直线电机应用以和伺服控制
直线电机发展应用综述(一)(一)

直线电机在数控机床上的应用综述所在学院:机械工程学院学科专业:机械工程学生:解瑞建学号:********指导教师:***天津科技大学机械工程学院二零一二年十二月二十七日摘要简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。
利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。
介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。
关键词:直线电机数控机床驱动控制高速机床0 引言数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。
高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。
在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。
在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。
虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。
随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。
直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。
图0 SUPT Motion公司生产的一种直线电机1直线电机1.0直线电机的发展史直线电机的发展史1840年Wheatsone开始提出和制作了略具雏形的直线电机。
从那时至今,在160多年的历史中,直线电机经历了三个时期。
1840~1955年为探索实验时期:从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。
伺服电机 直线电机工作原理

伺服电机直线电机工作原理A servo motor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. 伺服电机是一种可以精确控制角度或线性位置、速度和加速度的转动致动器或直线致动器。
Servo motors are used in a variety of applications, such as robotics, CNC machinery, conveyor systems, and more. 伺服电机广泛应用于各种领域,如机器人技术、数控机械、输送系统等。
The working principle of a servo motor involves the use of a feedback control system to accurately position the motor shaft. 伺服电机的工作原理涉及使用反馈控制系统来精确定位电机轴。
This is achieved by continuously comparing the actual position of the shaft to the desired position and adjusting the motor's control inputs accordingly. 这是通过不断比较轴的实际位置和期望位置,并相应地调整电机的控制输入来实现的。
The feedback control system typically utilizes a rotary encoder or linear encoder to provide position feedback to the motor controller. 反馈控制系统通常使用旋转编码器或线性编码器向电机控制器提供位置反馈。
数控机床直线电机进给伺服系统的动态特性分析与研究

数控机床直线电机进给伺服系统的动态特性分析与研究1. 数控机床直线电机进给伺服系统概述随着科技的不断发展,数控机床在工业生产中扮演着越来越重要的角色。
为了提高数控机床的加工精度和效率,近年多的研究者开始关注直线电机进给伺服系统的研究与应用。
直线电机进给伺服系统是一种采用直线电机作为驱动源的高精度、高速度、高可靠性的伺服系统,广泛应用于数控机床、机器人、自动化生产线等领域。
直线电机进给伺服系统具有很多优点,如结构简单、体积小、重量轻、响应速度快、转矩大等。
这些优点使得直线电机进给伺服系统在数控机床中的应用越来越广泛。
由于直线电机本身的特点以及伺服系统的复杂性,对其进行动态特性分析与研究具有很大的挑战性。
本文将对数控机床直线电机进给伺服系统的动态特性进行深入研究,以期为实际应用提供理论依据和技术支撑。
1.1 研究背景随着现代制造业的快速发展,数控机床在各个领域的应用越来越广泛。
数控机床的性能和精度对于提高产品质量、降低生产成本具有重要意义。
直线电机进给伺服系统作为数控机床的关键部件之一,其动态特性直接影响到数控机床的加工精度、速度和稳定性。
研究数控机床直线电机进给伺服系统的动态特性,对于提高数控机床的整体性能具有重要的现实意义。
传统的数控机床进给伺服系统主要采用步进电机驱动,虽然在一定程度上满足了加工需求,但其动态特性较差,如速度响应慢、加速度范围窄、负载能力有限等。
这些问题限制了数控机床在高速、高精度加工方面的应用。
随着直线电机技术的不断发展,直线电机进给伺服系统逐渐成为数控机床领域的研究热点。
直线电机具有功率密度高、加速度响应快、速度快、转矩大等优点,可以有效提高数控机床的性能。
由于直线电机进给伺服系统涉及到多个学科领域,如电机学、控制理论、机械设计等,因此对其动态特性的研究具有较高的难度。
本论文旨在对数控机床直线电机进给伺服系统的动态特性进行分析与研究,以期为提高数控机床的性能和稳定性提供理论依据。
直线电机工作原理,特点及应用(数控大作业)

《数控技术》大作业二1.综述直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。
其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级线圈之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。
直线电机的工作原理设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。
初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动.通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。
设产生涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将(费来明法则)产生连续的推力F。
2.工作原理直线电动机的初级三相绕组通入三相交流电后,就会在气隙中产生一个沿直线移动的正弦波磁场,其移动方向由三相交流电的相序决定,如图所示。
显然该行波磁场的移动速度与普通电机旋转磁场在定子内圆表面的线速度相等。
行波磁场切割次级上的导体后,在导体中感应出电动势和电流,该电流与气隙磁场作用,在次级中产生电磁力,驱动次级沿着行波磁场移动的方向作直线运行,或者利用反作用力驱动初级朝相反的方向运动。
如果改变直线电动机初级绕组的通电相序,即可改变电动机的运行方向。
因此直线电动机可实现往返直线运动。
3.直线电机的特点直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。
旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。
直线感应电动机的特点是:结构简单,维护方便;散热条件好,额定值高;适宜于高速运行;能承担特殊任务,如液态金属的运输、加工等。
其缺点是气隙大,功率因数低,力能指标差,低速运行时需采用低频电源,使控制装置复杂。
永磁同步直线电机伺服控制系统设计

P S ML M因具有高效 、 高可靠 陛、 体积小 、 时 间常数小 、 响应快和可控性好等优 势, 而大量的 应用于小 功率设备, 作为伺服驱动和精度较高 的 定位控制[。 引 合理的伺服控制系统 的设计方案 ,
必将 推动 P S ML M进 一步 应 用。
伺 服 系统
力, 以获得单 向或双 向的有 限可控位移 [。 】 永磁 1
同步 直线 电机 ( ema e t g e ie rS n P r n n Ma n tLn a y —
Ke wor : r a e t a n tln a yn h o o y ds Pe m n n g e i e r s c r n us m
mo o S r o s s e tr e v -y t m Di i lsg a r c s o P st n g t i n lp o e s r a o ii o d tcin e e to
数 字信 号
中图分类号: TM3 1 文献标识码 : 5 A DOI 编码 : 03 6 /. s 0 62 0 .0 20 .0 1 .9 9ji nl 0 ・8 72 1 .20 8 s
Abs r c :Li e rm o o a b a n ln a o i n ta t n a t r c n o t i i e rm to c mp r d wi h o a y mo o , e ma e tma n tl e r o a e t t e r t r t r p r n n g e i a h n s n h o o s mo o sa l o d i e d r c l h q i me t y c r n u t r i b e t rv ie t t e e u p n y wh r i e rmo i n i e u r d o a q r he lm i d e e ln a to s r q i e ,t c uie t i t e c n r la l i p a e n . k n f d sg r g a o o t o l b e d s l c me t A i d o e i n p o r m f p r a e tma n tl e rs n h o o s mo o e v —y tm e m n n g e i a y c r n u t r s r o s se n wa r e u n t i a e , h s s l s o d t a h swo k d o t sp p r t e t t e u t h we t e i h e r h t
直线电机的应用

直线电机的应用直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。
直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。
在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。
除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。
直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。
近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。
直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。
直线电机伺服系统在制造装备上的控制应用

直线电机伺服系统在制造装备上的控制应用[摘要]近些年,国产高端装备市场份额逐年上升。
在国产装备同级别替代进口装备的行业中,系统性能稳定性竞争日益激烈,直线电机及其驱动系统无疑是高端制造装备的核心器件,在精密贴装,高精度检测,精密测量装备系统中,直线电机伺服系统以其低功耗、高速、高动态响应等优良的系统性能在各种精密装备上应用广泛。
本文主要围绕制造装备直线电机伺服系统控制应用开展深入的研究和探讨。
关键词:伺服系统、直线电机、制造装备、控制应用伴随制造业持续高速发展,各种高端制造装备控制系统控制面临着更高的挑战。
在系统速度与加速度毫秒必争的领域,直线电机伺服系统中的运动控制系统及其系统硬件的设计,对其系统性能整体提升起到至关作用。
ELMO是一款可以适配任意运动、任意控制的驱动器,搭载雅科贝思直线电机系统和雷尼绍光栅尺作为执行机构和位置反馈系统,即形成了一整套直线电机伺服系统的硬件架构。
ELMO的龙门算法是基于MIMO结构,即多输入多输出结构,处理X1/X2/Y轴的输入,图示如下:1. Y center = Y - Y方向当前位置2. X center = (X1+X2)/2 –龙门双驱X方向中心点位置3. θ = (X1-X2) –龙门双驱X方向两个轴的同步位置偏差1、直线电机与驱动选型应用直线电机相比于旋转伺服电机、无丝杆或者减速机、传动齿轮的能耗损失,在选型阶段,我们通常关注直线电机的峰值推力、持续推力、峰值电流、持续电流、配套驱动器选型,需要知道直线电机的力常数,出力电机数量、电机相数、磁极距、负载重量、速度指标、加速度指标、电机峰值推力和持续推力、电机峰值电流、反电动势常数,持续电流等指标,从而进行计算驱动器的母线电压、峰值功率和持续功率。
2、直线电机伺服系统控制应用2.1 直线电机伺服系统2.1.1直线电机伺服系统构建及配线本项目中采用ELMO驱动器作为龙门结构的驱动系统,龙门控制算法采用主从式控制方式,设计两个同型号驱动器驱动两个同型号直线电机,主从轴直线电机全部配置配光栅尺、模拟量编码器[1]。
直线电机运用

直线电机主要应用于三个方面:一是应用于自动控制系统,这类应用场合比较多;二是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。
在实际工业应用中的稳定增长,证明直线电机可以放心的使用。
本期讨论直线电机的运用Linear motor:直线伺服电机应用昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me工业之美什么是直线电机特点1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。
直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子加速器、制造武器等。
2.直线电机是如何工作的下面简单介绍直线电机类型和他们与旋转电机的不同,最常用的直线电机类型是平板式,U型槽式和管式。
线圈的典型组成是三相,有霍尔元件实现无刷换相,直线电机用HALL换相的相序和相电流。
直线电机经常简单描述为旋转电机被展平,而工作原理相同。
动子(forcer,rotor)是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。
在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(airgap)。
同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。
和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。
3.直线电机分类管状直线电机圆柱形动磁体直线电机的磁路与动磁执行器相似。
区别在于线圈可以复制以增加行程。
典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
调试时与旋转电机注意:
• 电机类型选:直线电机
• 输入直线电机最大速度
• 没有霍尔的直线电机,sv on 时会来回动一下,以搜寻磁 场相序
• 把直线电机模型参数输入驱 动器(例如:电机电感、电 阻、最大平均电流、负载质 量等)
• 先优化驱动器电流环(一般 带宽可达到2000-3000HZ)
– 中国大陆:大族、华嶺、维纳、同日等 – 中国台湾:Hiwin等 – 美国:Parker、Copley、GlenTek等 – 以色列:Elmo、Megafabs – 德国:西门子、路斯特(LST)等 – 日本:安川、松下等 – 新加坡:PBA
直线电机选型(引用华嶺机电资料)
• 直线电机选型还要注意 – 温升(冷却) – 工作电流 – 行程
– 高精度:(无传动误差,高分辨率光栅尺,全闭环控制)定位 精度(±4um)、重复定位精度(±1um)
– 高速度:高达5m/s (300m/min) – 高加速度:可达5G
– 高刚性(动态响应快),直线电机系统的单轴跟踪误差比传统 旋转电机可以小10倍以上
– 无反向间隙
– 无磨损,寿命长
• 直线电机及驱动器相关品牌
• 然后优化驱动器速度环
• 最后调整FSCUT4000的PID参 数,使用“PID自动调整”
• 自动调整时使用“高级自动 调整”,尽量使用高一些的 刚性等级
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
缺点: • 伺服控制和速度规划分开实现,无法用速度规划的信息做前馈控制,伺服响应较慢,单轴跟随误差大 • 各轴伺服控制分开实现,无法自动实现各轴伺服响应的匹配,得到高精度的轨迹控制。 • 无法补偿反向摩擦力 • 无法主动消除轨迹误差 • 无法进行耦合控制,实现高同步的龙门控制
减小单轴跟随误差对减小轮廓误差有作用,
但是也有很多限制。例如上图中,同时减小 XY的跟随误差后,其轮廓误差并没有明显减 少,反倒有可能增大。平且一味的减少单轴 跟随误差还有可能导致系统太灵敏而不稳定。
变增益交叉耦合控制: 以减小轨迹误差为目标的控制算法
Y
圆心(X0,Y0)
θ
RHale Waihona Puke P* (Rx,Ry)Ey
ε
Ex
P
(Px,Py)
θ
X
• 直线电机优点(无铁芯无刷直线电机)