2014年甘肃省中考诊断数学试卷(C卷)
2014年甘肃省白银市中考数学试卷(含解析)

2014年甘肃省白银市中考数学试卷
一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.
1.(3分)(2014•白银)﹣3的绝对值是()
2.(3分)(2014•白银)节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()
3.(3分)(2014•白银)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()
..
4.(3分)(2014•白银)下列计算错误的是()
•=.+=÷=2 .=2
、•,计算正确;
+
÷=
=2,计算正确.
5.(3分)(2014•白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()
6.(3分)(2014•白银)下列图形中,是轴对称图形又是中心对称图形的是()
..。
2024年甘肃省陇南市部分学校中考数学模拟试题

2024年甘肃省陇南市部分学校中考数学模拟试题一、单选题1.2024-的倒数的相反数是( )A .2024-B .2024C .12024-D .120242.2023年第19届亚运会是一场规模盛大的体育盛事,以下是某运会会标,其中是轴对称图形的是( )A .B .C .D . 3.如图,DE BC ∥,BE 平分ABC ∠,若160∠=︒,则ABE ∠的度数为( )A .20︒B .30︒C .55︒D .60︒4.已知函数21y x =+的图象经过点()()1211A y B y -,,,,则比较12y y ,的大小为( ) A .12y y > B .12y y < C .12y y = D .无法比较 5.若关于x 的方程2420x x k -++=有两个不相等的实数根,则直线()21y k x =-+不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 6.如图是甲、乙两位同学在参加体育中考前的5次体能测试成绩折线统计图,下列说法正确的是( )A .甲的平均成绩较低且稳定B .乙的平均成绩较低且稳定C .甲的平均成绩较高且稳定D .乙的平均成绩较高且稳定7.如图,两个小朋友玩跷跷板,支柱MN 垂直于地面,点M 是AB 的中点,0.45m MN =,在玩游戏中,小朋友离地面的最大距离是( )A .0.8mB .0.9mC .1.1mD .1.2m8.筒车是我国古代发明的一种水利灌溉工具,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图.已知圆心O 在水面上方,且O e 被水面截得的弦AB 长为6米,O e 半径长为4米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .(4米B .2米C .3米D .(4米 9.如图,在ABC V 中,90BAC ∠=︒,3AB =,4AC =,AD BC ⊥,垂足为D ,那么BD 的长为( ).A .5B .125C .95D .16510.如图1,在菱形ABCD 中,120C ∠=︒,M 是AB 的中点,N 是对角线BD 上一动点,设DN 长为x ,线段MN 与AN 长度的和为y ,图2是y 关于x 的函数图象,图象右端点F 的坐标为(),则图象最低点E 的坐标为( )A.(3) B .( C .( D .()二、填空题11.绝对值小于8的所有整数的和等于.12.分解因式:32393a a a -+=.13.2024年3月12日是我国第46个植树节,截至2023年,全国完成新增种植和低产林改造10180000亩,将数据10180000用科学记数法表示为.14.如图,ABC V 内接于O e ,BD 是O e 的直径,若33DBC ∠=︒,则A ∠等于.15.如图,以40m/s 的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系2520h t t =-+,小球飞行过程中能达到的最大高度为m .16.如图,AC 与O e 相切于点C ,线段AO 交O e 于点B .过点B 作BD AC ∥交O e 于点D ,连接CD ,OC ,且OC 交DB 于点E .若30CDB ∠=︒,DB =.则图中阴影部分的面积为.三、解答题17.计算:2 18.化简:352242a a a a -⎛⎫÷+- ⎪--⎝⎭. 19.解不等式组:3133192136x x x x -<+⎧⎪⎨---≤⎪⎩①②,并指出它的所有的非负整数解. 20.如图,点E ,F 是平行四边形ABCD 的对角线BD 上两点,且AE CF ∥.(1)求证:ABE CDF △≌△;(2)连接AF ,CE .请添加一个条件,使四边形AECF 为矩形(不需要说明理由). 21.(科技成就)随着5G 技术的发展,为扩大网络信号的辐射范围,某通信公司在一座坡度为i 1:2.4=的小山坡AQ 上新建了一座大型的网络信号发射塔PQ (如图所示),信号塔底端Q 到坡底A 的距离为3.9米.同时为了提醒市民,在距离斜坡底A 点4.4米的水平地面上立了一块警示牌MN ,当太阳光线与水平线成53︒角时,测得信号塔PQ 落在警示牌上的影子EN 长为3米.求信号塔PQ 的高.(结果精确到0.1米,参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈)22.某中学为了解九年级学生的体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图(不完整)中的信息回答下列问题:(1)本次抽样调查共抽取了______名学生,并补全条形统计图;(2)“C 等级”在扇形图中的圆心角度数为______;(3)若从体能测试结果为A 等级的2名男生和2名女生中随机抽取2名学生,作为该校培养运动员的重点对象,请用列表或画树状图的方法求所抽取的两人恰好都是男生的概率. 23.河南是中华文明和黄河文化的发源地之一,其地域广阔,景色奇特.为了充分挖掘旅游资源,某景区准备购进一批印有当地风土人情的太阳帽和旅行包.已知购进3个太阳帽和2个旅行包需要42元,购进5个太阳帽和3个旅行包需要65元.(1)求太阳帽、旅行包每个的进价;(2)该景区的太阳帽售价为6元,旅行包售价为20元.景区计划购进太阳帽和旅行包共500个,且购进太阳帽的数量不少于旅行包数量的1.5倍,景区该如何设计进货方案,才能使销售完后获得的利润最大?最大利润为多少?24.如图,一次函数y kx b =+与反比例函数y =m x的图象相交于()2,3A ,()3,B n -两点.过点B 作BC x ⊥轴,垂足为C ,(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx b +>m x的解集;(3)一次函数y kx b =+的图像上是否存在一点P ,使得求2BCP ABC S S =△△.若存在,求出P 点坐标,若不存在说明理由.25.如图,AB 是O e 的直径,点C 在O e 上,BD 平分ABC ∠交O e 于点D , 过点D 作DE BC ⊥于E .(1)求证:DE 是O e 的切线;(2)若10AB =,6AD =,求EC 的长.26.综合与实践数学活动课上,王老师展示了如下的一个问题:问题情景:如图1,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点(点D 不与点B C ,重合),连接AD ,将线段AD 绕点A 按逆时针方向旋转90︒得到线段AE ,连接DE AE EC ,,.问题探究:(1)求证:DCE △是直角三角形.(2)试猜想AC 与CE CD ,之间的数量关系并加以说明.拓展应用:(3)如图2,在Rt ABC △中,90BAC ∠=︒,AB AC =,点D 是ABC V 外一点,连接AD BD CD ,,,当3AD =,且90BDC ∠=︒时,请直接写出四边形ABDC 的面积.27.综合与探究 如图,抛物线213442y x x =--与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,4C -,作直线,,AC BC P BC 是直线下方抛物线上一动点.(1)求,A B 两点的坐标,并直接写出直线,AC BC 的函数表达式.(2)过点P 作PQ y ∥轴,交直线BC 于点Q ,交直线AC 于点T .当P 为线段TQ 的中点时,求此时点P 的坐标.(3)在(2)的条件下,若N 是直线BC 上一动点,试判断在平面内是否存在点M ,使以,,,B P M N 为顶点的四边形是矩形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.。
初中数学 2024年甘肃省兰州市安宁区中考数学模拟试卷(一)

2024年甘肃省兰州市安宁区东方学校中考数学模拟试卷(一)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.A.B.C.D.1.(3分)《国家宝藏》节目立足于中华文化宝库资源.通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多的观走进博物馆,让一个个馆藏文物鲜活起来.下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A.a5b5B.a4b5C.ab5D.a5b62.(3分)计算(a2b)3•的结果是( )b2aA.B.C.D.3.(3分)不等式组的解集在数轴上可以表示为( ){-x≤-1x<3A.4b(b-a)+a2B.(2b-a)2C.(2b-a)(2b-a)D.(2b+a)24.(3分)因式分解4b2-4ab+a2正确的是( )A.130°B.140°C.150°D.160°5.(3分)如图是路政工程车的工作示意图,工作篮底部与支撑平台平行.若∠1=30°,∠2=50°,则∠3的度数为( )A .3-B .-2C .-1D .3-6.(3分)如图的数轴上,点A ,C 对应的实数分别为1,3,线段AB ⊥AC 于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为( )M 5M 5M 5M 10A .1B .2C .1.5D .07.(3分)若一次函数y =(k -1)x -2的函数值y 随x 的增大而减小,则k 值可能是( )A .B .C .D .8.(3分)《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:大容器5个,小容器1个,总容量为3斛(斛:古代容量单位);大容器1个,小容器5个,总容量为2斛,问大容器、小容器的容是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( ){x +5y =35x +y =2{5x +y =3x +5y =2{5x =y +3x =5y +2{5x =y +2x =5y +3A .k <4B .k ≤4且k ≠3C.k >4D .k ≤49.(3分)已知二次函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .本次抽样调查的样本容量是5000B .扇形统计图中的m 为10%C .扇形统计图中“自驾”所对应的扇形的圆心角是120°D .样本中选择公共交通出行的有2500人10.(3分)五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )11.(3分)如图,将正方形ABCD 绕着点A 逆时针旋转得到正方形AEFG ,点B 的对应点E 落在正方形ABCD 的对角线AC 上,D =1,则CF的长为( )A二、填空题:本大题共4小题,每小题3分,共12分.A .B .C .D .π√28π√24π8π4A .1B .C .2D .2.512.(3分)如图,在Rt △ABC 中,∠ACB =90°,AD 为中线,E 为AD 的中点,F 为BE 的中点,连结DF .若AC =4,DF ⊥BE ,则DF 的长为( )M 3M 313.(3分)函数y =的自变量x 的取值范围是 .M x -1214.(3分)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《子》的概率是.15.(3分)如图,△ABC 与△DEF 是位似图形,点O 为位似中心,OC :CF =1:2.若△ABC 的周长为4,则△DEF 的周长是.16.(3分)已知正方形ABCD 的边长为4,若G 为AB 的中点,连接DG 交正方形的对角线AC 于点E ,F 是DG 延长线上一点,FB ⊥BE ,则AF 的长是.三、解答题:本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:2+-.M 813M 1834M 3218.(4分)解方程:-1=.y y -12y3y -319.(4分)先化简,再求值:[(x -y )2+(x +y )(x -y )]÷2x ,其中x =3,y =-1.5.20.(5分)请阅读下列材料,完成相应的任务:有这样一个题目:设有两只电阻,分别为R 1和R 2,问并联后的电阻值R 是多少?我们可以利用公式=+,求得R 的值,也可以设计一种图形直接得出结果,具体如下:如图①,在直线l 上任取两点A 、B ,分别过点A 、B 作直线l 的垂线,并在这两条垂线上分别截取AC =R 1,BD =R 2,且点C ,D 位线l 的同侧,连接AD 、BC ,交于点E ,过点E 作EF ⊥直线1,则线段EF 的长度就是并联后的电阻值R .证明:∵EF ⊥l ,CA ⊥l ,∴∠EFB =∠CAB =90°,又∵∠EBF =∠CBA ,∴△EBF ∽△CBA (依据1),∴=(依据2).同理可得:=,∴+=+,∴1=+,∴=+,即:=+.任务:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:;(2)如图②,两个电阻并联在同一电路中,已知R 1=3千欧,R 2=6千欧,总阻值R =千欧;(3)请仿照①的作图过程在图③中(1个单位长度代表1千欧,例:AB =CD =9千欧)画出(2)中表示该电路图中总阻值R 段长;用无刻度直尺和圆规将所给图形补充完整.(保留作图痕迹,不写作法)1R 1R 11R 2BF AB EF ACAF AB EFBDBF AB AF AB EF AC EFBDEF ACEF BD 1EF 1AC 1BD 1R 1R 11R 221.(5分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y (单位:cm ),宽x (单位:cm )的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0荔枝树叶的长宽比2.02.02.02.41.81.91.82.01.31.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比 3.74m 4.00.0424荔枝树叶的长宽比 1.912.0n0.0669【问题解决】(1)上述表格中:m =,n =;(2)①A 同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B 同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm ,宽5.6cm 的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.22.(7分)在平面直角坐标系中,已知k 1k 2≠0,设函数=与函数y 2=k 2(x -2)+3的图象交于点A ,B .已知点A 的横坐标是2,点B 的纵坐标是-1.(1)求k 1,k 2的值.(2)连接OA 并延长至点P ,使得OA =AP ,过点P 作x 轴的垂线,交x 轴于点C ,交y 1的图象于点D ,连接OD .设△OPD 的面积为S 1,△OCD 的面积为S 2,求的值.y 1k 1x S 1S 223.(6分)实验是培养学生的创新能力的重要途径之一.如图是小红同学安装的化学实验装置,安装要求为试管略向下倾斜管夹应固定在距试管口的三分之一处.已知试管,AB =30cm ,BE =AB ,试管倾斜角α为10°.(1)求酒精灯与铁架台的水平距离CD 的长度;(2)实验时,当导气管紧贴水槽MN ,延长BM 交CN 的延长线于点F ,且MN ⊥CF (点C ,D ,N ,F 在一条直线上),经测得:D 1.7cm ,MN =8cm ,∠ABM =145°,求线段DN 的长度.(参考数据:sin 10°≈0.17,cos 10°≈0.98,tan 10°≈0.18)1324.(7分)如图,在△ABC 中,AB =AC .以AB 为直径的⊙O 与BC 交于点E ,与AC 交于点D ,点F 在边AC 的延长线上,且∠CBF =∠BAC .12(1)试说明FB 是⊙O 的切线;(2)过点C 作CG ⊥AF ,垂足为C .若CF =4,BG =3,求⊙O 的半径.25.(7分)如图,将⏥ABCD 的边AB 延长到点E ,使BE =AB ,连接DE ,交BC 于点F .(1)求证:△BEF ≌△CDF ;(2)连接BD ,CE ,若∠BFD =2∠A ,判断四边形BECD 的形状并给出证明.26.(6分)小明发现某乒乓球发球器有“直发式”与“间发式”两种模式,在“直发式”模式下,球从发球器出口到第一次接触台运动轨迹近似为一条抛物线;在“间发式”模式下,球从发球器出口到第一次接触台面的运动轨迹近似为一条直线,球第一次接面到第二次接触台面的运动轨迹近似为一条抛物线.如图1和图2分别建立平面直角坐标系xOy .通过测量得到球距离台面高度y (单位:dm )与球距离发球器出口的水平距离x (单位:dm )的相关数据,如下表所示:表1 直发式x (dm )024********…y (dm ) 3.843.9643.96m3.642.561.44…表2 间发式x (dm )024681012141618y (dm )3.36n1.680.841.402.4033.203根据以上信息,回答问题:(1)表格中m =,n =;(2)求“直发式”模式下,球第一次接触台面前的运动轨迹的解析式;(3)若“直发式”模式下球第一次接触台面时距离出球点的水平距离为d 1,“间发式”模式下球第二次接触台面时距离出球点的平距离为d 2,则d 1d 2(填“>”“=”或“<”).27.(8分)旋转是几何图形中最基本的图形变换之一,利用旋转可将分散的条件相对集中,以达到解决问题的目的.【探究发现】如图①,在等边三角形ABC 内部有一点P ,PA =2,PB =,PC =1,求∠BPC 的度数,爱动脑筋的小明发现:段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,则△BPC ≌△BP ′A ,然后利用△BPP ′和△APP ′形状的特殊性求出P ′A 的度数,就可以解决这道问题.下面是小明的部分解答过程:解:将线段BP 绕点B 逆时针旋转60°得到线段BP ′,连结AP ′、PP ′,∵BP =BP ′,∠P ′BP =60°,∴△PBP ′是等边三角形,∴∠BP ′P =60°,PP ′=PB =.∵△ABC 是等边三角形,M 3M 3∴∠ABC =60°,BC =BA ,∴∠ABC -∠ABP =∠P ′BP -∠ABP ,即∠PBC =∠P ′BA .(1)请你补全余下的解答过程.【类比迁移】(2)如图②,在正方形ABCD 内有一点P ,且PA =,PB =2,PC =1,求∠BPC 的度数.【拓展延伸】(3)如图③,在②的条件下,若正方形ABCD 的边长为2,则线段PD 的最小值为.M 17√228.(9分)在平面直角坐标系xOy 中,⊙O 的半径为1,对于直线l 和线段PQ ,给出如下定义:若线段PQ 关于直线l 的对称图形是⊙O 的弦P ′Q ′(P ′,Q ′分别为P ,Q 的对应点),则称线段PQ 是⊙O 关于直线l 的“对称弦”.(1)如图,点A 1,A 2,A 3,B 1,B 2,B 3的横、纵坐标都是整数.线段A 1B 1,A 2B 2,A 3B 3中,是⊙O 关于直线y =x +1的“对称弦”的是 ;(2)CD 是⊙O 关于直线y =kx (k ≠0)的“对称弦”,若点C 的坐标为(-1,0),且CD =1,求点D 的坐标;(3)已知直线y =-x +b 和点M (3,2),若线段MN 是⊙O 关于直线y =-x +b 的“对称弦”,且MN =1,直接写值.M 33M 3M 33。
2024年甘肃省兰州市安宁区西北师大二附中中考数学四模试卷+答案解析

2024年甘肃省兰州市安宁区西北师大二附中中考数学四模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的相反数是()A.2B.C.D.2.把多项式分解因式得()A.B.C.D.3.用配方法解方程时,配方后正确的是()A.B.C.D.4.如图,直线,,,则的度数是()A. B. C. D.5.如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形与矩形OABC 关于点O 位似,且矩形的面积等于矩形OABC 面积的,那么点的坐标是()A. B.C.或D.或6.大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF ,若对角线AD 的长约为8mm ,则正六边形ABCDEF 的边长为()A.2mmB.C.D.4mm7.如图,一条公路公路的宽度忽略不计的转弯处是一段圆弧,点O是这段弧所在圆的圆心,半径,圆心角,则这段弯路的长度为()A.B.C.D.8.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.9.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A. B. C. D.10.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB与地面CD所成夹角时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF与地面的夹角()A. B. C. D.11.如图,在中,,,,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为()A.B.3C.D.12.如图,等边、等边的边长分别为3和开始时点A与点D重合,DE在AB上,DF在AC上,沿AB向右平移,当点D到达点B时停止.在此过程中,设、重合部分的面积为y,移动的距离为x,则y与x的函数图象大致为()A. B.C. D.二、填空题:本题共4小题,每小题3分,共12分。
精品解析:2024年甘肃省兰州市中考一模数学模拟试题(原卷版)

2024年兰州市九年级诊断考试数学注意事项:1.全卷共120分,考试时间120分钟.2.考生必须将姓名、准考证号、考场号、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下是2023年中国国际汉字文化创意设计大赛中,以“甘肃”“广东”为主题创作的作品,其中轴对称图形是( )A. B. C. D.2. 2023年10月26日,搭载神舟十七号载人飞船的长征二号F 遥十七运载火箭在酒泉卫星发射中心发射成功.火箭起飞质量约497000千克.数据497000用科学记数法表示为( )A. B. C. D. 3. 如图,已知,,则( )A. B. C. D. 4. 因式分解:( )A. B. C. D. 5. 一元二次方程的根的情况为( )A. 无实数根B. 有两个不相等的实数根C. 有两个相等的实数根D. 不能判定6. 实数a ,b 在数轴上的对应点如图所示,下列结论正确的是( )A. B.C. D. 60.49710⨯54.9710⨯44.9710⨯449.710⨯12∠=∠3118∠=︒4∠=48︒62︒68︒72︒24a -=()()44a a +-()()42a a +-()()24a a +-()()22a a +-2550x x -+=2a >-0a b +>a b <0b a ->7. 如图,在数学实践课上,老师要求学生在一张纸(矩形)上剪出一个面积为的等边三角形.某小组分析后,先作了,再算出了的长,然后分别在,上截取了,则的长为( )A. B. C. D. 8. 在一定温度范围内,声音在空气中的传播速度v (m/s )可看作是温度t (℃)的一次函数,根据下表数据,则v 与t 的函数表达式为( )温度…0102030…传播速度…324330336342348…A. B. C. D. 9. 兰州市现行城镇居民用水量划分为三级,水价分级递增.第一级为每户每年不超过144m 的用水量,执行现行居民用水价格;第二级为超出144m 但不超过180m 的用水量,执行现行居民用水价格的1.5倍;第三级为超出180m 的用水量,执行现行居民用水价格的3倍.某小区志愿队为了解该小区居民的用水情况,随机抽样调查了50户家庭的年用水量,并整理绘制了频数直方图(如图),若该小区共有1000户居民,请根据相关信息估计该小区年用水量达到第三级标准的户数( )A. 30B. 45C. 60D. 9010. 《九章算术》中记载了这样一个问题:今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?大意是:3束上等禾的产量再加6斗,相当于10束下等禾的产量;5束下等禾的产量再加1斗,相当于2束上等禾的产量.问上等禾、下等禾每束的产量各为几斗?设上等禾每束产量x 斗,下等禾每束产量y斗,根据题意可列方程组为( )4AABCD 3AEF 60MAB ∠=︒AF AM AB AE AF =AF 10cm 20cm()t ℃10-()m/s v 6330v t =+6330v t =-+0.6330v t =+0.6330v t =-+3333A. B. C. D. 11. 把直尺、圆片和两个同样大小的含30°角的直角三角尺按图所示放置,两三角尺的斜边与圆分别相切于点B ,C .若,则( )A. B. C. D. 12. 如图,在钝角中(为钝角),,,,在其内部作一个矩形,使矩形的一边在边上,顶点M ,P 分别在边,上.设矩形的一边,矩形的面积为y ,则y 与x 的函数关系式可用函数图象表示为( )A. B. C. D.二、填空题:本大题共4小题,每小题3分,共12分.13. 若x有意义,则______(写出1个即可).14. 自然界绝大多数的彩色光都可以利用红、绿、蓝三种色光按不同比例混合而成,这叫做三原色原理,如:红光与绿光重叠现黄色.如图所示,小明制作了两个可以自由转动的转盘,每个转盘被分成面积相等的扇形,同时转动两个转盘,根据三原色原理配得黄色的概率为______.15. 如图,在平面直角坐标系中,和是以原点O 为位似中心的位似图形,,已3610512x y y x +=⎧⎨+=⎩3610512x y x y +=⎧⎨+=⎩3610512x y y x -=⎧⎨-=⎩1036251x y y x =+⎧⎨=+⎩3AB = BC=π 1.5πABC BAC ∠45B ∠=︒AB =10AC =MNQP NQ BC AB AC MN x =x =ABC A B C ''' 12AB A B ''=知,则顶点的坐标为______.16. 如图,在矩形中,,,点E 为的中点,与相交于点P ,则线段______.三、解答题:本大题共12小题,共72分.解答时写出必要的文字说明、证明过程或演算步骤.17. 解不等式组:.18.解方程:.19. 先化简,再求值:,其中,.20. 如图,一次函数的图象与反比例函数的图象交于点,与x 轴交于点B .(1)求反比例函数与一次函数的表达式:(2)过点A 作轴于点C ,求的面积.21. 甘肃省公用品牌“甘味”中的区域品牌“兰州百合”荣登农业产业品牌百强榜.甘肃某地区为深入推进乡村振兴产业发展,采购了A ,B 两种型号包装机同时包装百合,某质检部门从已包装好的产品中随机()1,2A A 'ABCD 4AB =6BC =BC AE BD AP =()71131211x x x x ⎧+>+⎨-<+⎩()31131x x x =-++()()2422312x x y x x +-++15x =5y =-y x b =+()0k y x x=>()1,3A k y x=y x b =+AC x ⊥ABC各抽取10袋测得实际质量(单位:),规定质量在为合格产品.将所得数据进行收集整理,部分信息如下:信息一:A ,B 型号包装机包装的每袋百合质量的折线统计图信息二:A ,B 型号包装机包装的每袋百合质量的统计量型号统计量平均数中位数众数极差合格率A 型m 50811B 型5055058请根据以上信息,回答下列问题:(1)表格中______;(2)根据统计图来看,______型号包装机包装的百合的质量比较稳定:(填“A ”或“B”)(3)综合以上信息,你认为该地区应选择哪种型号包装机包装百合较为合适?并说明理由.22. 如图,在中,,与相切于点A ,与相交于点C ,延长交于点D ,连接.(1)求的大小;(2)当时,求的长.23. 数学家为解决“化圆为方”问题,将其转化为特殊的“化矩形为方”问题.化矩形为方指的是给定任意矩形,作出和这个矩形面积相等的正方形.g ()5005g ±504.830%504.860%m =AOB 30B ∠=︒O AB OB AO O CD D ∠2BC =CD如图,已知矩形.尺规作图完成“化矩形为正方形”问题.以下为作图过程:①以点B 为圆心,长为半径画弧,交延长线于点E ;②分别以点A ,E为圆心,大于的长为半径画弧,两弧交于M ,N 两点,连接交于点F ,则点F 为的中点;③以点F 为圆心,长为半径画弧,交延长线于点P ;④以为边,在边右侧作正方形,即“化矩形为正方形”.(1)请按照作图过程中④的要求,用无刻度直尺和圆规将所给图形补充完整;(保留作图痕迹,不写作法)(2)根据已补充完整的图形解决问题:在矩形中,已知,,则______,______,进而求得正方形的边______.由此可得,即达到“化矩形为方”的目的.24. 小伟站在一个深为3米的泳池边,他看到泳池内有一块鹅卵石,据此他提出问题:鹅卵石的像到水面的距离是多少米?小伟利用光学知识和仪器测量数据解决问题,具体研究方案如下:问题鹅卵石的像到水面的距离工具纸、笔、计算器、测角仪等ABCD ABCD BPQR BC AB 12AE MN AE AE AF CB BP BP BPQR ABCD BPQR ABCD 5AB =1AD =BF =PF =BPQR BP =BPQR ABCD S S =正方形矩形图形说明根据实际问题画出示意图(如上图),鹅卵石在C 处,其像在G 处,泳池深,且,于点N ,于点B ,于点H ,点G 在上,A ,B ,G 三点共线,通过查阅资料获得.数据,.请你根据上述信息解决以下问题:(1)求的大小;(2)求鹅卵石的像G 到水面的距离.(结果精确到)(参考数据:,,)25. 如图1,从远处看兰州深安黄河大桥似张开的翅膀,宛如一只“蝴蝶”停留在黄河上,它采用叠合梁拱桥方案设计.深安黄河大桥主拱形呈抛物线状,从上垂下若干个吊杆,与桥面相连.如图2所示,建立平面直角坐标系,吊杆到原点O 的水平距离,吊杆到原点O 的水平距离,且,主拱形离桥面的距离与水平距离近似满足二次函数关系,其对称轴为直线.(1)求的长度:(2)求主拱形到桥面的最大高度的长.26. 如图,在矩形中,点,分别在,上.将矩形分别沿,翻折后点,均落在点处,此时,,三点共线,若.BN BN CH =MN NC ⊥MN BH ⊥CH BH ⊥CH sin 1.33sin ABM CBN ∠=∠3m BN =41.7ABM ∠=︒CBN ∠GH 0.1m sin 41.70.665︒≈cos 41.70.747︒≈tan 41.70.891︒≈ 1.73≈OAB CD 26m OC =EF 134m OE =CD EF =()m y ()m x ()20.006y x h k =--+x h =OH AH ABCD E F AD CD ABCD BE EF A D G B G F 2BG EG =(1)求证:矩形为正方形;(2)若,求的长.27. 综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中几何问题.如图,在中,,,点D 为平面内一点(点A ,B ,D 三点不共线),为的中线.【初步尝试】(1)如图1,小林同学发现:延长至点M ,使得,连接.始终存在以下两个结论,请你在①,②中挑选一个进行证明:①;②;【类比探究】(2)如图2,将绕点A 顺时针旋转得到,连接.小斌同学沿着小林同学的思考进一步探究后发现:,请你帮他证明:【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D 在以点A 为圆心,为半径的圆上运动(),直线与直线相交于点G ,连接,在点D 的运动过程中存在最大值.若,请直接写出的最大值.28. 在平面直角坐标系xOy 中,给出如下定义:对于图形W 和图形W 外一点P ,若在图形W 上存在点M ,N ,使,则称点P 是图形W 的一个“2倍关联点”.例如:如图1,已知图形W :,,,;点到上的点的最小距离为,到上的点的最大距离为,则.因此在上存在点M ,N ,使得,则点P 是的一个“2倍关联点”.ABCD 2DF =BC ABC AB AC =90BAC ∠=︒AE ABD △AE ME AE =DM DM AC =180MDA DAB ∠+∠=︒AD 90︒AF CF 12AE CF =AD AD AB >AE CF BG BG 4AB =BG 2PM PN =ABC ()0,2A ()1,0B -()1,0C ()0,1P -ABC 1PO =ABC 3PA =2PA PO >ABC 2PM PN =ABC(1)如图2,已知,.①判断点______线段AB 的一个“2倍关联点”;(填“是”或“不是”)②若点是线段AB 的“2倍关联点”,求m 的最小值;(2)如图3,圆心为原点,半径为1,若在直线l :上存在点Q 是的.“2倍关联点”,求b的取值范围.()0,1A ()2,1B ()12,1P -()21,P m O y x b =+O。
2024年甘肃省临夏州中考数学试卷(附答案)

2024年甘肃省临夏州中考数学试卷(附答案)一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)下列各数中,是无理数的是()A .B .C .D .0.13133【解答】A .2.(3分)马家窑彩陶绚丽典雅,符号丰富,被称为彩陶文化的“远古之光”.如图是一件马家窑彩陶作品的立体图形,有关其三视图说法正确的是()A .主视图和左视图完全相同B .主视图和俯视图完全相同C .左视图和俯视图完全相同D .三视图各不相同【解答】解:该几何体的三视图各不相同,主视图的中间处有两个“耳朵”而左视图则没有;俯视图是三个同心圆(夹在中间的圆由虚线构成).故选:D .3.(3分)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为()A .2.7×108B .0.27×1010C .2.7×109D .27×108【解答】解:27亿=2700000000=2.7×109.故选:C .4.(3分)下列各式运算结果为a 5的是()A .a 2+a 3B .a 2•a 3C .a 10÷a 2D .(a 2)3【分析】利用同底数幂的乘法的法则,同底数幂的除法的法则,幂的乘方的法则对各项进行运算即可.【答案】B .5.(3分)一次函数y =kx ﹣1(k ≠0)的函数值y 随x 的增大而减小,它的图象不经过的象限是()A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵一次函数y=kx﹣1(k≠0)的函数值y随x的增大而减小,∴k<0,b=﹣1<0,∴该函数图象经过第二、三、四象限,不经过第一象限,故选:A.6.(3分)如图,AB是⊙O的直径,∠E=35°,则∠BOD=()A.80°B.100°C.120°D.110°【解答】解:∵∠E=35°,∴∠AOD=2∠E=70°,∴∠BOD=180°﹣70°=110°.故选:D.7.(3分)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.B.C.D.【分析】根据降价后用240元可以比降价前多购买10袋,可以列出相应的分式方程.【解答】解:由题意可得,=10,故选:C.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.8.(3分)如图,在△ABC中,AB=AC=5,sin B=,则BC的长是()A.3B.6C.8D.9【分析】过点A作BC的垂线,构造出直角三角形,再结合正弦的定义及等腰三角形的性质即可解决问题.【解答】解:过点A作BC的垂线,垂足为M,在Rt△ABM中,sin B=,∴AM==4,∴BM=.又∵AB=AC,∴BC=2BM=6.故选:B.9.(3分)如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为(3,4),则顶点A的坐标为()A.(﹣4,2)B.(﹣,4)C.(﹣2,4)D.(﹣4,)【解答】解:过C作CN⊥x轴于N,过A作AM⊥x轴于M,∵点C的坐标为(3,4),∴ON=3,CN=4,∴OC==5,∵四边形ABOC是菱形,∴AC=OC=5,AC∥BO,∴四边形AMNC是矩形,∴MN=AC=5.∴OM=MN﹣ON=2∴点A的坐标为(﹣2,4).故选:C.10.(3分)如图1,矩形ABCD中,BD为其对角线,一动点P从D出发,沿着D→B→C的路径行进,过点P作PQ⊥CD,垂足为Q.设点P的运动路程为x,PQ﹣DQ为y,y与x的函数图象如图2,则AD的长为()A.B.C.D.【分析】根据函数的图象与坐标的关系确定CD的长,再根据勾股定理列方程求解.【解答】解:由图象得:CD=2,当BD+BP=4时,PQ=CD=2,设AD﹣CD=a,则BD=4﹣a,在Rt△BCD中,BD2﹣BC2=CD2,即:(4﹣a)2﹣(a+2)2=22,解得:a=,∴AD=a+2=,故选:B.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)因式分解:x2﹣=.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+)(x﹣),故答案为:(x+)(x﹣)12.(3分)“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为.【解答】解:∵正六边形的内角和为:(6﹣2)×180°=720°,∴该正六边形的每个内角为:720÷6=120°,故答案为:120°.13.(3分)若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为.【解答】解:∵关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,∴Δ=b2﹣4ac=0,即:22﹣4(﹣m)=0,解得:m=﹣1,故选答案为﹣1.【点评】本题考查了根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.14.(3分)如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(4,1),点C的坐标为(3,4),点D在第一象限(不与点C重合),且△ABD与△ABC全等,点D的坐标是.【解答】解:∵点D在第一象限(不与点C重合),且△ABD与△ABC全等,∴△BAD≌△ABC,∴AD=BC,BD=AC,如图所示:由图可知:D(1,4);故答案为:(1,4).15.(3分)如图,对折边长为2的正方形纸片ABCD,OM为折痕,以点O为圆心,OM为半径作弧,分别交AD,BC于E,F两点,则的长度为(结果保留π).【解答】解:由对折可知,四边形AOMD是矩形,∠EOM=∠FOM,则OM=AD,DM=.过点E作OM的垂线,垂足为P,则EP=DM=.因为OE=OM=AD,CD=AD,所以EP=.在Rt△EOP中,sin∠EOP==,所以∠EOP=30°,则∠EOF=30°×2=60°,所以的长度为:.故答案为:.16.(3分)如图,等腰△ABC中,AB=AC=2,∠BAC=120°,将△ABC沿其底边中线AD向下平移,使A的对应点A′满足AA′=AD,则平移前后两三角形重叠部分的面积是.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.又∵AD是△ABC的中线,∴AD⊥BC.在Rt△ABD中,sin B=,∴AD=,∴BD=.∴AA′=AD=,∴A′D=.令A′B′与BD的交点为M,A′C′与CD的交点为N,由平移可知,∠A′MD=∠B=30°,在Rt△A′DM中,tan∠A′MD=,∴MD=.∵A′M=A′N,∴MN=2MD=,∴.故答案为:.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.(4分)计算:|﹣|﹣()﹣1+20250.【分析】根据算术平方根的定义、负整数指数幂的性质和零指数幂的性质进行计算即可.【解答】解:原式=|﹣2|﹣3+1=2﹣3+1=2+1﹣3=0.18.(4分)化简:(a+1+)÷.【分析】先通分算括号内的,把除化为乘,再分解因式约分即可.【解答】解:原式=•=•=•=.【点评】本题考查分式的混合运算,解题的关键是掌握分式的基本性质,能进行分式的通分和约分.19.(4分)解不等式组:.【解答】解:解不等式①,得x≥1,解不等式②,得x<2,故原不等式组的解集为:1≤x<2.20.(6分)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解答】解:(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是.故答案为:.(2)四张卡片内容中是化学变化的有:A,D,画树状图如下:共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有:AD,DA,共2种,∴小夏抽取两张卡片内容均为化学变化的概率为=.21.(6分)根据背景素材,探索解决问题.平面直角坐标系中画一个边长为2的正六边形ABCDEF背景素材六等分圆原理,也称为圆周六等分问题,是一个古老而经典的几何问题,旨在解决如何使用直尺和圆规将一个圆分成六等份的问题.这个问题由欧几里得在其名著《几何原本》中详细阐述.已知条件点C与坐标原点O重合,点D在x轴的正半轴上且坐标为(2,0).操作步骤①分别以点C,D为圆心,CD长为半径作弧,两弧交于点P;②以点P为圆心,PC长为半径作圆;③以CD的长为半径,在⊙P上顺次截取===;④顺次连接DE,EF,FA,AB,BC.得到正六边形ABCDEF.问题解决任务一根据以上信息,请你用不带刻度的直尺和圆规,在图中完成这道作图题(保留作图痕迹,不写作法)任务二将正六边形ABCDEF绕点D顺时针旋转60°,直接写出此时点E所在位置的坐标:.【分析】任务一:根据要求作出图形.任务二:利用旋转变换的性质判断即可.【解答】解:任务一:图形如图所示:任务二:将正六边形ABCDEF绕点D顺时针旋转60°,直接写出此时点E所在位置的坐标(4,0).22.(8分)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB的实践活动.A为乾元塔的顶端,AB⊥BC,点C,D在点B的正东方向,在C点用高度为1.6米的测角仪(即CE=1.6米)测得A点仰角为37°,向西平移14.5米至点D,测得A点仰角为45°,请根据测量数据,求乾元塔的高度AB.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过E作EF⊥AB于F,设FG=x m,解直角三角形即可得到结论.【解答】解:过E作EF⊥AB于F,设FG=x m,在Rt△AEF中,∵∠AEF=37°,∴tan37°=,∴AF=EF•tan37°=0.75(x+14.5)=(0.75x+10.875)m,在Rt△AGF中,∵∠AGF=45°,∴,∴AF=GF=x m,∴0.75x+10.875=x,∴x≈44,∴AB=AF+BF=44+1.6≈46(m)答:乾元塔的高度AB约为46m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.(7分)环球网消息称:近年来的电动自行车火灾事故80%都是充电时发生的,超过一半的电动自行车火灾发生在夜间充电的过程中.为了规避风险,某校政教处对学生进行规范充电培训活动,并对培训效果按10分制进行检测评分.为了解这次培训的效果,现从各年级随机抽取男、女生各10名的检测成绩作为样本进行整理,并绘制成如下不完整的统计图表:抽取的10名女生检测成绩统计表成绩/分678910人数12m3n 注:10名女生检测成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中男生检测成绩为10分的学生数是,众数为分;(2)女生检测成绩表中的m=,n=;(3)已知该校有男生545人,女生360人,若认定检测成绩不低于9分为“优秀”,估计全校检测成绩达到“优秀”的人数.【解答】解:(1)样本中男生检测成绩为10分的学生数是10×(1﹣10%﹣50%﹣20%)=2(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分;故答案为:2,8;(2)将女生检测成绩绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵女生检测成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为10分的人数为5﹣3=2(人),即m=2,n=2;故答案为:2,2;(3)545×(20%+20%)+360×=218+180=398(人),答:估计全校检测成绩达到“优秀”的人数为398人.24.(7分)如图,直线l与⊙O相切于点D,AB为⊙O的直径,过点A作AE⊥l于点E,延长AB交直线l于点C.(1)求证:AD平分∠CAE;(2)如果BC=1,DC=3,求⊙O的半径.【解答】(1)证明:连接OD,如图,∵直线l与⊙O相切于点D,∴OD⊥CE,∵AE⊥CE,∴OD∥AE,∴∠ODA=∠EAD,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD,∴AD平分∠CAE;(2)解:设⊙O的半径为r,则OB=OD=r,在Rt△OCD中,∵OD=r,CD=3,OC=r+1,∴r2+32=(r+1)2,解得r=4,即⊙O的半径为4.25.(8分)如图,直线y=kx与双曲线y=﹣交于A,B两点,已知A点坐标为(a,2).(1)求a,k的值;(2)将直线y=kx向上平移m(m>0)个单位长度,与双曲线y=﹣在第二象限的图象交于点C,与x轴交于点E,与y轴交于点P,若PE=PC,求m的值.【解答】解:(1)∵点A在反比例函数图象上,所以2=﹣,解得a=﹣2,将A(﹣2,2)代入y=kx,∴k=﹣1;(2)∵如图,过点C作CF⊥y轴于点F,∴CF∥OE,∴∠FCP=∠OEP,∠CFP=∠EOP,∵PE=PC,∴△CFP≌△EOP(AAS),∴CF=OE,OP=PF,∵直线y=﹣x向上平移m个单位长度得到y=﹣x+m,令x=0,得y=m,令y=0,得x=m,∴E(m,0),P(0,m),∴CF=OE=m,OP=PF=m,∴C(﹣m,2m),∵双曲线y=﹣过点C,∴﹣m•2m=﹣4,∴m=.26.(8分)如图1,在矩形ABCD中,点E为AD边上不与端点重合的一动点,点F是对角线BD上一点,连接BE,AF交于点O,且∠ABE=∠DAF.【模型建立】(1)求证:AF⊥BE;【模型应用】(2)若AB=2,AD=3,DF=BF,求DE的长;【模型迁移】(3)如图2,若矩形ABCD是正方形,DF=BF,求的值.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=90°,∵∠ABE=∠DAF,∴∠AOE=∠BAF+∠ABE=∠BAF+∠DAF=∠BAD=90°,∴AF⊥BE.(2)解:如图1,延长AF交CD于点G,∵GD∥AB,∴△GDF∽△ABF,∵DF=BF,AB=2,AD=3,∴==,∴GD=AB=×2=1,∵∠BAE=∠ADG=90°,∠ABE=∠DAG,∴=tan∠ABE=tan∠DAG==,∴AE=AB=×2=,∴DE=AD﹣AE=3﹣=,∴DE的长是.(3)解:如图2,延长AF交CD于点H,∵四边形ABCD是正方形,∴AB=AD,∠ADH=90°,设AB=AD=2m,∵HD∥AB,∴△HDF∽△ABF,∵DF=BF,∴===,∴HD=AB=×2m=m,∴AH===m,∴AF=AH=AH=×m=m,∴==,∴的值为.27.(10分)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y 轴交于点C,作直线BC.(1)求抛物线的解析式.(2)如图1,点P是线段BC上方的抛物线上一动点,过点P作PQ⊥BC,垂足为Q,请问线段PQ是否存在最大值?若存在,请求出最大值及此时点P的坐标;若不存在请说明理由.(3)如图2,点M是直线BC上一动点,过点M作线段MN∥OC(点N在直线BC下方),已知MN =2,若线段MN与抛物线有交点,请直接写出点M的横坐标x M的取值范围.【分析】(1)利用待定系数法转化为方程组求解;(2)过点P作PN⊥AB于点N,交BC于点M.证明△PQM是等腰直角三角形,推出PM=PQ,求出PM的最大值,可得结论;(3)设M(a,﹣a+3),则N(a,﹣a+1),求出点N在抛物线上时,a的值,可得结论.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴,解得,∴抛物线的解析式为y=﹣x2+2x+3;(2)过点P作PN⊥AB于点N,交BC于点M.∵B(3,0),C(0,3),∴直线BC的解析式为y=﹣x+3,∵OB=OC,∠BOC=90°,∴∠CBO=45°,∵∠MNB=90°,∴∠PMQ=∠NMB=45°,∵PQ⊥BC,∴△PQM是等腰直角三角形,∴PM=PQ,∴PM的值最大时,PQ的值最大,设P(m,﹣m2﹣2m+3),则M(m,﹣m+3),∴PM=﹣m2﹣2m+3﹣(﹣m+3)=﹣m2+3m,∵﹣1<0,∴当m=时,PM的值最大,PM的最大值=﹣+=,∴PQ的最大值=PM=,此时P(,);(3)设M(a,﹣a+3),则N(a,﹣a+1),当点N在抛物线上时,﹣a+1=﹣a2+2a+3,∴a2﹣3a﹣2=0,解得a1=,a2=.∵线段MN与抛物线有交点,∴满足条件的点M的横坐标的取值范围为:≤x M≤0或3≤x M≤.。
甘肃省兰州市2014年八年级下学期期中考试数学试卷有答案

C. AC= DF,∠ B=∠ F, AB= DE D .∠ B=∠ E,∠ C=∠ F, AC
= DF[ 来源: 学§科§网 Z§X§X§K]
4.下列命题中正确的是 (
)
A.有两条边相等的两个等腰三角形全等
B .两腰对应相等的两个等
腰三 角形
全等
C.两角对应相等的两个等腰三角形全等
5.下列命题中,正确的是(
兰州市 2014 年度第二学期期中试卷 八年级 数学(北师大版) 有答案
注意事项:本试卷满分 150 分,考试时间为 120 分钟. 一、选择题(本题共 15 小题,每小题 4 分,共 60 分。在每小题给出的四个选项中,只有一个选项是符合
题目要求的,请将答案填在下面的答题框内)
1. 下列图形中,既是轴对称图形,又是中心对称图形的是
)
A.若 a>b, 则 ac2>bc2
D .一边对应相等的两个等边三角形全等
B
.若 a>b, c=d 则 ac>bd
C、若
ac2>bc
2
,
则
a>b
D
.若 a>b, c<d 则 a b
cd
6. 如果三角形的三边长分别为 a、a- 1、a+1,则 a 的取值范围是(
)
A. a>0 B. a>2
C.
a<2 D.0< a<2
得底边 BC = a ,
高 AD = h . (不写作法,保留作图痕迹 . )
a
h
22. ( 10 分)解下列不等式组,并把它们的解集分别表示在数轴上:
5x 4 3( x 1)
( 1) x 1 2x 1
2023年甘肃省武威市中考数学真题(答案解析)

武威市2023年初中毕业、高中招生考试数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.【答案】C【解析】解:9的算术平方根是3,故选C2.【答案】A【解析】解:等式两边乘以2b ,得6ab =,故选:A .3.【答案】B【解析】解:()222222a a a a a a a +-=+-=,故选:B4.【答案】D【解析】∵直线y kx =(k 是常数,0k ≠)经过第一、第三象限,∴0k >,∴k 的值可为2,故选:D .5.【答案】C【解析】解:∵BD 是等边ABC 的边AC 上的高,∴1302DBC ABC ∠=∠=︒,∵DB DE =,∴30DBE DEB ∠=∠=︒,故选C6.【答案】A【解析】去分母得()21x x +=,解方程得2x =-,检验:2x =-是原方程的解,故选A .7.【答案】B【解析】解:∵将矩形ABCD 对折,使边AB 与DC ,BC 与AD 分别重合,展开后得到四边形EFGH ,∴EF GH ⊥,EF 与GH 互相平分,∴四边形EFGH 是菱形,∵2FH AB ==,4GE BC ==,∴菱形EFGH 的面积为1124422FH GE ⋅=⨯⨯=.故选:B8.【答案】D【解析】解:A 选项,年龄范围为9899-的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B 选项,由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C 选项,由扇形统计图可知,长寿数学家年龄在9293-岁的占的百分比最大,即长寿数学家年龄在9293-岁的人数最多,故选项正确,不符合题意;D 选项,《数学家传略辞典》中收录的数学家年龄在9697-岁的人数估计有112200242100⨯=人,故选项错误,符合题意.故选:D .9.【答案】B【解析】解:如图,过B 作BQ ⊥平面镜EF ,∴90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,∴5090CBQ CBQ ︒+∠=︒-∠,∴20CBQ ∠=︒,∴902070EBC ∠=︒-︒=︒,故选B .10.【答案】C【解析】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==,运动路程为0或4,结合函数图象可得(4,M ,故选C 二、填空题:本大题共6小题,每小题3分,共18分.11.【答案】()21a x -【解析】解:()()2222211ax ax a a x x a x -+=-+=-,故答案为:()21a x -12.【答案】2-(答案不唯一,合理即可)【解析】解:∵关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,∴224144160c c ∆=-⨯⨯=->,解得14c <,当2c =-时,满足题意,故答案为:2-(答案不唯一,合理即可)13.【答案】10907-【解析】解:把海平面以上9050米记作“9050+米”,则海平面以下10907米记作10907-米,故答案为:10907-.14.【答案】35【解析】解:,A CDB ∠∠Q 是 BC所对的圆周角,55,A CDB ∴∠=∠=︒AB 是O 的直径,90ACB ∠=︒ ,在Rt ACB △中,90905535ABC A ∠=︒-∠=︒-︒=︒,故答案为:35.15.【答案】【解析】解:在菱形ABCD 中,60DAB ∠=︒,160,302DAB DCB BAC DAC DCF DAB ∴∠=∠=︒∠=∠=∠=∠=︒,DF CD ⊥Q ,90DFC ∴∠=︒,9060DFC DCF ∴∠=︒-∠=︒,在Rt CDF △中,12DF CF =,603030,ADF DFC DAF ∠=∠-∠=︒-︒=︒Q ,FAD ADF ∴∠=∠11,23AF DF CF AC ∴===同理,13CE AC =,13EF AC AF CE AC ∴=--=,12EF AE ∴=,在Rt ABE △中,cos3032AB AE ==︒12EF AE ∴==故答案为:16.【答案】5π【解析】150********n r l πππ⨯⨯===故填:5π.三、解答题:本大题共6小题,共32分.解答时,应写出必要的文字说明、证明过程或演算步骤.17.【答案】32⨯==-=18.【答案】21x -<≤【解析】解:解不等式组:6234x x x x >--⎧⎪⎨+≤⎪⎩①②,解不等式①,得2x >-.解不等式②,得1x ≤.因此,原不等式组的解集为21x -<≤.19.【答案】4ba b+【解析】解:原式22(2)2()()a b a b a b a b a b a b a b +--=-⋅+-+-22a b a b a b a b+-=-++4b a b =+.20.【答案】见解析【解析】解:如图,即点A ,G ,D ,H 把O 的圆周四等分.理由如下:如图,连接,,,,,,,AE DE AC DC OE OH OG AH ,由作图可得: AB BC CD==,且OA OB AB ==,∴AOB 为等边三角形,60AOB ∠=︒,同理可得:60BOC COD ∠=∠=︒,∴180AOB BOC COD ∠+∠+∠=︒,∴A ,O ,D 三点共线,AD 为直径,∴=90ACD ∠︒,设CD x =,而30DAC ∠=︒,∴2AD x =,AC =,由作图可得:DE AE AC ===,而OA OD x ==,∴⊥EO AD ,OE ==,∴由作图可得AG AH ==,而OA OH x ==,∴22222OA OH x AH +==,∴90AOH =︒∠,同理90AOG DOG DOH ∠=︒=∠=∠,∴点A ,G ,D ,H 把O 的圆周四等分.21.【答案】(1)13(2)19【解析】(1)P (小亮抽到卡片A )13=.(2)列表如下:小刚小亮A B C A(),A A (),A B (),A C B (),B A (),B B (),B C C(),C A (),C B (),C C 或画树状图如下:共有9种等可能的结果,两人都抽到卡片C 的结果有1种,所以,P (两人都抽到卡片C )19=.22.【答案】新生物A 处到皮肤的距离约为8.4cm【解析】解:过点A 作AH MN ⊥,垂足为H .由题意得,35ABH DBN ∠=∠= ,22ACH ECN ∠=∠= ,在Rt AHB △中,tan tan 350.70AH AH AH BH ABH ==≈∠︒.在Rt AHC 中,tan tan 220.40AH AH AH CH ACH ==≈∠︒.∵CH BH BC -=,∴90.400.70AH AH -=,∴()8.4cm AH =.答:新生物A 处到皮肤的距离约为8.4cm .四、解答题:本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.23.【答案】(1)16(2)35(3)八年级,理由见解析【解析】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16,则中位数是1616162+=;故答案为:16;(2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.24.【答案】(1)()3,2B(2)32n m =-+(3)863y x =-【解析】(1)解:∵点()3,B a 在反比例函数()60y x x =>的图象上,∴623a ==,∴()3,2B .(2)∵点()3,2B在一次函数y mx n =+的图象上,∴32m n +=,即32n m =-+.(3)如图,连接OB .∵192OAB B S OA x =⋅⋅=△,∴1392OA ⋅⨯=,∴6OA =,∴()0,6A -,∴6n =-,∴326m -+=-,∴83m =,∴一次函数的表达式为:863y x =-.25.【答案】(1)见解析(2)245【解析】(1)证明:∵ AC AC=,∴ADC B ∠=∠.∵OB OC =,∴B OCB ∠=∠.∵CO 平分BCD ∠,∴OCB OCD ∠=∠,∴ADC OCD ∠=∠.∵CE AD ⊥,∴90ADC ECD ∠+∠=︒,∴90OCD ECD ∠+∠=︒,即CE OC ⊥.∵OC 为O 的半径,∴CE 是O 的切线.(2)连接OD ,得OD OC =,∴ODC OCD ∠=∠.∵OCD OCB B ∠=∠=∠,∴ODC B ∠=∠,∵CO CO =,∴OCD OCB ≌,∴CD CB =.∵AB 是O 的直径,∴90ACB ∠=︒,∴3sin 1065AC AB B =⋅=⨯=,∴8CB ==,∴8CD =,∴324sin sin 855CE CD ADC CD B =⋅∠=⋅=⨯=.26.【答案】(1)①见解析;②AD DF BD =+,理由见解析;(2DF BD =+,理由见解析;(3)【解析】(1)①证明:∵ABC 和BDE 都是等边三角形,∴AB BC =,BE BD =,60ABC EBD ∠=∠=︒,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴()SAS ABE CBD ≅△△.∴AE CD =.②AD DF BD =+.理由如下:∵DF 和DC 关于AD 对称,∴DF DC =.∵AE CD =,∴AE DF =.∴AD AE DE DF BD =+=+.(2DF BD =+.理由如下:如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒.∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴22DE BD =.∵ABC 是直角三角形,AB AC =,∴=45ABC ∠︒,2AB BC =,∴ABC CBE EBD CBE ∠-∠=∠-∠,∴ABE CBD ∠=∠,∴sin sin ABE CBD ∠=∠,∴AE CD AB BC=,∴AE BC CD AB ⋅=⋅,∴22AE CD =.∴22222222AD AE DE =+=+=+,即DF BD =+.(3)∵33BD CD DF ==,34DF DF DF =+=,∵AD =2DF DC ==,∴6BD =.如图,过点A 作AH BD ⊥于点H .∵AB AC AF ==,∴()11222HF BF BD DF ==-=,BC ==∴2222AF AC BC ===.∴cos5HF AFB AF ∠===.27.【答案】(1)23y x x=-+(2)四边形OCPD 是平行四边形,理由见解析(3)【解析】(1)解:∵抛物线2y x bx =-+过点()4,4B -,∴1644b -+=-,∴3b =,∴23y x x =-+;(2)四边形OCPD 是平行四边形.理由:如图1,作PD OA ⊥交抛物线于点D ,垂足为H ,连接PC ,OD .∵点P 在y x =-上,∴OH PH =,45POH ∠=︒,连接BC ,∵4OC BC ==,∴OB =,∵BP =,∴OP OB BP =-=,∴22222OH PH ===,当2D x =时,4322D DH y ==-+⨯=,∴224PD DH PH =+=+=,∵()0,4C -,∴4OC =,∴PD OC =,∵OC x ⊥轴,PD x ⊥轴,∴PD OC ∥,∴四边形OCPD 是平行四边形;(3)如图2,由题意得,BP OQ =,连接BC .在OA 上方作OMQ ,使得45MOQ ∠=︒,OM BC =,∵4OC BC ==,BC OC ⊥,∴45CBP ∠=︒,∴CBP MOQ ∠=∠,∵BP OQ =,CBP MOQ ∠=∠,BC OM =,∴()SAS CBP MOQ △≌△,∴CP MQ =,∴CP BQ MQ BQ MB +=+≥(当M ,Q ,B 三点共线时最短),∴CP BQ +的最小值为MB ,∵454590MOB MOQ BOQ ∠=∠+∠=︒+︒=︒,∴MB ==即CP BQ +的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年甘肃省中考诊断数学试卷(C 卷)
一、单选题 (本大题共10小题; 共30分.)
1.函数y =mx m -1+(m -1)是一次函数,则m 值
[ ]
A .m ≠0
B .m =2
C .m =2或4
D .m >2
2.如图,l 1∥l 2,∠1=105°,∠2=140°,则∠3=
________
A .55°
B .60°
C .65°
D .70°
3.若某数a 增加它的x %后得到b ,则b 等于 A .a +x % B .(1+x %)a C .a(1+x)% D .a ·x %
4.关于x 的方程
+x =a 的一个解为x =,那么a 的值为
A .-2
B .-1
C .1
D .2
5.一个饲养场里的鸡的只数与猪的头数之和是70,鸡、猪的腿数之和是196,设鸡的只数是x ,依题意列方程为
A .2x +4(70-x)=196
B .2x +4×70=196
C .4x +2(70-x)=196
D .4x +2×70=196
6.小华今年7岁,小明今年5岁,以下说法正确的是
A .比小明大的人一定比小华大
B .比小华小的人一定比小明小
C .比小华大的人可能比小明小
D .比小明小的人不会比小华大
7.()1 992×(1.5)1 991×(-1)1 993的结果是 A . B .-
C .
D .-
8.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是 A . B .- C . D .-
9.对于数据2,2,3,2,5,2,10,2,5,2,3,下列说法正确的有①众数是2;②众数与中位数的数值不相等;③中位数与平均数的数值相等;④平均数与众数的数值相等. A .1个 B .2个 C .3个 D .4个
10.下列说法正确的是 A .-3x 3y 2z 的系数是3 B .x 2+x 3是5次多项式 C .
不是整式
D .πr 2是3次单项式
学校:________________班级:________________姓名:________________学号:________________ ------------------------------------密-------------封-------------线-------------内-------------请-------------不-------------要-------------答-------------题------------------------------------
二、填空题(本大题共8小题; 共24分.)
11.绕某一点旋转的两个图形的对应点到旋转中心的距离________.旋转不改变图形的________.
12.已知y与x-1成反比例,当x =时,y =-,那么,当x=2时,y的值为________.
13.如果反比例函数y =上的图象过点(-1,2)那么k=________.
14.小刚、爸爸、爷爷同时从家中出发到同一目的地后就立即返回.小刚去时骑自行车,返回时步行;爷爷去时步行,返回时骑自行车;爸爸往返都步行.三人步行的速度不等,小刚与爷爷骑自行车的速度相同.每个人行走的路程与时间的关系分别是下图中的一个.走完一个往返,小刚用
________min,爸爸用________min,爷爷用________min.
15.如图,在矩形ABCD中,点E为边BC的中点,AE⊥BD,垂足为点O ,则的值等于________.
16.分解因式:m2+n2-mn=________
17.如图,∠α=125°,∠1=50°,则∠β的度数是________.
18.(a≥1)的值等于________.三、计算题(本大题共2小题; 共10分.)
19.计算
2m2·(-2mn)·(-m2n3).
20.5.6+[0.9+4.4-(-8.1)]
四、解答题(本大题共5小题; 共35分.)
21.请指出下面哪些调查不适合做普查而适合做抽样调查,并说明理由.
某农户想了解承包的鱼塘中鱼的平均质量
22.一个多边形的每一个外角都等于45°,求这个多边形的内角和.
23.已知a,b,c是三角形的三边长,化简|a-b-c|+|b-c-a|+|c-a-b|,若a=5,b =4,c=3,求这个式子的值.
24.如图,在△ABC中,AB的垂直平分线ED交AC于D,如果AC=7,BC=5,求△BDC的周长.
25.某校有A、B两个餐厅,甲、乙、丙三名学生随机选择一个餐厅用餐.
(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;
(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.
五、证明题(本大题共2小题; 共16分.)
26.如图,△ABC中AD是∠BAC的平分线,E、F分别是AB、BC上的点,且∠EDF+∠BAC =,求证:DE=DF.
27.如图,△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC交CD于F,交BC于E,试说明△CEF是等腰三角形.
六、画图题(本大题共1小题; 共5分.)
28.作圆,使它经过已知点A.2014年甘肃省中考诊断数学试卷(C卷)——答案
一、单选题(本大题共10小题; 共30分.)
1.【标准答案】:B;
2.【标准答案】:C;
3.【标准答案】:B;
4.【标准答案】:C;
5.【标准答案】:A;
6.【标准答案】:D;
7.【标准答案】:B;
8.【标准答案】:D;
9.【标准答案】:A;
10.【标准答案】:C;
【提示】:
A的系数是-3,B是3次多项式,C的字母在分母中,不是整式,D中π是系数.
二、填空题(本大题共8小题; 共24分.)
11.【标准答案】:
【详解】:
相等,形状,大小
12.【标准答案】:
【详解】:
13.【标准答案】:-2;
14.【标准答案】:21,24,26;
15.【标准答案】:
【详解】:
16.【标准答案】:
【详解】:
17.【标准答案】:105°;
18.【标准答案】:a-1;
【详解】:
∵a≥1,∴=|1-a|=a-1.
三、计算题(本大题共2小题; 共10分.)19.【标准答案】:
【详解】:
2m5n4
20.【标准答案】:19;
四、解答题(本大题共5小题; 共35分.)21.【标准答案】:
【详解】:
不可能把每条鱼都打捞上来称重,需采用抽样调查方式
22.【标准答案】:1 080°;
23.【标准答案】:a+b+c,12;
24.【标准答案】:【详解】:
因为ED是AB的垂直平分线,所以AD=BD,因为△BDC的周长=DB+BC+CD,所以△BDC的周长=AD
+BC+CD=AC+BC=7+5=12
25.【标准答案】:
【详解】:
五、证明题(本大题共2小题; 共16分.)
26.【标准答案】:
【详解】:
证明:在AB上截取AG=AF
在△ADG与△ADF 中
∴△AGD≌△AFD(SAS)
∴∠AGD=∠AFD,DG=DF
又∠AED+∠EDF+∠DFA+∠FAE=,∠EAF+∠EDF=∴∠AED+∠AFD=
又∠4+∠AGD=
∴∠4+∠3,∴DE=DG ∴DE=DF
解析:要证DE=DF,首先考虑到的是看△ADE与△ADF是否全等,从已知条件以及图形的直观性上看这两三角形不可能全等,可考虑的条件转化,即在AB上截取AG=AF,(或者在AC上截取AK=AE),连DG而证△ADG≌△ADF另一方面,由四边形AEDF 内角和为及∠EDF+∠EAF=,知∠AED+∠AFD=,而∠AGD=∠AFD,可证得∠3=∠4.∴DG=DE=DF
27.【标准答案】:
【提示】:
本题由已知条件可知,要说明△CEF是等腰三角形,应从角方面去探索,利用等角的余角相等及对顶角相等的知识可解决问题.
【详解】:
由于CD⊥BA,所以∠ADC=90°=∠ACB,因为AE平分∠BAC,所以∠CAE=∠BAE,由此可知∠AFD=∠CEA,又因为∠AFD=∠CFE,所以∠CEA=∠CFE,因此CE=CF,所以△CEF是等腰三角形.
六、画图题(本大题共1小题; 共5分.)
28.【标准答案】:
【详解】:
所求作的圆心和半径都没有限制条件,因此,只要以点A以外的任意一点为圆心,以这一点(圆心)与点A的距离为半径,就可以作出要求作的圆,这样的圆有无数多个(如下图所示).。