数电模电超有用知识点,值得拥有

合集下载

数电模电基础知识总结

数电模电基础知识总结

数电模电基础知识总结在现代科技的快速发展下,电子技术已经渗透到我们生活的方方面面。

而作为电子技术的基础,数电模电知识的掌握显得尤为重要。

本文将对数电模电基础知识进行总结。

一、数电基础知识1. 二进制二进制是数电领域最为基础的概念之一。

它由0和1组成,是计算机系统中最常用的进位制。

在二进制中,每一位的权值是2的幂,例如1表示2^0,2表示2^1,4表示2^2,以此类推。

二进制在计算机内部用于表示和处理数据,是研究数电和计算机组成原理的基石。

2. 逻辑门逻辑门是计算机系统中基本的电子器件,用于实现逻辑运算。

常见的逻辑门包括与门、或门、非门等。

与门接受两个输入,当两个输入同时为1时,输出为1;否则输出为0。

或门接受两个输入,当两个输入中至少有一个为1时,输出为1;否则输出为0。

非门只有一个输入,当输入为1时,输出为0;当输入为0时,输出为1。

通过组合不同类型的逻辑门,可以实现复杂的逻辑运算。

3. 翻转器和触发器翻转器和触发器是将电路的输出状态保持在某个时间点的器件。

翻转器是一种双稳态电路,有两个互逆的输出状态,常见的翻转器有RS翻转器、JK翻转器等。

触发器是一种带有时钟输入的翻转器,常用于存储和处理数据。

二、模电基础知识1. 电阻、电容和电感电阻、电容和电感是模电领域中最基础的电路元件。

电阻用于限制电流大小,电容用于存储电荷和能量,电感用于存储磁能和抵抗电流变化。

它们在电路中起到不同的作用,对电路性质有重要影响。

2. 放大器放大器是模电领域中常见的电路元件,用于将输入信号放大到一定的幅度。

常见的放大器包括运放放大器、功放等。

运放放大器是一种具有高增益的差模放大器,广泛应用于模拟电路设计中。

功放用于放大音频信号,常见于音响设备中。

3. 滤波器滤波器用于将频率范围内的信号通过,而将其他频率范围内的信号抑制。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

滤波器在电子设备中起到重要的作用,例如音频设备中用于剔除噪音和杂音。

数电模电基础知识总结

数电模电基础知识总结

数电模电基础知识总结在电子技术的领域中,数字电子技术(数电)和模拟电子技术(模电)是两个至关重要的基础分支。

无论是日常生活中的电子设备,还是复杂的工业控制系统,都离不开数电和模电的应用。

接下来,让我们一同走进数电模电的世界,对其基础知识进行一番梳理和总结。

一、模拟电子技术基础知识模拟电子技术主要处理连续变化的电信号,其信号的幅度、频率和相位等参数可以在一定范围内连续取值。

(一)半导体器件半导体是模电的基础材料,常见的半导体器件有二极管、三极管和场效应管等。

二极管具有单向导电性,常用于整流、限幅和钳位等电路。

三极管分为 NPN 型和 PNP 型,它可以实现电流放大作用,是放大器的核心元件。

场效应管则具有输入电阻高、噪声低等优点,在集成电路中应用广泛。

(二)基本放大电路放大电路是模电中的重要内容。

共发射极放大电路、共集电极放大电路和共基极放大电路是常见的三种基本放大电路。

共发射极放大电路具有较大的电压和电流放大倍数,但输入输出电阻适中;共集电极放大电路,又称射极跟随器,其输入电阻高,输出电阻低,电压放大倍数接近于 1,但电流放大倍数较大;共基极放大电路具有较大的频率响应和较宽的通频带。

(三)集成运算放大器集成运放是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

它在信号运算、处理和产生等方面有着广泛的应用。

通过引入负反馈,可以实现加法、减法、积分、微分等运算功能。

(四)反馈电路反馈在模电中起着重要的作用。

正反馈可以使电路产生自激振荡,常用于正弦波振荡器中;负反馈可以改善放大电路的性能,如提高稳定性、改变输入输出电阻、减小非线性失真等。

(五)功率放大电路功率放大电路的主要任务是在保证信号不失真的前提下,尽可能提高输出功率和效率。

常见的功率放大电路有甲类、乙类和甲乙类功放。

(六)直流电源直流电源包括电源变压器、整流电路、滤波电路和稳压电路等部分。

它为电子设备提供稳定的直流电压。

二、数字电子技术基础知识数字电子技术处理的是离散的数字信号,其信号只有高电平和低电平两种状态,分别用“1”和“0”表示。

数电模电超有用知识点,值得拥有

数电模电超有用知识点,值得拥有

数电模电超有用知识点,值得拥有1. 时序分析时序分析被广泛用于数字电路和模拟电路中,目的是分析电路中各个部分的信号时序。

在数字电路中,时序分析通常用于分析时钟、计数器和状态机等电路。

在模拟电路中,时序分析用于分析信号的延迟、上升时间和下降时间等。

时序分析可以用于以下几个方面:•识别潜在的时序故障•优化电路的性能•减少延迟和抖动•确保时序性能满足特定应用的要求2. 时钟信号时钟信号是数字电路中非常重要的组成部分,主要用于同步各个模块之间的操作。

在时钟信号上升或下降沿的时刻执行操作是非常常见的做法。

时钟信号的一些重要参数包括周期、占空比和上升时间。

周期是时钟信号的周期性重复时间,占空比是高电平的时间占周期的比例,上升时间是时钟信号从低电平到高电平的时间。

3. 片选信号和使能信号在数字电路中,一个设备通常需要与多个其他设备进行交互。

为了防止设备之间的干扰,通常使用片选信号或使能信号来选择特定的设备或模块。

片选信号用于选择一个设备,使其成为当前被激活的设备。

使能信号用于控制设备是否处于活动状态。

片选信号的一个常见实现方式是使用多路选择器。

多路选择器具有多个输入和一个输出,其输出逻辑级别等于所选输入的逻辑级别。

4. 触发器触发器是数字电路中的一种重要的基本元件,用于存储数据。

触发器可以实现时序逻辑和时序控制。

触发器的状态可以由时钟信号或其他事件的出现和消失来改变。

D触发器是最简单的触发器之一,它有一个数据输入和一个时钟输入。

在上升沿或下降沿时,数据被锁存到D触发器中。

D触发器的输出保持在时钟信号变化之间的状态。

如果时钟信号发生变化,那么D触发器的输出将相应地改变。

5. 多路复用器和解复用器多路复用器和解复用器是数字电路中常用的逻辑元件。

多路复用器将多个输入信号中的一个选择输出。

解复用器将输入信号划分为多个输出信号。

多路复用器通常包括多个输入、一个选择信号和一个输出。

选择信号用于选择哪个输入信号将被输出。

解复用器通常包括一个输入、多个输出和一个选择信号。

模电数电面试基础知识

模电数电面试基础知识

模电数电面试基础知识在模拟电路(模电)和数字电路(数电)的面试中,理解和掌握基础知识是非常重要的。

本文将介绍一些常见的模电和数电基础知识,帮助你在面试中展现自己的能力。

模电基础知识1. 电路元件模电中常见的电路元件包括电阻、电容和电感。

电阻用来限制电流大小,电容用来储存电荷,而电感用来储存能量。

理解电路元件的特性和使用方法对于解决电路问题至关重要。

2. 放大器放大器是模电中常见的电路,用于放大电压或电流信号。

常见的放大器有共射放大器、共基放大器和共集放大器。

理解放大器的工作原理和特性可以帮助你分析和设计放大电路。

3. 滤波器滤波器用于滤除特定频率的信号。

常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

了解滤波器的工作原理和频率响应可以帮助你设计和调整滤波电路。

4. 振荡器振荡器用于产生特定频率的信号。

常见的振荡器有晶体振荡器、RC振荡器和LC振荡器。

理解振荡器的工作原理和参数选择可以帮助你设计和调整振荡电路。

数电基础知识1. 逻辑门逻辑门是数电中常见的基本逻辑电路。

常见的逻辑门有与门、或门、非门、与非门、或非门和异或门等。

掌握逻辑门的真值表和功能可以帮助你分析和设计数字电路。

2. 时序电路时序电路用于处理时序信号,常见的时序电路有触发器、计数器和移位寄存器等。

了解时序电路的工作原理和时序图可以帮助你设计和调整时序电路。

3. 数字-模拟转换器和模拟-数字转换器数字-模拟转换器(DAC)和模拟-数字转换器(ADC)是数电中常见的电路,用于实现模拟信号和数字信号之间的转换。

理解DAC和ADC的工作原理和参数选择对于设计和调整转换电路非常重要。

4. 存储器存储器用于存储和读取数据,常见的存储器有随机存取存储器(RAM)和只读存储器(ROM)等。

了解存储器的工作原理和存储方式可以帮助你理解和设计存储电路。

总结以上介绍了一些模电和数电面试中常见的基础知识。

掌握这些知识可以帮助你更好地理解和分析电路问题,并能够进行电路设计和调整。

数电模电基础知识总结

数电模电基础知识总结

数电模电基础知识总结电子技术作为现代科学技术的一支重要分支,是现代社会发展的基础和支撑。

数电模电基础知识是电子技术的核心内容,掌握好这些基础知识对于学习和应用电子技术都有着重要的意义。

本文将对数电模电基础知识进行总结,帮助读者加深对这些知识的理解和掌握。

一、数电基础知识1.数字信号与模拟信号数字信号和模拟信号是电子系统中常用的两种信号形式。

数字信号是以离散的、有限个数的数值表示的信号,是通过对连续模拟信号进行采样和量化得到的。

数字信号具有离散性、可编程性、可靠性等特点,广泛应用于计算机和通信系统中。

而模拟信号是连续的,可以取无限个数的数值,用于传输和处理连续的实时信号。

2.二进制系统二进制系统是一种数学计数系统,它只使用两个数字0和1表示数值。

在计算机中,所有的数据和指令都是用二进制数来表示和处理的。

二进制系统有简单、直观、易于计算等优点,是计算机技术的基础。

3.逻辑门电路逻辑门电路是电子系统中常用的一类组合逻辑电路,根据输入信号经过门电路的逻辑运算,最终得到输出信号。

常见的逻辑门包括与门、或门、非门、异或门等。

逻辑门电路可以实现布尔代数中的逻辑运算,是数字电路设计中的基础。

4.计数器和寄存器计数器和寄存器是数字电路中常用的存储器件。

计数器是一种能够按照一定规律自动计数的电子装置,广泛应用于时序电路设计和计数问题的解决。

寄存器是一种能够暂时存储二进制数据的电子装置,常用于数据存储、传输和处理等。

二、模电基础知识1.放大器放大器是模拟电路中常用的一种电子器件,用于放大信号的幅度。

放大器可以将弱信号放大为较强的信号,以便于处理和传输。

常见的放大器有分立元件放大器、运算放大器和集成放大器等。

2.滤波器滤波器是模拟电路中常用的一种电子器件,用于改变信号频率的分布特性。

滤波器可以根据信号频率的要求实现对特定频段的放大或衰减。

常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

3.振荡器振荡器是模拟电路中常用的一种电子器件,用于产生稳定的周期性信号。

模电必考知识点总结

模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。

2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。

3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。

4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。

二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。

2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。

3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。

4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。

三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。

2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。

四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。

2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。

3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。

五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。

模拟电路和数电电路必备的基础知识

模拟电路和数电电路必备的基础知识

模拟电路和数电电路必备的基础知识作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。

下面我们就来了解一下这两个电路的基本知识。

一、模拟电路与数字电路的定义及特点模拟电路(电子电路)处理模拟信号的电子电路。

“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇,意思是“成比例的”。

其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。

3、初级模拟电路主要解决两个大的方面:1放大、2信号源。

4、模拟信号具有连续性。

数字电路((进行算术运算和逻辑运算的电路))用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。

由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。

其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。

2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。

电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。

3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。

电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。

电路的设计组成只需采用一些标准的集成电路块单元连接而成。

对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。

模电数电知识点整理面试

模电数电知识点整理面试

模电数电知识点整理与面试一、引言模拟电子技术(模电)和数字电子技术(数电)是电子工程师在学习和从事电子领域工作中必须掌握的基础知识。

无论是学术研究还是实际应用,对模电和数电的理解都是至关重要的。

本文将从模电和数电的基础知识点出发,对其进行整理和总结,希望能够帮助读者在面试中更好地理解和回答相关问题。

二、模电知识点整理1. 电路基本理论•电流、电压、电阻的概念和关系•基尔霍夫定律和欧姆定律•戴维南定理和诺顿定理•电路的等效电阻和电压分压与电流分流•电源、电荷和功率的概念和计算方法2. 二端网络•二端网络的基本概念和性质•电阻、电容和电感的特性与计算•串联与并联电路的分析方法•稳态与瞬态响应分析•交流电路中的频率响应和相位差3. 放大器•放大器的基本概念和分类•放大器的增益、输入电阻、输出电阻与带宽•共射、共集和共基放大器的特性和应用•放大器的失真和稳定性分析•放大器电路中的负反馈原理和应用4. 滤波器•滤波器的基本概念和分类•一阶和二阶滤波器的特性和设计•有源滤波器和无源滤波器的特点与应用•滤波器的频率响应和相位特性•滤波器的阶数和带宽的关系5. 振荡器•振荡器的基本概念和分类•LC振荡器、RC振荡器和晶体振荡器的原理和特性•振荡器的稳定性和频率稳定度•振荡器电路中的正反馈原理和应用•压控振荡器和相位锁定环路的工作原理三、数电知识点整理1. 数字系统基础•二进制、八进制和十六进制的相互转换•算术运算和逻辑运算的基本规则•布尔代数和逻辑函数的表示与化简•编码器、译码器和复用器的功能和应用•触发器和计数器的原理和设计2. 组合逻辑电路•组合逻辑电路的基本概念和特点•与门、或门、非门和异或门的实现与应用•多路选择器和译码器的工作原理•加法器、减法器和比较器的功能和设计•组合逻辑电路的分析与设计方法3. 时序逻辑电路•时序逻辑电路的基本概念和特点•触发器的工作原理和种类•移位寄存器和计数器的功能和设计•状态机的基本概念和设计方法•同步与异步电路的特性与应用4. 存储器•存储器的基本概念和分类•静态随机存储器(SRAM)和动态随机存储器(DRAM)的原理和特点•可编程逻辑器件(CPLD)和场可编程门阵列(FPGA)的功能和应用•存储器的读写操作和时序控制•存储器的容量和速度的关系与权衡四、面试准备建议•熟悉模电和数电的基本概念和理论知识•多做习题和实验,提高动手能力和实际操作经验•关注电子技术领域的最新发展与应用趋势•注意培养自己的表达能力和逻辑思维能力•在面试中展现自己的学习态度和问题解决能力以上是对模电和数电知识点的整理和总结,希望能够对读者在面试中有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字电子技术》重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。

举例1:()10= ( )2= ( )16= ( )8421BCD 解:()10= ( )2= ( )16= ( )8421BCD 2.逻辑门电路: (1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。

2)TTL 门电路典型高电平为 V ,典型低电平为 V 。

3)OC 门和OD 门具有线与功能。

4)三态门电路的特点、逻辑功能和应用。

高阻态、高电平、低电平。

5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。

要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。

举例2:画出下列电路的输出波形。

解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。

3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零; 与非运算:见零为1,全1为零;或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非 运 算:零 变 1, 1 变 零; 要求:熟练应用上述逻辑运算。

4. 数字电路逻辑功能的几种表示方法及相互转换。

①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。

②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。

③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。

④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。

⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。

⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。

要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。

5.逻辑代数运算的基本规则①反演规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y的反函数Y(或称补函数)。

这个规则称为反演规则。

②对偶规则:对于任何一个逻辑表达式Y,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y',Y'称为函Y的对偶函数。

这个规则称为对偶规则。

要求:熟练应用反演规则和对偶规则求逻辑函数的反函数和对偶函数。

举例3:求下列逻辑函数的反函数和对偶函数解:反函数:;对偶函数:6.逻辑函数化简要求:熟练掌握逻辑函数的两种化简方法。

①公式法化简:逻辑函数的公式化简法就是运用逻辑代数的基本公式、定理和规则来化简逻辑函数。

举例4:用公式化简逻辑函数:CBBCAABCY++=1解:②图形化简:逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。

(主要适合于3个或4个变量的化简)举例5:用卡诺图化简逻辑函数:)6,4()7,3,2,0(),,(dmCBAY∑+∑=解:画出卡诺图为则BCY+=7.触发器及其特性方程1)触发器的的概念和特点:触发器是构成时序逻辑电路的基本逻辑单元。

其具有如下特点:①它有两个稳定的状态:0状态和1状态;②在不同的输入情况下,它可以被置成0状态或1状态,即两个稳态可以相互转换;③当输入信号消失后,所置成的状态能够保持不变。

具有记忆功能2)不同逻辑功能的触发器的特性方程为:RS触发器:nn QRSQ+=+1,约束条件为:RS=0,具有置0、置1、保持功能。

EDCBAY+=))((EDCBAY+++=))((EDCBAY+++='JK 触发器:n n n Q K Q J Q+=+1,具有置0、置1、保持、翻转功能。

D 触发器: D Q n =+1,具有置0、置1功能。

T 触发器:n n n Q T Q T Q +=+1,具有保持、翻转功能。

T ′触发器: n n Q Q=+1(计数工作状态),具有翻转功能。

要求:能根据触发器(重点是JK-FF 和D-FF )的特性方程熟练地画出输出波形。

举例6:已知J ,K-FF 电路和其输入波形,试画出8.脉冲产生和整形电路1)施密特触发器是一种能够把输入波形整形成为适合于数字电路需要的矩形脉冲的电路。

要求:会根据输入波形画输出波形。

特点:具有滞回特性,有两个稳态,输出仅由输入决定,即在输入信号达到对应门限电压时触发翻转,没有记忆功能。

2)多谐振荡器是一种不需要输入信号控制,就能自动产生矩形脉冲的自激振荡电路。

特点:没有稳态,只有两个暂稳态,且两个暂稳态能自动转换。

3)单稳态触发器在输入负脉冲作用下,产生定时、延时脉冲信号,或对输入波形整形。

特点:①电路有一个稳态和一个暂稳态。

②在外来触发脉冲作用下,电路由稳态翻转到暂稳态。

③暂稳态是一个不能长久保持的状态,经过一段时间后,电路会自动返回到稳态。

要求:熟练掌握555定时器构成的上述电路,并会求有关参数(脉宽、周期、频率)和画输出波形。

举例7:已知施密特电路具有逆时针的滞回特性,试画出输出波形。

解:9.A/D 和D/A 转换器1)A/D 和D/A 转换器概念:模数转换器:能将模拟信号转换为数字信号的电路称为模数转换器,简称A/D 转换器或ADC 。

由采样、保持、量化、编码四部分构成。

数模转换器:能将数字信号转换为模拟信号的电路称为数模转换器,简称D/A 转换器或DAC 。

由基准电压、变换网络、电子开关、反向求和构成。

ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。

2)D/A 转换器的分辨率分辨率用输入二进制数的有效位数表示。

在分辨率为n 位的D/A 转换器中,输出电压能区分2n 个不同的输入二进制代码状态,能给出2n 个不同等级的输出模拟电压。

分辨率也可以用D/A 转换器的最小输出电压与最大输出电压的比值来表示。

举例8:10位D/A 转换器的分辨率为:3)A/D 转换器的分辨率A/D 转换器的分辨率用输出二进制数的位数表示,位数越多,误差越小,转换精度越高。

举例9:输入模拟电压的变化范围为0~5V ,输出8位二进制数可以分辨的最小模拟电压为5V ×2-8=20mV ;而输出12位二进制数可以分辨的最小模拟电压为5V ×2-12≈。

10.常用组合和时序逻辑部件的作用和特点组合逻辑部件:编码器、译码器、数据选择器、数据分配器、半加器、全加器。

时序逻辑部件:计数器、寄存器。

要求:掌握编码器、译码器、数据选择器、数据分配器、半加器、全加器、计数器、寄存器的定义,功能和特点。

举例10:能对两个1位二进制数进行相加而求得和及进位的逻辑电路称为半加器。

模电复习资料第一章 半导体二极管 一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si 、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子 ----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体--在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P 型半导体: 在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N 型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN 结* PN 结的接触电位差---硅材料约为~,锗材料约为~。

* PN 结的单向导电性---正偏导通,反偏截止。

001.01023112110≈=-8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管~,锗管~。

*死区电压------硅管,锗管。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。

*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。

2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。

二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数(表明三极管是电流控制器件式子称为穿透电流。

3. 共射电路的特性曲线*输入特性曲线---同二极管。

* 输出特性曲线(饱和管压降,用U CES表示放大区---发射结正偏,集电结反偏。

截止区---发射结反偏,集电结反偏。

4. 温度影响温度升高,输入特性曲线向左移动。

温度升高I CBO、I CEO、I C以及β均增加。

三. 低频小信号等效模型(简化)h ie---输出端交流短路时的输入电阻,常用r be表示;h fe---输出端交流短路时的正向电流传输比,常用β表示;四. 基本放大电路组成及其原则1. VT、V CC、R b、R c 、C1、C2的作用。

2.组成原则----能放大、不失真、能传输。

五. 放大电路的图解分析法1. 直流通路与静态分析*概念---直流电流通的回路。

*画法---电容视为开路。

*作用---确定静态工作点*直流负载线---由V CC=I C R C+U CE确定的直线。

*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。

2)改变R c:Q点在I BQ所在的那条输出特性曲线上移动。

3)改变V CC:直流负载线平移,Q点发生移动。

相关文档
最新文档