《线性代数与概率统计》课堂作业题目答案(完整版)-.03

合集下载

线性代数与概率统计试卷与答案

线性代数与概率统计试卷与答案

一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。

下半年华工继续教育线性代数与概率统计随堂练习参考答案

下半年华工继续教育线性代数与概率统计随堂练习参考答案

1.(单项选择题 ) 计算?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: A问题分析:2.(单项选择题 )队列式?A. 3;B. 4;C. 5;D. 6.答题: A. B. C. D.(已提交)参照答案: B问题分析:3. ( 单项选择题 )计算队列式. A. 12;B. 18;C. 24;D. 26.答题: A. B. C. D.(已提交)参照答案: B问题分析:4. ( 单项选择题 )利用队列式定义计算n 阶队列式:=? A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: C问题分析:5. ( 单项选择题 )计算队列式睁开式中,的系数。

A. 1, 4;B. 1,-4;C. -1 ,4;D. -1 ,-4.答题: A. B. C. D.(已提交)参照答案: B问题分析:6. ( 单项选择题 )计算队列式=?A. -8;B. -7;C. -6;D. -5.答题: A. B. C. D.(已提交)参照答案: B问题分析:7. ( 单项选择题 )计算队列式=?A. 130 ;B. 140;C. 150;D. 160.答题: A. B. C. D.(已提交)参照答案: D问题分析:8. ( 单项选择题 )四阶队列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: D问题分析:9. ( 单项选择题 )队列式=?A.;B.;C.;D..答题: A. B. C. D.(已提交)参照答案: B问题分析:10. (单项选择题 )已知,则?A. 6m;B. -6m;C. 12m;D. -12m.答题: A. B. C. D.(已提交)参照答案: A11.(单项选择题)设=,则?A. 15|A|;B. 16|A|;C. 17|A|;D. 18|A|.答题: A. B. C. D.(已提交)参照答案: D问题分析:12. ( 单项选择题 )设矩阵,求=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: B问题分析:13. ( 单项选择题 )计算队列式=?A. -1500;B. 0;C. -1800;D. -1200.答题: A. B. C. D.(已提交)参照答案: C问题分析:14. ( 单项选择题 )齐次线性方程组有非零解,则=?A. -1;B. 0;C. 1;D. 2.答题: A. B. C. D.(已提交)参照答案: C问题分析:15. ( 单项选择题 )齐次线性方程组有非零解的条件是=?A.1或-3 ;B.1或3 ;C.-1或3 ;D.-1或-3 .答题: A. B. C. D.(已提交)参照答案: A问题分析:16. ( 单项选择题 )假如非线性方程组系数队列式,那么,以下正确的结论是哪个?A.无解 ;B.独一解 ;C.一个零解和一个非零解;D.无量多个解 .答题: A. B. C. D.(已提交)参照答案: B问题分析:17. ( 单项选择题 )假如齐次线性方程组的系数队列式,那么,下列正确的结论是哪个?A.只有零解 ;B.只有非零解 ;C.既有零解,也有非零解;D.有无量多个解.答题: A. B. C. D.(已提交)参照答案: A问题分析:18. ( 单项选择题 )齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它必定有___ 解。

2017线性代数与概率统计随堂练习答案(精编文档).doc

2017线性代数与概率统计随堂练习答案(精编文档).doc

【最新整理,下载后即可编辑】1.(单选题) 计算?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:A2.(单选题) 行列式?A.3;B.4;C.5;D.6.答题: A. B. C. D. (已提交)参考答案:B3.(单选题) 计算行列式.A.12;B.18;C.24;D.26.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 利用行列式定义计算n阶行列式:=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4.答题: A. B. C. D. (已提交)参考答案:B问题解析:6.(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 计算行列式=?A.130 ;B.140;C.150;D.160.答题: A. B. C. D. (已提交)参考答案:D问题解析:8.(单选题) 四阶行列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题) 行列式=?A.;B.;C.;D..10.(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|.答题: A. B. C. D. (已提交)12.(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)参考答案:B问题解析:13.(单选题) 计算行列式=? A.-1500;B.0;C.-1800;D.-1200.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(单选题) 齐次线性方程组有非零解,则=?A.-1;15.(单选题) 齐次线性方程组有非零解的条件是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?A.无解;B.唯一解;C.一个零解和一个非零解;D.无穷多个解.17.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

2019线性代数与概率统计随堂练习答案

2019线性代数与概率统计随堂练习答案

第一章行列式•.l二阶与三阶行列式咼十1 工]十21.(单选题)计算也+1阳+2?A •珂一乃;B m;C .码一性D. 2码-兀1参考答案:A11:D =-111=2.(单选题)行列式-1 -11?B1D=3计算行列式2A. 12 ;B . 18 ;C . 24 ;D . 26.参考答案:BA . 2;B . 3;C . 0;A. 3;B . 4;C . 5;D . 6.参考答案:3.(单选题)4.(单选题)计算行列式3 52D =13495参考答案:C第一章行列式勺.2全排列及其逆序数113D =-121=1.(单选题)计算行列式3-13?A. 2;B • 3;C •;D . _3.参考答案:C20 5D =4 1 9=2.(单选题)计算行列式30 4?A. 2;B . 3;C . 0;D •-一.参考答案:D第一章行列式勺.3阶行列式的定义00 0・=・000 ■ ■■00D =■■■-4!0000昭0 (000)00 …0CJ1.(单选题)利用行列式定义,计算n阶行列式:=?A. 一吧…件.JB . 码乜…勺.JC . (-1) 3如6…氓.JD.参考答案:C参考答案:D盂-1 4 3 2r-2 379x2.(单选题)计算行列式 531A • 1,4;B • 1,-4;C • -1 , 4;D . -1 , -4. 参考答案:B 0r-1 展开式中二■-的系数。

第一章 行列式 勺.4行列式的性质 1.(单选题)计算行列式 -8;-7; -6; -5. 参考答案:B 2.(单选题) 计算行列式A . 130 ;B . 140; ■1=?C . 150; 参考答案:D . 160.3.(单选题)四阶行列式的值等于多少?参考答案:BA . 15|A|;B . 16|A|;C . 17|A|;18|A|.参考答案:D31 2 3_A = 1 1 1 ,B = 11 20 -111 1AB2.(单选题)设矩阵1—,求=?A . -1;B . 0;C . 1;D . 2.章行列式 1.5行列式按行(列)展开1.(单选题)FT"1 1 142 1 -1201 102 -貯 ?&3.(单选题) 计算行列式121-2 =?A . -1500;B . 0;C . -1800;D . -1200.参考答案: C第一章行列式勺.6克莱姆法则D 十兀二o五+兄冯+= 02宀"有非零解,则兄=?-1; 0; 1;A •无解;B .唯一解;C •一个零解和一个非零解D •无穷多个解. 参考答案:B1.(单选题)齐次线性方程组D . 参考答案:C 2. 2.(单选题)齐次线性方程组A .1或—3 ;B .1或3 ;C .—1或3 ;D .—1或—3 .参考答案:A珂 _ 兀 _ 兔十滋4 = °_忑+E 十上也_ e ■二°-Z] ++ 工3 -召二 0-12 J 4有非零解的条件是圧=?%眄+吩亏十…十%©空3.(单选题)如果非线性方程组列正确的结论是哪个?L%內F 丹i 卄皿皿系数行列式|D 冲,那么,下5.(单选题)齐次线性方程组血三0总有___解;当它所含方程的个数小于未知量的个数时, 它一定有___解。

2017的线性代数与概率统计随堂练习题目答案详解

2017的线性代数与概率统计随堂练习题目答案详解

1.(单选题) 计算?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:A2.(单选题) 行列式?A.3;B.4;C.5;D.6.答题: A. B. C. D. (已提交)参考答案:B3.(单选题) 计算行列式. A.12;B.18;C.24;D.26.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 利用行列式定义计算n阶行列式:=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4.答题: A. B. C. D. (已提交)参考答案:B问题解析:6.(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 计算行列式=?A.130 ;B.140;A. B. D.参考答案:D8.(单选题) 四阶行列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题) 行列式=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|.答题: A. B. C. D. (已提交)参考答案:D问题解析:12.(单选题) 设矩阵,求=?A.-1;B.0;C.1;A. B. C. D.参考答案:B13.(单选题) 计算行列式=?A.-1500;B.0;C.-1800;D.-1200.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(单选题) 齐次线性方程组有非零解,则=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)参考答案:C问题解析:15.(单选题) 齐次线性方程组有非零解的条件是=?A.1或-3;A. C.参考答案:A16.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?A.无解;B.唯一解;C.一个零解和一个非零解;D.无穷多个解.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

04-线性代数与概率统计随堂练习答案

04-线性代数与概率统计随堂练习答案

计算?(....答题: A. B. C. D.行列式?答题: A. B. C. D.阶行列式:=?( ) ....答题: A. B. C. D.用行列式的定义计算行列式中展开式,的系数。

答题: A. B. C. D.计算行列式=答题: A. B. C. D.计算行列式=答题: A. B. C. D.四阶行列式的值等于(....答题: A. B. C. D.行列式=....答题: A. B. C. D.已知,则?答题: A. B. C. D.设=,则? 答题: A. B. C. D.设矩阵,求=答题: A. B. C. D.计算行列式=?答题: A. B. C. D.齐次线性方程组有非零解,则=答题: A. B. C. D.齐次线性方程组有非零解的条件是=答题: A. B. C. D.齐次线性方程组总有答题: A. B. C. D.设,,求=....答题: A. B. C. D.设矩阵,,为实数,且已知,则的取值分别为?(答题: A. B. C. D.设, 满足, 求=....答题: A. B. C. D.设,,求=....答题: A. B. C. D.如果,则分别为?(答题: A. B. C. D.设,矩阵,定义,则=...答题: A. B. C. D.设,n为正整数,则=.答题: A. B. C. D.设为.为对称矩阵.对任意的为对称矩阵.为对称矩阵.若可换,则为对称矩阵答题: A. B. C. D.设为阶方阵,为阶方阵,且,,,则=....答题: A. B. C. D.下列矩阵中,不是初等矩阵的是:(. B.. D.答题: A. B. C. D.设,求=....答题: A. B. C. D.设,求矩阵=. B.. D.答题: A. B. C. D.设均为....答题: A. B. C. D.设均为.若,则都可逆.若,且可逆,则.若,且可逆,则.若,且,则答题: A. B. C. D.设均为...(.(答题: A. B. C. D.利用初等变化,求的逆. B.. D.答题: A. B. C. D.设,则=?(. B.. D.答题: A. B. C. D.设,是其伴随矩阵,则=. B.. D.答题: A. B. C. D.阶矩阵可逆,且,则=. B.. D.答题: A. B. C. D.阶行列式中元素的代数余子式与余子式之间的关系是....答题: A. B. C. D.设矩阵的秩为.中有一个.中任意一个.中任意一个.中有一个答题: A. B. C. D.初等变换下求下列矩阵的秩,的秩为?(答题: A. B. C. D.求的秩为?(答题: A. B. C. D..,且,则=答题: A. B. C. D.求矩阵的秩答题: A. B. C. D.设,则?....答题: A. B. C. D.用消元法解线性方程组,方程的解为:....答题: A. B. C. D.齐次线性方程组有非零解,则必须满足(....答题: A. B. C. D.已知线性方程组:无解,则=答题: A. B. C. D.非齐次线性方程组中未知量个数为系数矩阵的秩为时,方程组有解时,方程组有唯一解时,方程组有唯一解时,方程组有无穷多个解答题: A. B. C. D.设是矩阵,齐次线性方程组仅有零解的充分条件是(.的列向量组线性相关.的列向量组线性无关.的行向量组线性无关.的行向量组线性无关答题: A. B. C. D.线性方程组:有解的充分必要条件是=..答题: A. B. C. D.求齐次线性方程组的基础解系是(....答题: A. B. C. D.求齐次线性方程组的基础解系为()....答题: A. B. C. D.元非齐次方程组的导出组仅有零解,则()答题: A. B. C. D.设为矩阵,线性方程组的对应导出组为,.若仅有零解,则有唯一解有非零解,则有无穷多解.若有无穷多解,则有非零解.若有无穷多解,则仅有零解答题: A. B. C. D..样本空间为,事件为.样本空间为,事件为.样本空间为,事件为.样本空间为,事件为答题: A. B. C. D..用表示第一次取到数字,第二次取到数字”。

2020春华南理工大学继续教育《线性代数与概率统计》平时作业题目及答案

2020春华南理工大学继续教育《线性代数与概率统计》平时作业题目及答案

,
B
1 1
0 2
,求
AB

BA
.
解 AB= 11
32 11
0 2
=
3 4
4 6
,
BA= 11
0 2
11
2 3
=
1 3
2 8

5.设
f
(x)
2x2
x
1,
A
1
0
1 1 ,求矩阵 A 的多项式 f ( A) .

A2=AA=
1 0
11
1 0
11
=
1 0
2 1

ƒ(A)=2A2-A+E=
2
1 0
12
1 0
11
1 0
0 1
=
2 0
23 。
2 6 3 1 1 3 6.设矩阵 A 1 1 1 , B 1 1 2 ,求 AB .
0 1 1 0 1 1
263
113
解 |A|= 1 1 1 =-5;|B|= 1 1 2 =1;
0 1 1
011
|AB|=|A||B|=-5×1=-5。
1 0 1
7.设
A
r2-4r3
r2↔ r3
2 1 3 1 0 1 1 5 =(A1,B1), 0 0 3 18
|A1|=6≠0[也就是 r(A)=3,r(A)=r(A,B)],所以方程组 A1X =B1 有解。
对矩阵(A1,B1)继续实施初等行变换:
⅓ r3 2 0 2 6 ½ r1
(A1,B1)
x3=-6
4
11.甲、乙二人依次从装有 7 个白球,3 个红球的袋中随机地摸 1 个球,求甲、乙 摸到不同颜色球的概率.

2020线性代数与概率统计随堂练习答案

2020线性代数与概率统计随堂练习答案

1.(单选题) 计算?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:A2.(单选题) 行列式?A.3;B.4;C.5;D.6.答题: A. B. C. D. (已提交)参考答案:B3.(单选题) 计算行列式. A.12;B.18;C.24;D.26.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 利用行列式定义计算n阶行列式:=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题) 计算行列式展开式中,的系数。

A.1, 4;B.1,-4;C.-1,4;D.-1,-4.答题: A. B. C. D. (已提交)参考答案:B问题解析:6.(单选题) 计算行列式=?A.-8;B.-7;C.-6;D.-5.答题: A. B. C. D. (已提交)参考答案:B问题解析:7.(单选题) 计算行列式=?A.130 ;B.140;C.150;D.160.答题: A. B. C. D. (已提交)参考答案:D问题解析:8.(单选题) 四阶行列式的值等于多少?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题) 行列式=?A.;B.;C.;D..答题: A. B. C. D. (已提交)参考答案:B问题解析:10.(单选题) 已知,则?A.6m;B.-6m;C.12m;D.-12m.答题: A. B. C. D. (已提交)参考答案:A问题解析:11.(单选题) 设=,则?A.15|A|;B.16|A|;C.17|A|;D.18|A|.答题: A. B. C. D. (已提交)参考答案:D问题解析:12.(单选题) 设矩阵,求=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)参考答案:B问题解析:13.(单选题) 计算行列式=?A.-1500;B.0;C.-1800;D.-1200.答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(单选题) 齐次线性方程组有非零解,则=?A.-1;B.0;C.1;D.2.答题: A. B. C. D. (已提交)参考答案:C问题解析:15.(单选题) 齐次线性方程组有非零解的条件是=?A.1或-3;B.1或3;C.-1或3;D.-1或-3.答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(单选题) 如果非线性方程组系数行列式,那么,下列正确的结论是哪个?A.无解;B.唯一解;C.一个零解和一个非零解;D.无穷多个解.答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(单选题) 如果齐次线性方程组的系数行列式,那么,下列正确的结论是哪个?A.只有零解;B.只有非零解;C.既有零解,也有非零解;D.有无穷多个解.答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(单选题) 齐次线性方程组总有___解;当它所含方程的个数小于未知量的个数时,它一定有___解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--? (B )A .3B .4C .5D .63.设矩阵231123=111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B ) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫=⎪⎝⎭,则C =?(D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(C )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。

(D )A .样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{2,4,6}B .样本空间为{1,3,5}Ω=,事件“出现奇数点”为{1,3,5}C .样本空间为{2,4,6}Ω=,事件“出现奇数点”为{1,3,5}D .样本空间为{1,2,3,4,5,6}Ω=,事件“出现奇数点”为{1,3,5}12.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示四枪中至少有一枪击中目标(C ):A .1234A A A AB .12341A A A A -C .1234A A A A +++D .113.一批产品由8件正品和2件次品组成,从中任取3件,则这三件产品全是正品的概率为(B )A .25 B .715C .815D .3514.甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为(C )B .0.85C .0.97D .0.9615.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是(D )A .16125B .17125C .108125D .10912516.设A ,B 为随机事件,()0.2P A =,()0.45P B =,()0.15P AB =,(|)P A B =?(B )A .16 B .13C .12D .2317.市场供应的热水瓶中,甲厂的产品占50%,乙厂的产品占30%,丙厂的产品占20%,甲厂产品的合格率为90%,乙厂产品的合格率为85%,丙厂产品的合格率为80%,从市场上任意买一个热水瓶,则买到合格品的概率为(D )A .0.725B .0.5C .0.825D .0.86518.有三个盒子,在第一个盒子中有2个白球和1个黑球,在第二个盒子中有3个白球和1个黑球,在第三个盒子中有2个白球和2个黑球,某人任意取一个盒子,再从中任意取一个球,则取到白球的概率为(C )A .3136B .3236C .33/36D .343619.观察一次投篮,有两种可能结果:投中与未投中。

令1,;0,X ⎧=⎨⎩投中未投中.试求X 的分布函数()F x 。

(C )A .0,01(),0121,1x F x x x <⎧⎪⎪=≤<⎨⎪>⎪⎩B .0,01(),0121,1x F x x x ≤⎧⎪⎪=<<⎨⎪≥⎪⎩C .0,01(),0121,1<⎧⎪⎪=≤<⎨⎪≥⎪⎩x F x x xD .0,01(),0121,1x F x x x <⎧⎪⎪=≤≤⎨⎪>⎪⎩20.设随机变量X 的分布列为===(),1,2,3,4,515kP X k k ,则或===(12)P X X ?(C )A .115B .215C .15D .415第二部分 计算题1.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .解:AB =231123111112011011-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦=5611246101⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦||AB =5611246101--=61156(1)4624-+-=02.已知行列式2512371446125927-----,写出元素43a 的代数余子式43A ,并求43A 的值.解:43A =4343(1)M +-252374462-=---743437(2(5)2)624246--=---+--=543.设1100010000100021A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦,求2A . 解:21200010000100001A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦21200,0100,0010A =()4.求矩阵25321585431742041123A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦的秩.解:25321585431742041123A-⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦→17420253214112358543-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦→174200952102715630271563-⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→17420 09521 00000 00000-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦所以,矩阵的秩为25.解线性方程组12312312331 331590 x x xx x xx x x+-=⎧⎪--=⎨⎪+-=⎩.解:对增广矩阵施以初等行变换:A =113131311590-⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦113104620461-⎡⎤⎢⎥→--⎢⎥⎢⎥--⎣⎦113104620003-⎡⎤⎢⎥→--⎢⎥⎢⎥-⎣⎦所以,原方程组无解。

6..解齐次线性方程组1234123412341234240 23450413140750x x x xx x x xx x x xx x x x--++=⎧⎪+--=⎪⎨--+=⎪⎪--+=⎩.解:对系数矩阵施以初等变换:A=121423451413141175--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→121401230612180369--⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦→1214012300000000--⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦→1052012300000000--⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦→1052012300000000-⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦与原方程组同解的方程组为:13423452030x x x x x x -+=⎧⎨+-=⎩ 所以:方程组的一般解为1342345223x x x x x x =+⎧⎨=--⎩(其中,34,x x 为自由未知量)7.袋中有10个球,分别编有号码1到10,从中任取一球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码小于5},问下列运算表示什么事件:(1)A+B ;(2)AB ;(3)AC ;(4)AC ;(5)B C +;(6)A-C. 解:(1) A B +=Ω是必然事件; (2) φ=AB 是不可能事件; (3) =AC {取得球的号码是2,4}; (4) =AC{取得球的号码是1,3,5,6,7,8,9,10}; (5) B C B C +=={取得球的号码是不小于5的偶数}={取得球的号码为6,8,10};(6) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}.8.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。

解:样本总点数310n=C .设A={}3取出的件产品中有次品.363101()1(A)1=6CP A P C=-=-.9.设A ,B ,C 为三个事件,1P(A)=P(B)=P(C)=4,()()0P AB P BC ==,1()8P AC =,求事件A ,B ,C 至少有一个发生的概率。

解:因为1P(A)=P(B)=P(C)=4,()()0P AB P BC ==,1()8P AC =,所以AB和BC 之间为独立事件。

但 A.C 之间有相交,所以11115P (A B C )=1-(--+)=44488,,至少有一个发生.10.一袋中有m 个白球,n 个黑球,无放回地抽取两次,每次取一球,求: (1)在第一次取到白球的条件下,第二次取到白球的条件概率; (2)在第一次取到黑球的条件下,第二次取到白球的条件概率。

解:用A 表示“第一次取到白球”,B 表示“第二次取到白球”。

(1)袋中原有m+n 个球,其中m 个白球。

第一次取到白球后,袋中还有m+n-1球,其中m-1个为白球。

故1(|)1m P B A m n -=+-; (2)袋中原有m+n 个球,其中m 个白球,第一次取到黑球后,袋中还有m+n-1个球,其中m 个为白球。

故(|)1mP B A m n =+-.11.设A ,B 是两个事件,已知()0.5P A =,()0.7P B =,()0.8P A B +=,试求:()P A B -与()P B A -。

解:由于P(A+B)=P(A)+P(B)-P(AB),则有P(AB)=P(A)+P(B )-P(A+B)=0.5+0.7-0.8=0.4所以,P(A-B)=P(A)-P(AB)=0.5-0.4=0.1,P(B- A)=P(B)-P(AB)=0.7-0.4=0.312.某工厂生产一批商品,其中一等品点12,每件一等品获利3元;二等品占13,每件二等品获利1元;次品占16,每件次品亏损2元。

相关文档
最新文档