双曲线型冷却塔
双曲线冷却塔内塔式起重吊车高空拆除技术

双曲线冷却塔内塔式起重吊车高空拆除技术双曲线冷却塔是电厂、石油化工等工业领域中常见的设备,其主要功能是供给冷却水。
然而,由于浓度不均、积垢严重等原因,导致双曲线冷却塔长年累月地处于高度腐蚀、老化状态,需要进行拆除或维修。
而对于双曲线冷却塔的拆除,则需要运用高级起重吊车等特定工具进行作业。
双曲线冷却塔内塔式起重吊车,是特别针对冷却塔内部使用的提升工具,具有吊载能力大、稳定性高、空间利用率高等优势。
下面主要介绍双曲线冷却塔内塔式起重吊车高空拆除技术。
一、起重吊车的选择要点1. 吊重范围大。
由于双曲线冷却塔的直径较大,因此需要具备一定的吊重范围,以保证起重吊车能够到达需要拆除的工作区域。
2. 稳定性强。
一般情况下,冷却塔处于开放环境中,容易受风吹动等外部环境影响,因此需要具有较强的稳定性。
3. 空间利用率高。
由于冷却塔内部空间较狭窄,因此需要选择可缩小高度和幅度的起重吊车,以便于操作人员更方便地进出。
4. 控制精度高。
在高空操作过程中,需要精准控制起重吊车的工作状态和动作轨迹,以确保操作人员安全和作业质量。
二、高空拆除技术1. 环境清理。
在进行高空拆除作业之前,需要对冷却塔进行彻底的环境清理,以保证起重吊车的工作平台上没有杂物、尘土等影响作业的物质。
2. 安全设备的准备。
在进行高空拆除作业之前,需要对起重吊车的安全设备进行检查,以确保其正常运作,如检查反限位器、保护绳等,并配备合适的安全防护设备,如安全带、安全网等。
3. 吊绳的选用。
使用双绳吊钩,通过同步控制来实现对冷却塔进行拆卸,同时可以通过吊钩悬挂式遥控来控制起吊动作。
4. 拆卸方式。
拆卸方式包括:切割、炸药爆破、撬杆、机器拆除等,选择不同的方式需要根据冷却塔的材质、高度、周边环境等综合考虑。
总之,双曲线冷却塔的拆除需要使用吊载能力大、稳定性高、空间利用率高的特殊起重吊车。
在进行高空拆除作业之前,需要对环境进行清理,检查安全设备的运转情况,并使用双绳吊钩进行同步控制,最后选择合适的拆卸方式进行作业。
双曲线型冷却塔

当人们对于奥林匹克场馆的记忆依然停留在08年北京奥运会的鸟巢,水立方时,我们不妨目把光投向即将举办2012年奥运会的伦敦.在那里,五个永久性场馆之一的自行车赛车场已经率先竣工。
其独特的双曲线型屋顶设计必将使这个场馆成为奥林匹克场所标志性建筑。
点击图片查看下一页赛场外景由Hopkins Architects设计的奥运会自行车赛车场是2012年伦敦奥运会奥林匹克公园5个永久场地第一个完成的项目。
赛场外观自行车赛道赛馆有一个明显的双曲线屋顶,其设计是在对建筑性能和节能方面进行大量研究后得出的结果。
项目设计团队探讨了自行车的人体工程特点,然后将部分特点融入到赛馆的工程设计当中.自行车赛道也是赛馆的焦点所在,观众区被主环形通道分成两大排。
建筑看起来非常轻盈,其节能方面设计非常突出,其中包括了很多可持续性元素:策略性屋顶设计能让室内拥有充足的自然光线,减少照明能耗;建筑外壁穿孔覆层能让室内拥有良好的自然通风;收集的雨水可作建筑它用。
这个双曲抛物体钢架结构座落在这个釉面360度观赏大厅上。
通过屋顶独特的设计,充分利用自然光可以减少对人造光的需求。
表面覆盖着有孔径木材,这样有利于自然通风.点击图片查看下一页木料的使用双曲抛物体屋顶远景这座建筑内里的碗状体育场用了4800立方米材料建成。
点击图片浏览更多精彩内容场馆内景采暖通风系统很好的迎合了自行车环境需求,同时保持了高效能耗。
紧密型设计将能耗降到最小化,却已能加热主舞台。
室内设计伦敦奥运会自行车赛车场将会举办奥运会和残奥会的室内自行车赛,之后将会改造成房务部,商用设施,工作场所和观景台。
平面图双曲线型冷却塔hyperbolic cooling tower火电厂、核电站的循环水自然通风冷却的一种构筑物。
建在水源不十分充足的地区的电厂,为了节约用水,需设置冷却构筑物,以使从冷却器排出的热水在其中冷却后可重复使用。
大型电厂采用的冷却构筑物多为双曲线型冷却塔。
英国最早使用这种冷却塔.20世纪30年代以来在各国广泛应用,40年代在中国东北抚顺电厂、阜新电厂先后建成双曲线型冷却塔群.冷却塔由集水池、支柱、塔身和淋水装置组成。
双曲线冷却塔翻模施工工法

双曲线冷却塔翻模施工工法-----范本1-----正文:一、工程背景双曲线冷却塔是工业领域常见的散热设备,其翻模施工工法是为了满足冷却塔在使用过程中的维护和维修需求。
本文档将详细介绍双曲线冷却塔翻模施工的步骤和注意事项。
二、施工准备2.1 施工前期准备2.1.1 确定翻模施工的时间和地点2.1.2 编制施工计划和施工方案2.1.3 购买和准备所需的施工材料和设备2.2 安全措施2.2.1 制定安全操作规程2.2.2 对工人进行安全培训2.2.3 设置安全警示标志和防护措施三、翻模施工步骤3.1 施工现场搭建3.1.1 搭建施工脚手架和安全网3.1.2 铺设防滑垫和防护板3.2 冷却塔停机3.2.1 断开冷却塔的电源和供水管道3.2.2 排空冷却塔内的水分3.3 拆除冷却塔外壳3.3.1 拆除冷却塔外壳上的附着物3.3.2 使用起重设备拆除外壳3.4 拆除冷却塔内部设备3.4.1 拆除冷却塔内的填料和风机3.4.2 拆除冷却水管道和电气线路3.5 翻转冷却塔3.5.1 使用起重设备将冷却塔翻转到指定位置3.5.2 检查冷却塔的底部支撑情况3.6 修复和更换部件3.6.1 检查冷却塔内的支撑结构和底座3.6.2 进行必要的修补和更换工作3.7 安装冷却塔内部设备3.7.1 安装冷却塔的填料和风机3.7.2 安装冷却水管道和电气线路3.8 安装冷却塔外壳3.8.1 使用起重设备安装冷却塔外壳3.8.2 固定外壳并进行必要的密封处理四、施工注意事项4.1 注意安全4.2 准确测量4.3 严格按照施工计划进行操作4.4 细致梳理施工材料和设备清单附件:附件1:施工计划附件2:施工方案附件3:施工材料清单附件4:施工设备清单法律名词及注释:1.施工方案:对整个施工过程进行规划和安排的文件,包括工作步骤、资源分配、安全措施等内容。
2.冷却塔:用于散热的设备,通常由填料、风机等组成。
3.起重设备:用于搬运重物的机械设备,如吊车、起重机等。
双曲线自能通风冷冷却塔知识简介课件

应用领域
应用领域
双曲线自能通风冷却塔广泛应用于电力、化工、冶金、造纸 等高能耗行业,作为重要的循环水冷却设备,为工业生产提 供稳定的冷却支持。
优势
相比传统冷却塔,双曲线自能通风冷却塔具有更高的冷却效 率、更低的能耗和更小的占地面积,能够为企业节约能源和 运营成本。
02
双曲线自能通风冷却塔的结构 设计ቤተ መጻሕፍቲ ባይዱ
双曲线自能通风冷冷却塔知识简 介课件
目录
• 双曲线自能通风冷却塔的概述 • 双曲线自能通风冷却塔的结构设计 • 双曲线自能通风冷却塔的性能分析 • 双曲线自能通风冷却塔的维护与保养 • 双曲线自能通风冷却塔的发展趋势与展望
01
双曲线自能通风冷却塔的概述
定义与特点
定义
双曲线自能通风冷却塔是一种高效、 环保的冷却塔技术,利用双曲线的几 何形状和自然通风原理进行热量交换 ,从而达到冷却效果。
填料形状和结构
填料安装方式
填料的安装方式需合理设计,以保证 填料在运行过程中不易脱落、移位。
填料的形状和结构需根据冷却需求进 行设计,以提高冷却效率。
喷淋系统设计
喷嘴数量和布置
喷嘴数量和布置需根据冷却塔的 冷却能力和喷淋效果进行设计,
以确保水雾均匀分布。
喷嘴材料
喷嘴材料的选择需根据实际需求进 行选择,要求具有较好的耐腐蚀、 耐磨损等性能。
喷淋水流量控制
喷淋水流量控制需合理设计,以实 现最佳的冷却效果和节约用水。
收水器设计
收水器材质
收水器材质的选择需根据实际需 求进行选择,要求具有较好的耐
腐蚀、耐磨损、阻燃等性能。
收水器结构
收水器的结构需合理设计,以提 高收水效果和通风效率。
收水器安装位置
双曲线冷却塔施工方案

双曲线冷却塔施工方案引言冷却塔是工业领域中常见的设备,用于降低水温或冷却工艺过程中产生的热量。
双曲线冷却塔具有结构简单、运行稳定等优点,因此在工程领域中得到了广泛应用。
本文将详细介绍双曲线冷却塔的施工方案,包括工程准备、施工流程、质量控制等内容,旨在提供一份全面的指导,确保冷却塔的施工质量和安全。
工程准备设计方案确认在开始施工前,需要与设计方案的负责人确认双曲线冷却塔的设计方案。
确认包括但不限于以下几个方面: - 冷却塔的尺寸和形状 - 冷却介质的流量和温度 - 冷却效果要求 - 环境要求和周围设备的布置施工材料根据设计方案和预算,准备好所需的施工材料,包括但不限于以下几个方面:- 钢结构材料:用于支撑和固定冷却塔的主体结构 - 冷却填料:用于增加冷却塔的表面积和提高冷却效果 - 水泵和管道:用于流动冷却介质 - 电气设备:用于控制冷却塔的运行和监测工程人员准备确定施工团队的人员配置和工作任务分配,确保每个人员具备相关的技能和经验。
人员准备包括但不限于以下几个方面: - 工程经理:负责全面控制和监督冷却塔的施工工作 - 施工工人:负责具体的施工操作,如钢结构安装、填料布置等 - 电气工程师:负责冷却塔的电气设备安装和调试施工流程场地准备在施工前,需要对施工场地进行清理和平整,确保没有障碍物和安全隐患。
同时,需要根据冷却塔的尺寸布置好支撑结构的基础。
钢结构安装根据设计方案和施工图纸,进行钢结构安装。
具体流程包括以下几个步骤: 1. 安装主体结构:根据图纸指引,将钢柱和钢梁等部件进行组装和连接,确保结构稳固。
2. 安装平台和护栏:根据设计要求,安装各级平台和护栏,确保工作人员的安全。
填料布置填料是提高冷却塔效果的重要组成部分,准确布置填料对于冷却塔的性能有着重要的影响。
填料布置的具体流程如下: 1. 选择合适的填料材料:根据设计方案和预算,选择合适的填料材料,如喷淋式填料或者湿式填料。
2. 填料的安装和固定:根据设计方案,将填料逐层铺设在冷却塔中,并采取必要的固定措施,确保填料的密度和稳定性。
双曲线冷却塔施工工法(2)

双曲线冷却塔施工工法双曲线冷却塔施工工法一、前言:双曲线冷却塔是一种常见的工业设备,用于降低热水或冷却介质的温度,广泛应用于化工、发电、石油、钢铁等行业。
双曲线冷却塔施工工法是指在建设双曲线冷却塔时使用的施工方法和技术措施。
本文将对双曲线冷却塔施工工法进行详细介绍。
二、工法特点:双曲线冷却塔施工工法具有以下特点:1. 适用范围广:双曲线冷却塔施工工法适用于各种规模和类型的冷却塔建设,可以根据具体需求进行灵活设计和施工。
2. 施工周期短:采用双曲线冷却塔施工工法可以有效缩短施工周期,提高工程进度,节约施工时间和成本。
3. 施工质量高:双曲线冷却塔施工工法采用先进的施工技术和质量控制手段,能够保证施工质量符合设计要求。
4. 安全可靠:双曲线冷却塔施工工法注重施工安全,制定详细的安全措施,保障施工人员的安全。
三、适应范围:双曲线冷却塔施工工法适用于各种规模和类型的冷却塔建设,无论是新建、改造还是扩建,都能够根据具体情况进行设计和施工。
不论是小型工业设备还是大型发电厂,都可以采用双曲线冷却塔施工工法。
四、工艺原理:双曲线冷却塔施工工法的工艺原理基于对施工工法与实际工程之间的联系和采取的技术措施进行详细分析和解释。
该工法在施工过程中,通过选用适当的建材和施工方式,确保双曲线冷却塔的结构稳定,工艺流程顺利进行。
五、施工工艺:双曲线冷却塔施工工法各个施工阶段的描述如下:1. 基础施工:首先进行基础施工,包括地面准备、地基开挖、基础浇筑等。
确保冷却塔的底座牢固可靠。
2. 结构施工:在基础施工完成后,进行结构施工,包括立柱安装、梁板安装等。
形成冷却塔的主体骨架。
3. 外壳施工:在结构施工完成后,进行外壳施工,包括安装外壳板、防腐涂料等,确保冷却塔的防腐能力和美观度。
4. 冷却系统施工:最后进行冷却系统施工,包括水管安装、风叶安装等,确保冷却塔的冷却性能。
六、劳动组织:双曲线冷却塔施工工法需要组织和管理一支高效的施工队伍。
双曲线冷却塔

4 1.41 5.63 33.80 34.31 0.47 0.48 152.17
5 1.41 7.05 33.29 33.80 0.46 0.47 147.56
6 1.41 8.46 32.79 33.29 0.46 0.46 143.04
7 1.41 9.87 32.29 32.79 0.45 0.46 138.59
高差 (m)
上高 (m)
上半径 下半径 (m) (m)
上厚(m)
下厚(m)
体积 (m³)
1 1.41 1.41 35.34 36.77 0.49 0.50 168.65
2 1.41 2.81 34.82 35.34 0.49 0.49 161.64
3 1.41 4.22 34.31 34.82 0.48 0.49 156.86
3500m2双曲线冷却塔,塔高90m,底部最大直径73.546m,喉部直径38.8m,顶部直径 43.122m,踏壁呈双曲面形,最大壁厚500mm,最小壁厚140mm。
计算依据:
双曲线母线方程: 筒壁曲线: 筒壁厚度: 筒壁体积: 其中:r —— 筒壁中面半径
z —— 离喉部距离 λ —— 双曲线系数 r0 —— 筒壁喉部中面半径 ∆z —— 筒壁竖座标增减值 S —— 一节模板高度,S=1.5m hmin —— 筒壁最小厚度 hmax —— 筒壁最大厚度 Hb —— 筒壁最小厚度处高度,取喉部高度 Hd —— 筒壁高度
12 1.42 16.96 29.86 30.34 0.41 0.42 117.64
13 1.42 18.38 29.39 29.86 0.40 0.41 113.70
14 1.42 19.81 28.92 29.39 0.40 0.40 109.84
浅析双曲线冷却塔的施工技术

浅析双曲线冷却塔的施工技术1、前言双曲线冷却塔是火力发电工程最为主要的建筑之一,在发电工程中承担着冷却的功能,是发电工艺中的重要流程。
为了加强双曲线冷却塔施工管理,通常采用升降机进行冷却塔施工管理,垂直运输技术是应用于双曲线冷却塔施工的最关键技术,主要包括升降机运输技术、井架法等多种方法,主要的施工流程包括模板工程、钢筋工程、砼工程等流程,为了确保施工质量,需要完善施工控制管理,明确操作技术,促进施工管理。
2、常见垂直运输技术2.1 施工升降机技术施工升降机法是在施工过程中,在冷却塔内侧设置垂直升降机,为了确保升降机的固定性,确保竖向稳定性,采用落地连墙进行固定,采用固定架顶面搭设作为操作平台,可以采用升降机金鼎钢筋材料、垂直运输以及人员的运输等功能。
2.2 井架技术井架法是双曲线冷却塔的传统运输方法,通过在冷却塔内部设置井架,沿着井架的一定距离设置缆风绳。
在施工成固定地面的混凝土地描上,在井架作业面上设置吊桥作为水平运输与操作平台,施工人员设置专用电梯。
2.3 平桥塔架、升降机、泵车一体化施工技术一体化施工方法是指采用升降机、平桥塔架、泵车等多种施工机械进行组合,通过对双曲线冷却塔中的施工书进行分袂,合理的选择施工机械,兼顾冷却塔半径保持体系的平衡,确保升降机安全可靠。
为了保障施工管理,随着冷却塔调整平桥搭架的前桥工作幅度,下部安装转塔吊,为钢筋和小型建筑物料的提升提供便利。
一体化施工中的钢筋、砼等建筑材料从塔内吊至塔顶施工作业面,人员在三脚架上推车进仓,工作强度较大。
3、双曲线冷却塔施工流程一体化组合施工应用于双曲线冷却塔施工中,能够有效的运用各种工具的优点,从而提升工艺的稳定性。
为了确保垂直运输技术质量,本文对多功能塔吊与升降机一体化的方式进行施工,概念图如图1所示,其中多功能塔吊在冷却塔中央,主要用于运输混凝土、模板与辅助工具等,通过软附着进行加固,最大优点不仅负责施工中钢筋的垂直运输,还在塔身安装混凝土泵管具有砼的垂直运输能力,还可通过在塔吊的水平臂安装可360度旋转混凝土泵管,混凝土经过地面布置的地泵可实现混凝土直接进仓,缩短了混凝土浇筑时间、加快了施工进度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当人们对于奥林匹克场馆的记忆依然停留在08年北京奥运会的鸟巢,水立方时,我们不妨目把光投向即将举办2012年奥运会的伦敦.在那里,五个永久性场馆之一的自行车赛车场已经率先竣工。
其独特的双曲线型屋顶设计必将使这个场馆成为奥林匹克场所标志性建筑。
点击图片查看下一页
赛场外景
由Hopkins Architects设计的奥运会自行车赛车场是2012年伦敦奥运会奥林匹克公园5个永久场地第一个完成的项目。
赛场外观
自行车赛道
赛馆有一个明显的双曲线屋顶,其设计是在对建筑性能和节能方面进行大量研究后得出的结果。
项目设计团队探讨了自行车的人体工程特点,然后将部分特点融入到赛馆的工程设计当中。
自行车赛道也是赛馆的焦点所在,观众区被主环形通道分成两大排。
建筑看起来非常轻盈,其节能方面设计非常突出,其中包括了很多可持续性元素:策略性屋顶设计能让室内拥有充足的自然光线,减少照明能耗;建筑外壁穿孔覆层能让室内拥有良好的自然通风;收集的雨水可作建筑它用。
这个双曲抛物体钢架结构座落在这个釉面360度观赏大厅上.通过屋顶独特的设计,充分利用自然光可以减少对人造光的需求。
表面覆盖着有孔径木材,这样有利于自然通风.
点击图片查看下一页
木料的使用
双曲抛物体屋顶
远景
这座建筑内里的碗状体育场用了4800立方米材料建成。
点击图片浏览更多精彩内容
场馆内景
采暖通风系统很好的迎合了自行车环境需求,同时保持了高效能耗。
紧密型设计将能耗降到最小化,却已能加热主舞台。
室内设计
伦敦奥运会自行车赛车场将会举办奥运会和残奥会的室内自行车赛,之后将会改造成房务部,商用设施,工作场所和观景台。
平面图
双曲线型冷却塔
hyperbolic cooling tower
火电厂、核电站的循环水自然通风冷却的一种构筑物。
建在水源不十分充足的地区的电厂,为了节约用水,需设置冷却构筑物,以使从冷却器排出的热水在其中冷却后可重复使用.大型电厂采用的冷却构筑物多为双曲线型冷却塔。
英国最早使用这种冷却塔。
20世纪30年代以来在各国广泛应用,40年代在中国东北抚顺电厂、阜新电厂先后建成双曲线型冷却塔群。
冷却塔由集水池、支柱、塔身和淋水装置组成。
集水池多为在地面下约2米深的圆形水池.塔身为有利于自然通风的双曲线形无肋无梁柱的薄壁空间结构,多用钢筋混凝土制造,塔高一般为75~110米,底边直径65~100米。
塔内上部为风筒,标高10米以下为配水槽和淋水装置。
淋水装置是使水蒸发散热的主要设备.运行时,水从配水槽
向下流淋滴溅,空气从塔底侧面进入,与水充分接触后带着热量向上排出。
冷却过程以蒸发散热为主,一小部分为对流散热.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它又比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高。
冷却塔的工作过程:
圆形逆流式冷却塔的工作过程为例:热水自主机房通过水泵以一定的压力经过管道、横喉、曲喉、中心喉将循环水压至冷却塔的播水系统内,通过播水管上的小孔将水均匀地播洒在填料上面;干燥的低晗值的空气在风机的作用下由底部入风网进入塔内,热水流经填料表面时形成水膜和空气进行热交换,高湿度高晗值的热风从顶部抽出,冷却水滴入底盆内,经出水管流入主机。
一般情况下,进入塔内的空气、是干燥低湿球温度的空气,水和空气之间明显存在着水分子的浓度差和动能压力差,当风机运行时,在塔内静压的作用下,水分子不断地向空气中蒸发,成为水蒸气分子,剩余的水分子的平均动能便会降低,从而使循环水的温度下降.从以上分析可以看出,蒸发降温与空气的温度(通常说的干球温度)低于或高于水温无关,只要水分子能不断地向空气中蒸发,水温就会降低。
但是,水向空气中的蒸发不会无休止地进行下去。
当与水接触的空气不饱和时,水分子不断地向空气中蒸发,但当水气接触面上的空气达到饱和时,水分子就蒸发不出去,而是处于一种动平衡状态.蒸发出去的水分子数量等于从空气中返回到水中的水分子的数量,水温保持不变.由此可以看出,与水接触的空气越干燥,蒸发就越容易进行,水温就容易降低。
冷却塔的分类:
一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔.
二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。
三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。
四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。
五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。
六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。