或液体遇到障碍物时,由于边界或障碍物的作用使液体质点相对运动加强,内摩擦增加,产生较大的能量损失,这种发生在局部范围之内的能量损失叫做局部水头损失,常用表示.(就液体内部的物理作用来说,水头损失不论其产生的外因如何,都是因为液体内部质点之间有相对运动,因粘滞性的作用产生切应力的结果)当固体边界发生改变或液体遇到障碍物时,为什么会产生局部水头损失(了解)P1203.2影响水头损失的液流边界条件3.2.1横向条件(过水段面积,湿周和水力半径)湿周液流过水断面与固体边界接触的周界线叫做湿周,常用表示.(当过水段面积相等时,周长不一定相等,水与固体边界的接触要长些,故湿周对水损会产生影响,同样,当湿周相等时, 过水段面积不一定相等,通过同样大小的流量水损也不一定相等,故用水力半径来表征过水断面的水力特征)水力半径过水段面积与湿周的比值称为水力半径,即 .3.2.2纵向条件P1233.3均匀流时无局部水头损失,非均匀渐变流时局部水头损失可以忽略不计,非均匀急变流时两种水头损失均有(知道).3.4均匀流沿程水头损失与切应力的关系,以及半径为r处的(圆管中)切应力计算公式的推导P1323.5计算均匀流沿程水头损失的基本公式——达西公式对圆管来说,水力半径 ,故达西公式也可以写做达西公式的推导过程应该不会考3.6层流和紊流层流当留速较小时,各流层的液体质点是有条不紊的运动,互不混杂,这种形态的流动叫层流.紊流当流速较大时,各流层的液体质点形成涡体,在流动过程中,相互混杂,这种形态的流动叫紊流.3.7雷诺试验雷诺试验数据图形(两点三段.两点即上临界流速—水流从层流刚刚进入到紊流状态的速度和下临界流速—水流从紊流刚刚进入到层流状态的速度.三段即层流,过渡区,紊流所对应的曲线段.)P1293.8根据雷诺实验的结果,层流时雷诺试验图形为一条直线,即沿程水损v呈线性的一次方关系,但是由达西公式知与v是平方关系,试解释其原因.P1323.9雷诺数的物理意义(为什么雷诺数可以判别液流形态)P1313.10为什么采用下临界雷诺数而不采用上临界雷诺数来判断水流的型态这是因为经大量试验证明,圆管中下临界雷诺数是一个比较稳定的数值,其值一般维持在2000左右,但上临界雷诺数是一个不稳定数值(一般在12000-2000),在个别情况下也有高达40000-50000.这要看液体的平静程度和来流有扰动而定,凡雷诺数大于下临界雷诺数的,即使液流原为层流,只要有任何微小的扰动就可以是层流变为紊流.在实际工程中扰动总是存在的,所以上下临界雷诺数之间的液流是极不稳定的,都可以看作紊流,因此判别液流型态以下临界雷诺数为标准:实际雷诺数大于下临界雷诺数的是紊流,小于下临界雷诺数的是层流.3.11雷诺实验虽然都是以圆管液流为研究对象,但其结论对其他边界条件下的液流也是适用的.只是边界条件不同,下临界雷诺数的数值不同而已.例如明渠的雷诺数,其中R为水力半径(知道).3.12紊流的特征P133(4点,后两个特点很重要)3.13粘性底层在紊流中并不是整个液流都是紊流,在紧靠固体边界表面有一层极薄的层流存在该层流层叫粘性底层.3.14沿程阻力系数的变化规律⑴即液体处于层流状态,只与雷诺数有关,而与相对光滑度无关,且⑵即液体处于从层流进入紊流的过渡区,只与雷诺数有关,而与相对光滑度无关.因其范围很窄,实际意义不大.⑶即液流进入紊流状态,这时决定于粘性底层厚度和绝对粗糙度的关系:①当较小时粘性底层较厚,可以淹没,抵消管壁粗糙度对水流的影响,从而只与雷诺数有关,而与相对光滑度无关.②继续增大, 粘性底层厚度相应减薄,一直不能完全淹没, 管壁粗糙度对水流产生影响, 从而既与雷诺数有关,又与相对光滑度有关.③当增大到一定程度时, 粘性底层厚度已经变得很薄,已经不能再抵消管壁粗糙度对水流的影响,这时管壁粗糙度对起主要作用,从而只与相对光滑度有关,而与雷诺数无关.(因这时与v是平方关系,故该区又叫做阻力平方区)3.15谢齐公式和曼宁公式谢齐公式 ,其中J为水力坡度,/l ,R水力半径.曼宁公式 ,其中n为粗糙系数,简称糙率.第四章有压管中的恒定流4.1简单管道简单管道管道直径不变且无分支的管道.4.2自由出流和淹没出流自由出流管道出口水流流入大气,水股四周都受大气压强的作用,称为自由出流淹没出流管道出口如果淹没在水下,则称为淹没出流4.3短管和长管短管管道中若存在较大的局部水头损失,它在总水损中占的比重较大,不能忽略不计的管道称为短管.长管若管道较长,局部水损和流速水头可以忽略不计,这样的管道叫做长管.4.4简单管道的水力计算(以下均属于连续性方程和能量方程的具体应用)总原则首先确定按长管还是短管计算.若按短管计算,则沿程损失,局损和流速水头都要计算;若按长管计算,只需计算沿程损失, 局部水损和流速水头可以忽略不计;在没有把握估计局损的影响程度时,均按短管计算.(先按短管计算,求出具体的沿程损失和局损数值,比较后可确定到底如何计算,若无法确定具体数值一般的,给水管道按长管计算,虹吸管按短管计算,水泵吸水管按短管计算,压水管根据情况而定.4.4.1自由出流和淹没出流的水力计算自由出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果以忽略不计,即公式中的).淹没出流上游存在行近流速,即有一个行近水头,列能量方程需计算在内(但其值一般很小,在计算结果时可以忽略不计,即公式中的). 下游也存在一个流速水头,但由于管道的过水断面积很小,而下游过水断面积很大,水流速度在下游已经变得很小,可以忽略,不需计入能量方程.4.4.2几种基本类型4.4.3虹吸管和水泵装置的水力计算4.4.4串联管道整个管道的水头损失等于各支管水损之和.4.4.5并联管道并联管道一般按长管计算,各支管的水损相等(各支管的水损相等,只表明通过每一并联支管的单位重量液体的机械能损失相等;但各支管的长度,直径及粗糙系数可能不同,因此其流量也不同,股通过各并联支管的总机械能损失是不相等的)4.4.6分叉管道在分叉处分为若干个串联管道进行计算.4.5沿程均匀泄流的水力计算本章的水力计算题均是围绕这能量方程来设计的,所以熟练掌握能量方程的应用,加上对各个类型的管道特点的了解,不用背繁琐的公式也可以解决本章的计算题,当然背下来更好第五章明渠恒定均匀流5.1明渠恒定均匀流(知道)明渠恒定均匀流当明渠水流的运动要素不随时间而变化时,称为明渠恒定流.否则称为明渠非恒定流.明渠恒定流中,如果流线是一簇相互平行的直线,则水深,断面平均流速和流速分布沿程不变,称为明渠恒定均流,否则称为明渠恒定非均匀流.(明渠均匀流中,摩阻力与重力沿水流方向的分力相平衡)5.2矩形,梯形横断面水力要素的计算梯形中,为梯形与水平面的夹角.5.3底坡明渠渠底的纵向倾斜程度称为明渠的底坡, 以符号表示.且,其中为渠底线与水平面的夹角.5.4顺坡,水平和逆坡明渠当明渠渠底沿程降低时,称为顺坡明渠;沿程不变时称为水平明渠;沿程升高时称为逆坡明渠.(在水平明渠中,由于故在其流动过程中,只存在摩阻力;在逆坡明渠中,摩阻力与重力沿水流方向的分力方向一致,因此这两种情况都不可能产生明渠均匀流;只有在顺坡渠道中才可能产生明渠均匀流)5.5明渠恒定均匀流的特性及其产生条件5.6明渠均匀流的计算公式(连续性方程和谢齐公式, 谢齐系数采用曼宁公式) 5.7矩形和梯形水力最佳断面的推导过程5.8允许流速不冲允许流速能够避免渠道遭受冲刷的流速.不於流速能够保证水中悬浮的泥沙不淤积在渠槽的流速.5.9明渠均匀流的水力计算第六章明渠恒定非均匀流6.1明渠非均匀渐变流和明渠非均匀急变流(知道)在明渠非均匀流中,若流线是接近于相互平行的直线,或流线间的夹角很小,流线的曲率半径很大,这种水流称为明渠非均匀渐变流.反之为明渠非均匀急变流.(本章着重研究明渠非均匀渐变流的基本特性及其水力要素沿程变化的规律) 6.2正常水深(知道)因明渠非均匀流的水深沿流程是变化的,为了不致引起混乱,把明渠均匀流的水深称为正常水深.并以表示.6.3明渠水流的三种形态一般明渠水流有三种形态,即缓流,临界流和急流.6.4明渠水流三种形态的判别方法(5种:微波波速法,比能曲线法,Fr法,临界水深法,临界底坡法)6.4.1微波波速法微波波速的描述(了解)P216当 v<,水流为缓流,干扰波能向上游传播;v=,水流为临界流,干扰波恰不能向上游传播;v>,水流为急流,干扰波不能向上游传播.要判别流态,必须首先确定微波传播的相对速度,相对速度的推导过程(了解)P217(如图6.3,对平静断面1-1和波峰所在断面2-2列连续性方程和能量方程.1-1断面流速为,2-2断面流速为,最后令即可得出=,这就是矩形明渠静水中微波传播的相对速度公式.如果明渠为任意形状时,则有=.式中为断面平均水深,A为断面面积,B为水面宽度.在实际工程中水流都是流动的,设水流断面平均流速为v,则微波传播的绝对速度应是静水中的相对波速与水流速度的代数和,即,正号为顺水方向,负号为逆水方向)6.4.2 Fr法当 Fr<1,水流为缓流;Fr=1,水流为临界流;Fr>1,水流为急流.对临界流来说,断面平均流速恰好等于微波相对波速,即,该式可改写为,其中称为弗劳德数,用符号Fr表示.弗劳德数的两个物理意义P2186.4.3比能曲线法断面比能把基准面选在渠底,所计算的单位液体所具有的能量称为断面比能,并以表示.则,在实际应用上,因一般坡底较小,,故常采用 .比能曲线当流量Q和过水断面的形状及尺寸一定时, 断面比能仅仅是水深的函数,按照此函数可以绘出断面比能随水深变化的关系曲线,该曲线称为比能曲线.比能曲线上存在可以使断面比能取最小值的K点.K点把曲线分成上下两支,上支即为缓流所对应的曲线,下支即为急流所对应的曲线.(比能曲线见P220图6.5)比能曲线与弗劳德数的联系()及其推导过程(了解)P2216.4.4临界水深法临界水深相应于断面比能最小值的水深称为临界水深,以表示.当 h> ,Fr<1,水流为缓流;h= ,Fr=1,水流为临界流;h< ,Fr>1,水流为急流.临界水深的计算在矩形断面明渠中,临界流的流速水头是临界水深的1/2,而临界水深则是最小断面比能的2/3.(原题)P221(将.对水深h求导,并令其等于0.得,规定对应于临界水深的水利要素以脚标K,则.对于矩形断面明渠, ,代入得 ,即临界流的流速水头是临界水深的1/2.再代入 ,得,即临界水深是最小断面比能的2/3.断面为任意形状时,临界水深的计算(了解)见P222(试算法和图解法)重要例题:例题6.16.4.5临界底坡法(只适用于均匀流)第七章水跃7.1水跃当明渠中的水流又急流状态过渡到缓流状态时,会产生一种水面突然跃起的特殊局部水力现象,即在较短的渠道内水深从小于临界水深急剧的跃到大于临界水深.这种特殊的局部水力现象称为水跃.跃高跃后水深与跃前水深之差跃长跃前断面至跃后断面的水平距离完全水跃有表面旋滚的水跃。
2024版水力学ppt课件

根据计算结果,分析管道的水力性能是否满足设计要求,提出改进建议。
21
减少流动损失措施探讨
优化管道设计
通过合理布置管道走向、减少弯 头数量、选用合适的管径等措施
降低沿程损失和局部损失。
采用高效节能设备
选用低阻力阀门、高效水泵等设 备降低流动损失。
2024/1/25
加强管道维护管理
定期清洗管道内壁、更换损坏的 管道附件等措施保持管道畅通, 减少流动阻力。
03
特性比较
恒定流具有稳定的流动特性,便于分析和计算;非恒定流 的流动特性复杂多变,需要采用动态分析方法。
15
流线、迹线和染色线概念辨析
流线
在某一瞬时,流场中每一点都与 速度矢量相切的曲线。流线反映 了该瞬时流场中速度的分布状况。
2024/1/25
迹线
某一质点在流动过程中不同时刻所 在位置的连线。迹线反映了该质点 在流动过程中的运动轨迹。
判别方法
通过计算雷诺数Re来判断流动类型。当Re小于临界雷诺数Rec时,流动为层流;当 Re大于Rec时,流动为湍流。
2024/1/25
14
恒定流与非恒定流特性比较
01
恒定流
流场中各点的流速、压强等流动参数不随时间变化,即流 动处于稳定状态。
2024/1/25
02
非恒定流
流场中各点的流速、压强等流动参数随时间变化,即流动 处于不稳定状态。
7
02 流体静力学分析
2024/1/25
8
静止液体中压强分布规律
液体内部压强随深度 的增加而增大。
液体的压强与液体的 密度和深度有关,密 度越大、深度越深, 压强越大。
2024/1/25
在同一深度,液体向 各个方向的压强相等。
水力学辅导材料

水力学辅导材料一、是非题(正确的划“√”,错误的划“×)1、理想液体就是不考虑粘滞性的实际不存在的理想化的液体。
(√)2、图中矩形面板所受静水总压力的作用点与受压面的形心点O重合。
(×)3、园管中层流的雷诺数必然大于3000。
(×)4、明槽水流的急流和缓流是用Fr判别的,当Fr>1为急流。
(√)5、水流总是从压强大的地方向压强小的地方流动。
(×)6、水流总是从流速大的地方向流速小的地方流动。
(×)6、达西定律适用于所有的渗流。
(×)7、闸孔出流的流量与闸前水头的1/2次方成正比。
(√)8、渐变流过水断面上各点的测压管水头都相同。
(√)9、粘滞性是引起液流运动能量损失的根本原因。
(√)10、直立平板静水总压力的作用点就是平板的形心。
(×)11、层流的沿程水头损失系数仅与雷诺数有关。
(√)12、陡坡上出现均匀流必为急流,缓坡上出现均匀流必为缓流。
(√)13、在作用水头相同的条件下,孔口的流量系数比等直径的管嘴流量系数大。
(×)14、两条明渠的断面形状、尺寸、糙率和通过的流量完全相等,但底坡不同,因此它们的正常水深不等。
(√)15、直立平板静水总压力的作用点与平板的形心不重合。
(√)16、水力粗糙管道是表示管道的边壁比较粗糙。
(×)17、水头损失可以区分为沿程水头损失和局部水头损失。
(√)18、牛顿内摩擦定律适用于所有的液体。
(×)19、静止液体中同一点各方向的静水压强数值相等。
(√)20、明渠过流断面上各点的流速都是相等的。
(×)21、缓坡上可以出现均匀的急流。
(√)22、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50 kPa。
(√)24、满宁公式只能适用于紊流阻力平方区。
(√)25、水深相同的静止水面一定是等压面。
(√)26、恒定流一定是均匀流,层流也一定是均匀流。
(×)27、紊流光滑区的沿程水头损失系数仅与雷诺数有关。
水力学_第7章 明渠流动

2
2
例如,人工开凿的大部分渠道
3
3
A f (h)
非棱柱体渠道 •断面形状
1 棱 柱 体 非 棱 柱 非棱柱体(纽面) 体 棱 柱 体 1
•尺寸
沿程改变
•底坡
•糙率
渠道弯曲
2
2
例如,天然河道
人工渠道连接段(扭面)
3
3
A f (h, l )
1
棱 柱 体
非 棱 柱 非棱柱体(纽面) 体 棱 柱 体
一种人工修建、或自然形成的渠
明渠流
有自由面(液面处为大气压强)。明 渠流又称无压流。
当液体通过明渠流动时,形成与大气相接触的自由水面,
表面各点压强均为大气压强,故明渠流为无压流。 明渠流特点: ①具有自由水面(水面压强为大气压),重力是流动的 主要动力;
②底坡的改变对断面流速和水深有直接影响;
③局部边界的变化引起水深在很长的流程上发生变化;
7.2.4 水力计算
校核渠道的过流能力 求水深 求底宽 求底坡
设计断面尺寸
校核渠道的过流能力
已知断面形状、b、h、m、底坡 i、糙率n
校核流量 Q
一电站已建引水渠
超高
为梯形断面, m =1.5,
底宽b=35m,n = 0.03, i =1/6500,渠底到堤顶 高程差为3.2m,电站引水流量 Q = 67m3/s。因工业发
77.4-67.0 =10.4 m3/s
3.2
m =1.5 b
求底坡
已知Q、n,m,n,h、b、求i
Q2 i 2 2 C A R
方法:直接计算
求底坡
例 一矩形断面渡槽,b = 2.0m,槽长l =120.m 进口处槽底高程 z1= 50.0m,槽身为预制混凝土 n = 0.013,设计流量 Q =10.0m3/s,槽中水深为
水力学(B)网上教学活动文本(20070617)
水力学(B)网上教学活动文本(2007.06.17)陈丽:大家好,今天的活动开始了!晁雄剑:老师好!您真忙啊!刚刚辅导完就来辅导我们的了!辛苦啊!陈丽:欢迎!晁雄剑:老师说说今年的考试题型吧?陈丽:判断、单选、简答、计算。
陈丽:判断2*8=16单选3*6=18简答5*2=10计算 5小题,共56分。
晁雄剑:简答题的范围是不是就是形成性考核成绩册里的啊?陈丽:可能会有,但是应该不止是形成性考核册里那些简答题。
晁雄剑:有没有具体范围啊?陈丽:都是比较基本的题。
晁雄剑:昨天领到了统一下发的A4纸,比我想象中的残酷啊!因为它还有密封线啊?还留有那么多的空余啊?陈丽:没关系,只用记一些公式和定理、概念就行了。
高晓琴:陈老师好!太累了陈丽:高老师好,您今天一天都没休息呀。
高晓琴:下学期改改吧陈丽:是的,下学期改为工作日的晚上。
晁雄剑:老师,咱们这个上传复习资料吗?真的希望能有复习资料作为参考!陈丽:1.教材2.形成性考核册3.考核说明4.综合练习5.水力学网络辅导材料(01年版,但是包括了课程重点内容,大家复习时仍然可以参考)晁雄剑:综合练习和考核说明是不是还没有上传呢?或者采用05届的?陈丽:考核说明在教学文件里下载,已经有了,是06.10.28日上传的。
一般来说,考核说明不会轻易变的,修订的话要经过专家重新审定。
晁雄剑:这道题考试中有吗?是“平面上的”还是“曲面上的”?陈丽:平面和曲面的都要求掌握,计算题考的可能性较大。
晁雄剑:那哪个对于今年的考试是最为重点?陈丽:曲面不就是分解成水平和铅直吗,不是很难,都掌握一下吧。
书上有例题的。
水力学综合练习1一、是非题 ( 每小题3分, 共24分)你认为正确的在题干后括号内划“√”,反之划“╳”。
1.理想液体是不考虑粘滞性的理想化的液体。
()2.静止液体中同一点各方向的静水压强数值相等。
()3.图中矩形面板上的静水总压力作用点D与受压面的形心点C重合。
()4.根据能量方程,水流总是从流速大的地方向流速小的地方流动。
水力学教学辅导
水力学教学辅导第6章 明槽恒定流动(1)【教学基本要求】1、了解明槽水流的分类和特征,了解棱柱体渠道的概念,掌握明槽底坡的概念和梯形断面明渠的几何特征和水力要素。
2、了解明槽均匀流的特点和形成条件,熟练掌握明槽均匀流公式,并能应用它来进行明渠均匀流水力计算。
3、理解水力最佳断面和允许流速的概念,掌握水力最佳断面的条件和允许流速的确定方法,学会正确选择明渠的糙率n 值。
4、掌握明槽均匀流水力设计的类型和计算方法,能进行过流能力和正常水深的计算,能设计渠道的断面尺寸。
5、掌握明渠水流三种流态(急流、缓流、临界流)的运动特征和判别明渠水流流态的方法,理解佛汝德数Fr 的物理意义。
6、理解断面比能、临界水深、临界底坡的概念和特性,掌握矩形断面明渠临界水深h k 的计算公式和其它形状断面临界水深的计算方法。
【内容提要和学习指导】这一章是工程水力学部分内容最丰富也是实际应用最广泛的一章。
本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析和计算,这部分也是本章的难点;水跃的特性和共轭水深计算。
学习中应围绕这4个重点,掌握相关的基本概念和计算公式。
这一讲我们讨论前2个问题,后面2个问题将放在第7讲讨论。
明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件和渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。
6.1 明槽和明槽水流的几何特征和分类(1) 明槽水流的分类 明槽恒定均匀流明槽恒定非均匀流明槽非恒定非均匀流明槽非恒定均匀流在自然界是不可能出现的。
明槽非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。
(2) 明槽梯形断面水力要素的计算公式:水面宽度 B = b +2 mh (6—1) 过水断面面积 A =(b + mh )h (6—2) 湿周 (6—3) 水力半径 (6—4) 式中:b 为梯形断面底宽,m 为梯形断面边坡系数,h 为梯形断面水深。
水力学网上辅导材料7.
水力学网上辅导材料7:一、第6章 明渠恒定流动(2)【教学基本要求】1、了解水跃和水跌现象,掌握共轭水深的计算,特别是矩形断明渠面共轭水深计算。
2、能进行水跃能量损失和水跃长度的计算。
3、掌握棱柱体渠道水面曲线的分类、分区和变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
4、能进行水面线定量计算。
5、了解缓流弯道水流的运动特征。
【内容提要和学习指导】6.9水跃和水跌(1)水流从缓流向急流过渡,水面经过临界水深h k ,形成水跌现象。
水跌经常发生在跌坎处、由缓坡向陡坡过渡及水流由水库进入陡坡渠道等地方。
水流从急流跨过临界水深h k 变成缓流,形成急剧翻滚的旋涡,这种水力突变现象称为水跃,常发生在闸、坝的下游和由陡坡向缓坡的过渡。
(2)水跃存在急剧翻滚的表面旋涡要消耗大量的能量,是水利工程中经常采用的一种消耗水流多余能量的方式。
(3)在棱柱体水平明渠中,水跃的基本方程式为(6—17) 即 J (h 1)=J (h 2) (6—18) J (h )称为水跃函数,水跃方程表明跃前断面的水跃函数值等于跃后断面的水跃函数值。
我们把满足水跃方程的跃前断面水深h 1和跃后断面水深h 2称为一对共轭水深,。
(4)水跃共轭水深的计算是这一部分的重点。
对于一般形状断面的明渠可以采用试算法和图解法。
矩形断面明渠的共轭水深计算依据下列公式(要求掌握并记住)。
(6—19) 或 (6—20)请注意:根据水跃函数曲线,跃前断面水深越小,,跃后断面的水深越大。
同时还要求能依据教材上提供的公式进行水跃能量损失和水跃长度的计算。
22221211gA Q c h A gA Q c h A +=+]181[21222-+=Fr h h ]181[22112-+=Fr hh(5)水跌也是急变流,当水流从缓流向急流过渡时,水深是连续地逐渐减小的。
因此必定在某个位置水深正好等于临界水深h k ,通常这个位置在跌坎和从缓坡转向陡坡的变坡处略靠上游处,但距离很小。
辅导1
水力学网上辅导材料1:一、水力学学习方法指导水力学是中央广播电视大学水利水电工程与管理专业(专科)必修的一门主要技术基础课,是研究以水为代表的液体平衡和机械运动的规律,以及这些规律在工程中的应用。
通过本课程的学习,要求学员掌握水流运动的基本概念和基本理论,能正确区分不同水流的运动状态和特点;掌握水流运动的基本规律;能进行水力荷载的确定、过水能力和过流建筑物尺寸的水力计算,以及水流衔接和消能的水力设计,了解水流运动要素的量测方法,为今后学习专业课程、从事专业技术工作打下良好的基础。
学员们使用的是由李国庆主编的2006年修订版水力学教材。
在学习前,学员要先明确本章学习重点和主要内容,学习完每一章后,要进行小结,并用思考题检查对理论和概念的掌握程度,通过习题练习,掌握水力计算方法。
在学习遇到疑难问题,可以通过信件或网上联系,由教师进行答疑。
对于工作中遇到的实际工程水力学问题,也欢迎来信来电联系。
认真完成习题是加深理解基本概念,掌握分析和计算方法,培养提高解决实际问题能力的重要环节。
应认真、独立完成思考题和规定的形成性考核手册。
解题要审明题意,明确已知条件和要求的水力参数,绘出简图,理顺解题思路,确定应用的公式、图表,做到分析有依据,计算准确,步骤清楚,书写整洁,答案完整。
习题解题过程应包括:已知条件、所求的问题、简图和求解过程。
求解过程应包括引用的公式及其编号、必要的坐标、计算过程及答案,还要注意物理量的单位。
计算的程序为:计算公式未知量表达式代入数据重要计算过程答案。
还需要强调的是,在练习题中通常把基本条件和参数都告诉了你,根据这些已知条件你可以直接进行分析和计算。
但是在实际工作中这些基本条件和参数需要靠自己去收集、整理和选择。
因此,当你在工作中遇到有关水力学问题时,首先要收集基本资料和计算条件,并能正确选择各种参数和系数,并在实际工作中不断积累经验。
错误的选择会得到不合理的结果。
水力学是实践性很强的学科,实验是学习水力学课程的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水力学网上辅导材料7: 一、第6章 明渠恒定流动(2) 【教学基本要求】1、了解水跃和水跌现象,掌握共轭水深的计算,特别是矩形断明渠面共轭水深计算。
2、能进行水跃能量损失和水跃长度的计算。
3、掌握棱柱体渠道水面曲线的分类、分区和变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
4、能进行水面线定量计算。
5、了解缓流弯道水流的运动特征。
【内容提要和学习指导】 6.9水跃和水跌(1)水流从缓流向急流过渡,水面经过临界水深h k ,形成水跌现象。
水跌经常发生在跌坎处、由缓坡向陡坡过渡及水流由水库进入陡坡渠道等地方。
水流从急流跨过临界水深h k 变成缓流,形成急剧翻滚的旋涡,这种水力突变现象称为水跃,常发生在闸、坝的下游和由陡坡向缓坡的过渡。
(2)水跃存在急剧翻滚的表面旋涡要消耗大量的能量,是水利工程中经常采用的一种消耗水流多余能量的方式。
(3)在棱柱体水平明渠中,水跃的基本方程式为(6—17)即 J (h 1)=J (h 2) (6—18) J (h )称为水跃函数,水跃方程表明跃前断面的水跃函数值等于跃后断面的水跃函数值。
我们把满足水跃方程的跃前断面水深h 1和跃后断面水深h 2称为一对共轭水深,。
(4)水跃共轭水深的计算是这一部分的重点。
对于一般形状断面的明渠可以采用试算法和图解法。
矩形断面明渠的共轭水深计算依据下列公式(要求掌握并记住)。
(6—19)或 (6—20)请注意:根据水跃函数曲线,跃前断面水深越小,,跃后断面的水深越大。
同时还要求能依据教材上提供的公式进行水跃能量损失和水跃长度的计算。
22221211gA Q c h A gA Q c h A +=+]181[21222-+=Fr h h ]181[22112-+=Fr hh(5)水跌也是急变流,当水流从缓流向急流过渡时,水深是连续地逐渐减小的。
因此必定在某个位置水深正好等于临界水深h k ,通常这个位置在跌坎和从缓坡转向陡坡的变坡处略靠上游处,但距离很小。
为方便分析起见,我们就认为跌坎和变坡处的水深为临界水深h k ,也就是认为当发生水跌现象时,跌坎或变坡处的水深就是已知水深h k 。
在后面将要讨论的明渠恒定非均匀流水面曲线的分析中,我们把已知水深的断面称为控制断面。
水面线分析就是从已知水深的控制断面为起点,向上游或下游推进。
所以在进行水面曲线分析中,首先需要确定控制断面。
6.10棱柱体明渠恒定非均匀渐变流水面曲线分析(1)棱柱体明渠渐变流水面曲线分析的基本方程是(6—21)(2)明渠水流中存在两条水深线:即正常水深线N —N 和临界水深线K —K ;明渠中存在5种底坡:即缓坡、陡坡、临界坡、平坡和逆坡。
两条水深线把每一种底坡明渠的流动空间划分为2~3个流区,每个流区内能够形成一条水面曲线,因此共有12条不同型式的水面曲线,见图6—1。
为了区分不同的水面线,给每一条水面线标记代号,我们规定:在两条水深线之上、之间、之下的流区分别定义为a 、b 、c 区,用下标1、2、3、0和上角标“′”分别表示缓坡、陡坡、临界坡、平坡和逆坡。
同时定义水深沿流程增加的水面线为壅水曲线,水深沿流程减小的水面线为降水曲线。
(3)根据(6—21)式分析,可以得到棱柱体明渠12条水面曲线,见图6—1所示。
这12条水面线存在如下规律:22Fr12--=K Qi dsdh图6—1a ) 凡是a 、c 区的水面线必定是壅水曲线,凡是b 区的水面线一定是降水曲线。
b ) 正坡长直渠道的上下游相当远的地方可以看作是均匀流,其水深等于正常水深。
c ) 水面线趋近于临界水深线K —K 时,趋向于与K —K 线正交,即会发生水跃或水跌。
水面线趋近于正常水深线N —N 时,会向N —N 线渐近。
d ) a 型水面线的下游和b 0、b '型水面线的上游都渐近于水平线。
e )因为外界干扰在急流中不能向上游传播,所以急流的控制断面在上游;而缓流正好相反,它的控制断面在下游。
f )当两段底坡不同的渠道,它们的水面线相连接时,按下列情况去分析: i )从缓流向急流过渡会形成水跌,由急流向缓流过渡必定会产生水跃。
ii )由缓流向缓流过渡只影响上游,下游仍为均匀流;由急流向急流过渡只影响下游,上游仍为均匀流。
iii )临界底坡中水流的流动形态,要根据相邻渠道的底坡来确定。
如果上游渠道为缓坡,则可当作从缓流到缓流过度,只影响上游;若上游渠道为陡坡,则当作从急流过度到急流,只影响下游临界坡上的水流。
请注意:在实际工程设计中,要避免出现临界坡,因为这种底坡渠道内的水流极不稳定。
iv )当渠道中有建筑物时,已知经过建筑物水流水深处的断面也是水面线分析中的控制断面,如堰、闸出流的收缩水深处的断面。
(4)定性分析水面曲线的步骤a )求出渠道正常水深h 0和临界水深h k ,然后将渠道的流动空间分区。
需要注意:只有在正坡渠道中才存在h 0,而且随着底坡i 的增大,正常水深h 0将减小;而临界水深h k 是与底坡i 无关的。
b )选择已知水深的断面作为控制断面。
c )由控制断面处的已知水深确定所在流区的水面线形式,根据水面线变化规律,从控制断面分别向上游或下游确定水面线的变化趋势。
水面线分析过程可以参见教材中的实例。
6.11明渠恒定非均匀渐变流水面曲线的计算(1)计算水面曲线的基本方程(6—22)采用分段求和法的差分方程形式为(6—23)J i R C i K Qi dS dEs-=-=-=2222υJ i E E Ji E S susd s --=-∆=∆式中E sd 和E su 分别表示流段下游和上游断面上的断面比能,J 为△S 流段的平均水力坡度。
(2)应用差分方程(6—23)式计算水面曲线的步骤如下:a )定性分析棱柱体渠道的水面曲线,确定是壅水曲线还是降水曲线。
非棱柱渠道不用分析。
b )确定控制断面水深,缓流自下向上游计算,急流自上向下游计算。
c )将渠道分成若干渠段,根据水面线分析,假设与已知水深断面相邻断面的水深h i ,且一般取两水深差值△h =0.1~0.3 m 。
d )对某一个流段按下面过程计算△S 。
已知h d (或h u )→E sd (E su ) 假设h u (或h d)→E su (E sd ) 由 h d →C d 、R d 、V d →J d 由 h u →C u 、R u 、V u →J ue )将所计算流段的假设水深h u (或h d )作为下一个流段的已知水深h d (或h u )。
重复d )步骤计算,即可求出水面线各断面处的水深。
f )按一定比例绘制出水面曲线h =f (S )。
(3)水面曲线的计算还可以采用水力指数法和数值积分法,目前最常用的还是上述分段求和法。
分段求和法可以采用通用程进行计算。
水面曲线计算的实例请阅读教材中的例6—13。
6.12弯道缓流的运动特性(1)弯道水流受到离心惯性力的作用,过水断面存在横向水面坡度或者称为横向超高Δh ,即凹岸侧水面高,凸岸处水面低。
在河流弯道整治规划设计中,要考虑横向超高对弯道两岸堤防高程的影响。
(2)水流在流经弯道时,由于重力和离心力的共同作用,断面内形成横向环流,也称为副流。
横向环流与纵向主流运动的叠加,使弯道水流呈螺旋流运动状态。
弯道横向环流运动,加剧了泥沙在横断面上的输移,使得凹岸不断被冲刷、凸岸不断发生淤积,增加了河道的弯曲程度,危及堤岸的稳定与安全,同时会影响航道、引水工程的正常运行。
因此,在河道管理中需对弯道水流特别加以关注。
此外,我们也利用弯道水流的水沙运动特性,把引水口门设在凹岸,这样在引水的同时可以尽量减少引沙,从而可以减少引水渠系的泥沙淤积。
susd E E s E-=∆)(21uJdJJ +=Ji E S s -∆=∆【思 考 题】6—12 试叙述水跃的特征和产生的条件。
6—13 如何计算矩形断面明渠水跃的共轭水深?在其它条件相同的情况下,当跃前水深发生变化时,跃后水深如何变化?6—14 在分析棱柱体渠道非均匀流水面曲线时,怎样分区?怎样确定控制水深?怎样判断水面线变化趋势?6—15 棱柱体渠道非均匀流水面曲线的分析和衔接的基本规律是什么? 6—16 叙述弯道水流的运动特性和它的危害和有利的方面。
【解 题 指 导】思6—13提示:在其它条件相同的情况下,跃前水深越小(即Fr 1越大),则跃后水深越大;反之,跃前水深越大,则跃后水深越小。
例题6—3 某矩形断面渠道在水平底板上设置平板闸门,矩形断面渠道的宽度为b =5.0 m 。
当闸门局部开启时,通过的流量Q = 20.4 m 3/s ,出闸水深为h 1 = 0.62 m ,如果要求在出闸水深h 1 = 0.62 m 处发生水跃,试计算闸下游渠道内的水深h 2。
解:渠道中的单宽流量为 q =54.20=b Q = 4.08 m 3/s ·m取动能修正系数α= 1.0,临界水深为 h k =19.18.908.43232==gqm∵ h 1 < h k ,∴闸下水流是急流。
跃前水深h 1 = 0.62 m ,跃后水深为h 2 = 05.2162.08.908.481262.01812323121=⎪⎪⎭⎫ ⎝⎛-⨯⨯+=⎪⎪⎭⎫ ⎝⎛-+gh qh m 即要求闸下游渠道内的水深为2.05m 。
例题6—4 定性绘出图示棱柱形明渠内的水面曲线,并注明曲线名称及流态。
(各解:上述两图的水面线如下图所示。
首先将正常水深线和临界水深线标注上,然后确定水深已知的控制断面,根据水面线分析的规律绘制相应的水面线。