七年级数学思维探究(27)图形生长的奥秘(含答案)

合集下载

七年级数学思维探究(24)认识三角形(含答案)

七年级数学思维探究(24)认识三角形(含答案)

1893年,在喀山大学树立起世界上第一个数学家的塑像,这位数学家就是俄国的伟大学者、非欧几何的创始人之一罗巴切夫斯基(17921856-),他发现了一个逻辑完整性和严密性可以和欧几里得几何相媲美的新的几何世界——非欧几何.他为非欧几何的存在和发展奋斗了30多年,被誉为“几何学中的哥白尼”. 24.认识三角形 解读课标从房屋的顶梁到自行车的三脚架,从起重机的三角形吊臂再到爱因妥芬(心电图的发明者)三角形,生活中处处可看到三角形,三角形是最简单、最基本的几何图形,它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用.认识三角形,就是认识三角形的概念及基本要素——边与角,与边与角相关的知识有:三角形三边关系定理、三角形内角和定理及推论,它们在线段、角度的计算,图形的计数等方面有广泛的应用.代数化及分类讨论法是解与三角形基本要素相关问题的重要方法.代数化即用方程、不等式解边与角的计算及简单推理题,分类讨论即按边或角对三角形进行分类. 问题解决例1 在ABC △中,高BD 和CE 所在直线想交于O 点,若ABC △不是直角三角形,且60A ∠=︒,则BOC ∠=_________度.试一试 因三角形的高不一定在三角形内部,这样ABC △形状应分两种情况讨论. 例2 如图,将纸片ABC △沿着DE 折叠压平,则( ).A .12A ∠=∠+∠B .()122A ∠=∠1+∠C .()113A ∠=∠+∠2D .()1124A ∠=∠+∠试一试 在折叠动态变化中,不变关系是B C AED ADE ∠+∠=∠+∠,这是解本例的关键.例3 (1)如图①,AD BC ⊥于D ,AE 平分BAC ∠,试探寻DAE ∠与C ∠、B ∠的关系.(2)如图②,若将点A 在AE 上移动到F ,FD BC ⊥于D ,其他条件不变,那么EFD ∠与C ∠、D ∠是否还有(1)中的关系?说明理由. (3)请你提出一个类似的问题.试一试 对于(2),通过作辅助线,将问题转化为(1).例4 如图①,已知A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,()0,2C -,()3,2D --. (1)求BCD △的面积;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交CO 于P ,交CA 于Q ,判断CPQ ∠与CQP ∠的大小关系,并证明你的结论; (3)如图③,若ADC DAC ∠=∠,点B 在x 轴正半轴上运动,ACB ∠的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,EABC∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.21DAB CEABC图①DABCF 图②试一试 对于(3),ABC ∠能否用E ∠的式子表示?由数到形,分解出基本图形是解题的关键.例5 在三角形纸片内有2008个点,连同三角形纸片的3个顶点,共有2011个点,在这些点中,没有三点在一条直线上.问:以这2011个点为顶点能把三角形纸片分割成多少个没有重叠部分的小三角形?两个点、三个点…的简单情形,有下表所示的关系: 3个小三角形,以后每增加一个点,这个点必落在已连好的某一个小三角形内,它与该三角形的三个顶点可得到三个小三角形,从而增加了两个小三角形,于是可以推出,当三角形内有2008个点时,连接可得到小三角形的个数为:()32200814017+⨯-=(个).解法二 整体核算法.设连线后把原三角形分割成n 个小三角形,则它们的内角和为180n ︒⋅,又因为原三角形内每一个点为小三角形顶点时,能为小三角形提供360︒的内角,2008个点共提供内角2008360⨯︒,于是得方程1803602008180n =⨯+,解得4017n =,即这2008个点能将原三角形纸片分割成4017个小三角形. 角平分线角平分线是联系角与角之间关系的纽带,当角平分线与三角形相遇可生成内涵上有关联性、解法上有共通性的组图.例6 (1)如图①,已知ABC △中的两内角平分线交于P 点,两外角平分线交于M 点,一内角平分线与一外角平分线交于N 点.试分别探究BPC ∠、M ∠、N ∠与A ∠关系;(2)如图②,在凹四边形ABCD 中,已知ABD ∠与ACD ∠的平分线交于点E ,求证:2A DE ∠+∠∠=.分析与解 (1)1902BPC A ∠=︒+∠,1902M A ∠=︒-∠,12N A ∠=∠.(2)凹四边形ABCD 形似“规形”,易证BDC A B C ∠=∠+∠+∠. 图②可分解为两个“规形”,BE ∵、CE 分别平分ABD∠、ACD ∠,∴可设ABE DBE x ∠=∠=,ACE DCE y ∠=∠=. 由(1)得E A x y ∠=∠++,① D E x y ∠=∠++,②图①图②图③NPABC图①x y yxD A BCE 图②②-①得D E E A ∠-∠=∠-∠,2A DE ∠+∠∠=∴.数学冲浪 知识技能广场1.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,BC 与DE 交于点M .若100ADF ∠=︒,则BM D ∠=_________度.2.一副三角板,如图所示叠放在一起,则图中1∠的度数为_______.3.如图,ABC △中,80A ∠=︒,剪去A ∠后,得到四边形BCED ,则12∠+∠=_______.4.如图,在ABC △中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠的平分线与1ACD ∠的平分线相交于点2A ,得2A ∠;…,2008A BC ∠的平分线与2008A CD ∠的平分线相交于点2009A ,得2009A ∠,则2009A ∠=________.5.如图,ABC △中,A ∠、B ∠、C ∠的外角分别记为α、β、γ.若::3:4:5αβγ=,则::A B C ∠∠∠=( ).A .3:2:1B .1:2:3C .3:4:5D .5:4:36.如图,BP 是ABC △中ABC ∠的平分线,CP 是ACB ∠的邻补角的平分线.若20ABP ∠=︒,50ACP ∠=︒,则A P ∠+∠=( ).A .70︒B .80︒C .90︒D .100︒DMABCEF 1ECBA DDABC A 1A 2CBA γαβ7.在等腰ABC △中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( ).A .7B .11C .7或11D .7或108.如图,ABC △中,ABD DBE EBC ∠=∠=∠,ACD DCE ECB ∠=∠=∠,若145BEC ∠=︒,则BDC ∠等于( ).A .100︒B .105︒C .110︒D .115︒9.如图,已知射线OM 与射线ON 互相垂直,B 、A 分别为OM 、ON 上一动点,ABM ∠、BAN ∠的平分线交于C .问:B 、A 在OM 、ON 上运动过程中,C ∠的度数是否改变?若不改变,求出其值;若改变,说明理由.10.如图①,已知ABC △中,ABC ACB ∠=∠,D 为BC 边上一点,E 为直线AC 上一点,且ADE AED ∠=∠. (1)求证:2BAD CDE ∠=∠,(2)如图②,若D 在BC 的反向延长线上,其他条件不变,(1)中的结论是否仍成立?证明你的结论.思维方法天地11.在ABC △中,50A ∠=︒,高BE 、CF 交于O ,且O 不与B 、C 重合,则BOC ∠的度数为_______. 12.如图,已知C ∠=45︒,452B α∠=︒+,453BAC α∠=︒+,AE 平分BAD ∠,则CAE ∠=_______.13.如图,BP 平分ABC ∠交CD 于F ,DP 平分ADC ∠交AB 于E ,AB 与CD 相交于G ,如果42A ∠=︒,MPABECBA D OMNA C图①ABCE图②EC BADDABCE38C ∠=︒,那么P ∠的度数为________.14.如图,已知ABC △中,A ACB ∠=∠,CP 平分ACB ∠,BD 、CD 分别为ABC △的两外角的平分线,给出下列结论:①CP CD ⊥;②1902D A ∠=︒-∠;③PD AC ∥.其中正确结论的个数是( ).A .0B .1C .2D .315.如图,31ABC ∠=︒,又BAC ∠的平分线AE 与FCB ∠的平分线CE 相交于E 点,则AEC ∠为( ). A .14.5︒ B .15.5︒ C .16.5︒ D .20︒16.如图,ABC △中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②AEF AFE ∠=∠;③EBC C ∠=∠;④AG EF ∠⊥.其中正确的结论是( ).A .②③④B .①③④C .①②④D .①②③17.平面内的四条线段AB 、BC 、CD 、DA 首尾顺次连接,已知24ABC ∠=︒,42ADC ∠=︒. (1)如图①,若BAD ∠与BCD ∠的平分线交于点M ,求AMC ∠的值;(2)如图②,点E 在BA 的延长线上,DAE ∠的平分线和BCD ∠的平分线交于点N ,求ANC ∠的值.DGPABCEF PAB C EFDABCFDGABCEF18.如图,在BCD △中,BE 平分DBC ∠交CD 于F ,延长BC 至G ,CE 平分DCG ∠,且EC 、DB 的延长线交于A 点,若30A ∠=︒,75DFE ∠=︒. (1)求证:DFE A D E ∠=∠+∠+∠; (2)求E ∠的度数;(3)若在图中作CBE ∠与GCE ∠的平分线交于1E ,作1CBE ∠与1GCE ∠的平分线交于2E ,作2CBE ∠与2GCE ∠的平分线交于3E ,依此类推,n CBE ∠与n GCE ∠的平分线交于1n E +,请用含有n 的式子表示1n E +∠的度数.应用探究乐园19.把一副学生用三角板(30︒、60︒、90︒和45︒、45︒、90︒)如图①放置在平面直角坐标系中,点A 在y 轴正半轴上,直角边AC 与y 轴重合,斜边AD 与y 轴重合,直角边AE 交x 轴于F ,斜边AB 交x 轴于G ,O 是AC 中点,8AC =. (1)把图①中的Rt AED △绕A 点顺时针旋转α度得图②,此时AGH △的面积是10,AHF △的面积是8,分别求F 、H 、B 三点的坐标;(2)如图③,设AHF ∠的平分线和AGH ∠的平分线交于点M ,EFH ∠的平分线和FOC ∠的平分线交于点N ,当AED △绕A 点转动时,N M ∠+∠的值是否会改变,若改变,请说明理由,若不改变,请求出其值.CBAD图①DNABCE图②DGABCF图①图②20.问题提出 以n 边形的他个顶点和它内部的m 个点,共()m n +个点作为顶点,可把原n 边形分割成多少个互不重叠的小三角形?问题探究 为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手: 探究一:以ABC △的三个顶点和它内部的1个点P ,共4个点为顶点,可把ABC △分割成多少个互不重叠的小三角形?如图①,显然,此时可把ABC △分割成3个互不重叠的小三角形.探究二:以ABC △的三个顶点和它内部的2个点P ,Q ,共5个点为顶点,可把ABC △分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①ABC △的内部,再添加1个点Q ,那么点Q 的位置会有两种情况:一种情况,点Q 在图①分割成的某个小三角形内部,不妨假设点Q 在PAC △内部,如图②; 另一种情况,点Q 在图①分割成的小三角形的某条公共边上,不妨假设点Q 在PA 上,如图③. 显然,不管哪种情况,都可把ABC △分割成5个互不重叠的小三角形.探究三:以ABC △的三个顶点和它内部的3个点P ,Q ,R 共6个点为顶点,可把ABC △分割成______个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以ABC △的三个顶点和它内部的m 个点,共()3m +个顶点,可把ABC △分割成______个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m 个点,共()4m +个顶点,可把四边形分割成_____个互不重叠的小三角形,问题解决 以n 边形的挖个顶点和它内部的m 个点,共()m n +个顶点,可把ABC △分割成____个互不重叠的小三角形.实际应用 以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)图③图①图②图③ABC图④24.认识三角形 问题解决例l 当ABC △为锐角三角形时,120BOC ∠=︒;当ABC △为钝角三角形时,60BOC ∠=︒.例2 B 180B C AED ADE A ∠+∠=∠+∠=︒-∠,又12360B C AED ADE ∠+∠+∠+∠+∠+∠=︒,得()218012360A ︒-∠+∠+∠=︒,化简得()1122A ∠=∠+∠.例3 (1)()12DAE C B ∠=∠-∠;(2)过A 作AG BC ⊥于G ,则()12EFD EAG C B ∠=∠=∠-∠;(3)略例4 (1)3BCD S =△(2)可证明CPQ CQP ∠=∠.(3)CD AB ∥,可证明1122ABCE ABC ABC ∠∠==∠∠为定值.数学冲浪1.85 2.75︒ 3.260︒ 4.20092α5.A 6.C 7.C 8.C9.190452C AOB ∠=︒-∠=︒,为一定值.10.(1)证明略;(2)(1)中的结论仍然成立 11.50︒或130︒ 12.126︒13.40︒ 如图,由对顶三角形性质得122122A P A C ∠+∠=∠+∠⎧⎨∠+∠=∠+∠⎩,解得40P ∠=︒.14. D 15. B 16.C17.(1)可证明()1332AMC ABC ADC ∠=∠+∠=︒.(2)可证明()11801232ANC B D ∠=︒+∠+∠=︒.18.(1)略;(2)2D E ∠=∠,代入(1)得15E ∠=︒;(3)122113022n n n E D +++∠=∠=⋅︒.19.(1)()5,0F -,()1,0H -,()8,4B -. (2)22.52M α∠=︒+,752N α∠=︒-,97.5M N ∠+∠=︒,故M N ∠+∠的值不会改变.20.探究三:7 分割示意图:(答案不唯一). 探究四:()321m +-或21m + 探究拓展:()421m +-或22m + 问题解决:()21n m +-或22m n +-21PGFEDCBA实际应用:把8n =,2012m =代入上述代数式,得2222012824024824030m n +-=⨯+-=+-=.CBA。

七年级数学思维探究(27)图形生长的奥秘(有答案)

七年级数学思维探究(27)图形生长的奥秘(有答案)

七年级数学思维探究(27)图形生长的奥秘(有答案)陈景润(19331996-),福建省福州市人,1953年毕业于厦门大学数学系,主要从事解析数论方面的研究.20世纪60年代以来对筛法及其有关重要问题作了深入研究,1960年5月证明了命题“12+”,将200多年来人们未能解决的哥德巴赫猜想的证明大大推进了一步,这一结果被国际上誉为“陈式定理”.27.图形生长的奥秘 解读课标从一个简单的、基本的图形开始,按照一定的规律,生长繁衍成复杂有趣而美丽的图形,并探寻图形的边长、周长、面积的变化规律,这类图形生长的问题是近年中考竞赛的一个热点问题. 以“点”的方式扩散、以“面”的方式膨胀、以“体”的方式“堆砌”,是图形生长的常见形式,解图形生长问题的基本方法是:(1)分析图形生长的方式、规律;(2)分析相关数量的特征,找寻相关数量与图形序号的联系,观察发现,归纳猜想. 问题解决例1 (1)观察图①至图④中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则m =________.(用含n 的代数式表示)(2)观察下列图形:①②③④根据图①②③的规律,图④中的三角形的个数为___________. 试一试对于(2),从寻找第n 个图与第1n -个图三角形个数的关系入手.例2 (1)如图是一个水平摆放的小正方体木块,图②③是用这样的小正方形木块叠放而成,按照这样的规律,继续叠放下去,至第七个叠放的图形中,小正方体木块总数是(). A .25 B .66 C .91 D .120(2)黑色等边三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正方形分上下两行,上面的一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1、2、3个图案所示规律依次下去:则第n 个图案中,黑色正三角形和白色正六边形的个数分别是().A .22n n ++,21n +B .22n +,21n +C .4n ,23n n -+D .4n ,21n + 试一试略.①m =5n =1时②m =8n =2时③m =11n =3时④m =14n =4时①②……③第1个第2个第3个例3 操作:(1)如图①,先画一个等边三角形,每边长为1;(2)如图②,在图①中,每边三等分中间的一份处再凸出一个等边三角形;(3)如图③,在②的边上,重复进行三等分,中间的一份处凸出一个等边三角形,按上述方法,就画出一个美丽的雪花图形.探究:图○n 的周长是多少?试一试每“生长一次”,边长变化的规律,以及每“生长一次”,新增三角形个数的规律,这是解本例的突破口.例4 有一堆砖堆放如图,第1层有3块,第2层有8块,第3层有15块,……,如此继续下去,第9层有多少块?第n 层有多少块?这样共n 层的砖堆总共有多少块砖?试一试从第2层起,每一层横里比上一层多一块,纵里也比上一层多一块,这是解本例的关键,亦可从分析每层砖的数据特征入手.例5 如图的图案均是用长度相同的火柴棍按一定的规律拼搭而成的:第1个图案需7根火柴,第2个图案需13根火柴,……,依此规律,第11个图案需多少根火柴?分析当数据规律不明显时,可从分析图形构成入手.为使图形结构清晰,可适当改变图形. 解将图中各个图案右下角的一个正方形移除3根火柴后得如下图:图中第1个图案需要横向火柴112+=(根),纵向火柴112+=(根),共需4根火柴; 第2个图案需要横向火柴1225++=(根),纵向火柴1225++=(根),共需10根火柴; 第3个图案需要横向火柴12339+++=(根),纵向火柴12339+++=(根),共需18根火柴; ……第n 个图案需要横向火柴的根数是()31232n n n n ++++++=,纵向火柴的根数也是()32n n +,共需()3n n +根火柴.故拼搭图中第11个图案需火柴()111133157⨯++=(根). 图案设计例6 如图是一个由12个相似的直角三角形组成的图案,像商标?像蜗牛?像台风眼?①②……③第1个第2个第3个…第4个第1个第2个第3个第4个…由简单的相似图形出发,展开想象的翅膀,开发头脑无尽的创意,你也能画出更美的图案. 下列图案分别是由相似的正方形、正五边形、正六边形、圆组成的.数学冲浪 知识技能广场1.观察下列图形,它们是按一定规律排列的,依照此规律,第8个图形共有_______枚五角星.2.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,……,则第⑥个图形中五角星的个数为_________.3.如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒,……,按此规律摆下去,第n 个图案需要小棒________根(用含有n 的代数式表示).4.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为________(用含n 的代数式表示).5.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_________.(1)漩涡(2)玫瑰花(4)海螺背影n =1★★★★n =2★★★★★★★n =3★★★★★★★★★★n =4……★★★★★★★★★★★★★图①★★图②★★★★★★★★…图③★★★★★★★★★★★★★★★★★★(1)(2)(3)(4)……第一个图案6.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案,则其中完整的圆共有________个.(2)试求第几个图形中的“●”的个数与“★”的个数相等.8.已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形,如图所示,当n k =时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?(用含k 的式子表示)9.某体育馆用大小相同的长方形镶嵌地面,第一次铺2块,如图①;第二次把第一次铺的完全围起来,如图②;第三次把第二次铺的完全围起来,如图③;……;依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块数为______________.10.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于_______.(1)(2)(3)①②③④……n =3n =4…n =5①②③11.在图①中取阴影等边三角形各边的中点,连成一个等边三角形,将其挖去,得到图②;对图②中的每个阴影等边三角形各边按照先前的做法,得到图③;……;如此继续,如果图①的等边三角形面积为1,则第n 个图形中所有阴影三角形面积的和为___________.12.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为()3n a n ≥. (1)求5a 的值;(2)当3451111n a a a a ++++的结果是197600时,求n 的值为_________.13.用大小相同的正六边形瓷砖按如图所示的方式来铺设广场,中间的正六边形瓷砖记为A ,定义为第一组;在它的周围铺上6块同样大小的正六边形瓷砖,定义为第二组;在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,……,按这种方式铺下去,用现有的2005块瓷砖最多能完整地铺满多少组?还剩几块瓷砖?应用探究乐园14.在下图中,每个正方形由边长为1的小正方形组成:第6行第5行第4行第3行第2行第1行①②③(1)(2)(3)……(4)A(2)在边长为的正方形中,设黑色小正方形的个数为1p ,白色小正方形的个数为2p ,问是否存在偶数n ,使215p p =?若存在,请写出n 的值;若不存在,请说明理由. 15.将棱长为1cm 的正方体按如图方式放置,求第20个几何体的表面积.27.图形生长的奥秘 问题解决例1(1)32n +(2)161图①有145+=个,图②有143417++⨯=个,图③有214343453++⨯+⨯=个,图④有2314343434161++⨯+⨯+⨯=个.例2(1)C 1591317212591++++++=; (2)D例3 图○n 中每个小等边三角形的边长为13n⎛⎫⎪⎝⎭,图○n 周长为143n n -. 例4 第9层有99块,第n 层有()2n n +块,这样的n 层砖堆共有()()()()()31425321212223232n n n n ⨯+⨯+⨯+++=+⨯++⨯++⨯+++⨯()()()()()()2222111232123121112766n n n n n n n n n n =+++++++++=++++=++(块).数学冲浪1.25 2.72 3.62n - 4.22n +5.()53132n n +-=+(个) 6.()2210101181+-=(个) 7.(1)略;(2)由28n n =,得8n =或0n =(舍去).8.n k =时,共向外作了()23k -⨯个小等边三角形,每个小等边三角形的面积为21S k ⨯,这些小等边三角形的面积为()()2232123k k S S k k --⨯⨯⨯=⨯. 9.()()()221232286n n n n n ----=-10.377各行的实心圆点数组成斐波那契数列11.134n -⎛⎫ ⎪⎝⎭12.(1)()1n a n n =+,530a =;(2)199n =. 13.铺满n 组时,所用瓷砖总数为()()1616261131n n n +⨯+⨯++-=+-.当26n =时,()131********n n +-=<,当27n =时,()131********n n +-=>,故最多能完整地铺满26组,还剩2005195154-=(块)瓷砖. 14.(1)略;(2)n 为偶数时,12p n =,222p n n =-,由题意得2252n n n -=⨯,12n =或0n =(舍去).故存在偶数12n =,使得215p p =.15.由图呈现的规律知,第20个几何体有20层,从上往下第1层有1个正方体,第2层有33⨯个正方体,第3层有55⨯个正方体,……,第20层有3939⨯个正方体,所以第20个几何体的表面积由以下三部分组成: (1)俯视图:边长为39厘米的正方形,面积为39391521⨯=(平方厘米). (2)底面积:边长为39厘米的正方形,面积为1521平方厘米. (3)侧面积:四个形如39个正方形的金字塔三角形的面积和,即()13913539420416002+++++⨯=⨯⨯=(平方厘米).故第20个几何体的表面积为1521216004642⨯+=(平方厘米).………………………………………。

七年级数学思维探究(20)丰富的图形世界(含答案)

七年级数学思维探究(20)丰富的图形世界(含答案)

欧拉()17071783-,是18世纪最杰出的数学家之一,他不但在数学上作出了伟大贡献,而且把数学成功地应用到其他领域,在数论中,欧拉首选引进了欧拉函数()n Φ,用多种方法证明了费用小定理,对著名的哥尼斯堡大桥问题的解答开创了图论的研究,此外,欧拉还在物理、天文、建筑以及音乐、哲学等方面取得了辉煌的成就.20.丰富的图形世界解读课标20世纪初,伟大的法国建筑家列·柯尔伯齐曾说:“我想,到目前为止,我们从没有生活在这样的几何时期,周围的一切都是几何学.”生活中蕴含着丰富的几何图形,圆的月亮,平的湖面,直的树干,造型奇特的建筑,不断移动、反转、放大缩小的电视画面……图形有的是立体的,有的是平面的,立体图形与平面图形之间的联系,从以方面得以体现:1.立体图形的展开与折叠;2.从各个角度观察立体图形;3.用平面去截立体图形.观察归纳、操作实验、展开想象、推理论证是探索图形世界的基本方法.问题解决例1 如图是一个正方体表面展开图,如果正方体相对的面上标注的值相等那么x y +=_____. 试一试展开与折叠是两个步骤相反的过程,从折叠还原成正方体人手.例2如图,是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A .5个B 6个C .7个D .8个试一试根据三视图和几何体的关系。

分别确定该几何体的列数和每一列的层数.例3 由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,求n 的值.试一试本例可以在“脑子”中想象完成,也可以用实物摆一摆,从操作实验人手,从俯视图可推断左视图只能有两列,由主视图分析出俯视图每一列小正方形的块数情况是解本例的关键,而有序思考、分类讨论,则可避免重复与遗漏.例4如图是由若干个正方体形状木块堆成的,平放于桌面上,其中,上面正方体的下底面四个顶点恰是下面相邻正方体的上底面各边的中点,如果最下面的正方体的棱长为1,且这些正方体露在外面的面积和超过8,那么正方体的个数至少是多少?按此规律堆下去,这些正方体露在外面的面积和的最大值是多少? 试一试所有正方体侧面面积和再加上所有正方体上面露出的面积和,就是需求的面积.从简单人手,2x y 10888主视图左视图俯视图主视图俯视图例5要把一个正方体分割成49个小正方体(小正方体大小可以不等),画图表示.分析与解本例是一道图形分割问题,解答本例需要较强的空间想象能力和推理论证能力,需要把图形性质与计算恰当结合.为方便起见,设正方体的棱长为6个单位,首先不能切出棱长为5的立方体,否则不可能分割成49个小正方体.设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,如果能切出1个棱长为4的正方体,则有864216491a b a b ++=⎧⎨+=-⎩,解之得6147b =,不合题意,所以切不出棱长为4的正方体. 设切出棱长为1的正方体有a 个,棱长为2的正方体有b 个,棱长为3的正方体有c 个,82721649a b c a b c ++=⎧⎨++=⎩,解得36a =,9b =,4c =,故可分割棱长分别为1、2、3的正方体各有36个、9个、4个,分法如图所示.欧拉公式例6建立模型18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式,请你观察下列几种简单多面体模型,解答下列问题._____.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是_____.(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x 个,八边形的个数为y 个,求x y +的值.解(1)6;6;2V F E +-=(2)20四面体长方体正八面体正十二面体(3)这个多面体的面数为x y +,棱数为243362⨯=(条) 根据2V F E +-=,可得()24362x y ++-=,∴14x y +=.模型应用如图,有一种足球是由数块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长都相等,求正五边形、正六边形个数.解设足球表面的正五边形有x 个,正六边形有y 个。

七年级数学-七年级数学思维探究(22)角(有答案)MMqKKl

七年级数学-七年级数学思维探究(22)角(有答案)MMqKKl

毕达哥拉斯(约公元前580——前500),古希腊数学家.他既是哲学家、数学家、又是天文学家,创建了政治、宗教、数学合一的秘密学术团体,这个团体被后人称为毕达哥拉斯学派.他提出了“万物皆数”的著名论断,被誉为西方理性数学的创始人.毕达哥拉斯定理(即勾股定理)是毕达哥拉斯的一大贡献,他还首创地圆说,认为日、月、星都是球体,悬浮在太空之中. 22.角 解读课标角也是一种最基本的几何图形,它在现实生活中随处可见.张开的剪刀、纵横交错的公路、钟面上的时针和分针等都给我们以角的形象.角既可以看作有公共端点的两条射线组成的图形,又可看作一条射线绕着它的端点旋转而成的图形. 与角相关的知识有: 1.角平分线的概念; 2.角的分类;3.互余、互补等数量关系角.类似于解与线段相关的问题,解与角相关的问题时,往往用到相关概念、分类与讨论、代数式的思想等知识方法. 问题解决例1 把一张长方形纸条按图中那样折叠后,若得到'70AOB ∠=︒,则'B OG ∠=_______.试一试折痕OG 两旁的部分能互相重合,即OG 为'BOB ∠平分线,这是解本例的关键.例2 如图,A 、O 、B 在一条直线上,AOC BOC ∠=∠,若12∠=∠,则图中互余的角共有(). A .5对 B .4对 C .3对 D .2对试一试从互余的概念入手,应注意等量代换,避免漏掉互余的角.例3如图,已知2BOC AOC ∠=∠,OD 平分AOB ∠,且19COD ∠=︒,求AOB ∠的度数. 试一试设AOC x ∠=,建立方程,用代数方法计算.例4将一副三角板的两三角板如图放置,OM 平分AOC ∠,ON 平分DOC ∠. (1)将45︒三角板绕O 点旋转(30︒角的三角板不动),求MON ∠的大小. (2)若将30︒角三角板换成一个任意锐角的纸板,其他条件不变,(1)中的结论是否变化?(直接写出结论,不必说明理由)试一试三角板绕O 点旋转过程中,有下列情形:OA 与OB 重合,OA 在COB ∠内部,COB ∠包含在AOD ∠内部,故分类讨论是解本例的关键.DOG ABCC'B'21DABCEDABC例5 已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)将图①中的DOE ∠绕顶点O 顺时针旋转至图②的位置. ①探究AOC ∠与DOE ∠的度数之间的关系;②在AOC ∠的内部有一条射线OF ,满足42AOC AOF BOE AOF ∠-∠=∠+∠,试确定AOF ∠与DOE ∠的度数之间的关系,并说明理由.分析与解对于(3)②,为方便设DOE x ∠=,AOF y ∠=,将条件等式变形为只含x ,y 的等式. (1)15︒ (2)2DOE α∠=(3)①12DOE AOC ∠=∠.②左边2424DOE AOF x y =∠-∠=-,右边()22901802BOE AOF x y x y =∠+∠=︒-+=︒-+, 即241802x y x y -=︒-+,得45180x y -=︒, 45180DOE AOF ∠-∠=︒∴. 钟表上的角度例6在0时到12时之间,钟面上的时针与分针在什么时候成60︒的角?试尽可能多地找出答案,又秒针与时针共有几次成60︒的角?分析与解直觉作答或近似估计,可得到一些答案,而通过方程可使我们找到问题全部的解. 而列方程解答,又有几种不同的解题策略:(1)分别对两个整点之间的答案列出方程求解; (2)在上述某础上寻找规律求出全部解;(3)将问题看成圆周追及问题.设分针的速度为每分钟1个单位长度,则时针的速度为112,将时针、分针看成两个不同速度的人在环形跑道上同时(从0时开始)开始同向而行,要求使两者相距10个单位长度所用的时间.设从0时开始,过x 分钟后分针与时针成60︒的角,此时分针比时针多走了n 圈()0,1,2,3,,11n =L ,则30°45°DOAB C 图①DABC E图②DOA B C E601012x x n -=+,或605012xx n -=+, 解得()12601011x n =+或()12605011x n =+.分别令以0n =,1,2,3,…,11,即得本题的所有22个解(精确到秒):0:54:33,2:00:00,3:05:27,4:10:55,5:16:22,6:21:49,7:27:16,8:32:44,9:38:11,10:43:38,11:49:05;1:16:22,2:21:49,3:27:16,4:32:44,5:38:11,6:43:38,7:49:05,8:54:33,10:00:00,11:05:27,0:10:55.在12小时内,秒针相对于时针走了60121719⨯-=圈,所以秒针与时针共有71921438⨯=次成60︒的角. 数学冲浪 知识技能广场1.一个角的余角比它的补角的13还少20︒,则这个角是________.2.如图,将一副三角板的直角顶点重合,摆放在桌面上. (1)若145AOD ∠=︒,则BOC ∠=________.(2)若AOD BOC ∠=4∠,则AOC ∠=___________.3.如图,AOB ∠是钝角,OC 、OD 、OE 是三条射线,若OC OA ⊥,OD 平分AOB ∠,OE 平分BOC ∠,那么DOE ∠的度数是_________.4.如图,O 是直线AB 上一点,120AOD ∠=︒,90AOC ∠=︒,OE 平分BOD ∠,则图中彼此互补的角有________对.5.在时刻8:30,时钟上的时针与分针之间的夹角为(). A .85︒ B .75︒ C .70︒ D .60︒6.如图所示的44⨯的方格表中,设ABD α∠=,DEF β∠=,CGH γ∠=,则(). A .βαγ<< B .βγα<< C .αγβ<< D .αβγ<<DABCDOABCE DABCE7.如图,A 、O 、B 在一条直线上,1∠是锐角,则1∠的余角是().A .1212∠-∠B .132122∠-∠C .()1212∠-∠D .()1213∠+∠8.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在'D 、'C 的位置.若65EFB ∠=︒,则'AED ∠等于().A .70︒B .65︒C .50︒D .25︒9.如图,已知OB 、OC 、OD 为AOE ∠内三条射线. (1)图中共有多少个角?(2)若OB 、OC 、OD 为AOE ∠四等分线,且图中所有锐角的和为400︒,求AOE ∠的度数; (3)若89AOE ∠=︒,30BOD ∠=︒,求图中所有锐角的和.10.如图,两个形状、大小完全相同的含有30︒、60︒的三角板如图①放置,PA 、PB 与直线MN 重合,且三角板PAC ,三角板PBD 均可以绕点P 逆时针旋转.(1)试说明:90DPC ∠=︒;(2)如图②,若三角板PAC ∠的边PA 从PN 处开始绕点P 逆时针旋转一定角度,PF 平分APD ∠,PE 平DGHABCEFB12D'C'FEDCBAOECBAD图①CBANMD图②FE C B ANMD图③DMNPAC分CPD ∠,求EPF ∠;(3)如图③,若三角板PAC 的边PA 从PN 处开始绕点P 逆时针旋转,转速为3/s ︒,同时三角板PBD 的边PB 从PM 处开始绕点P 逆时针旋转,转速为2/s ︒,在两个三角形旋转过程中(PC 转到与PM 重合时,两三角板都停止转动),问CPDBPN∠∠的值是否变化?若不变,求出其值;若变化,说明理由.思维方法天地11.以AOB ∠的顶点O 为端点引射线OC ,使:5:4AOC BOC ∠∠=,若15AOB ∠=︒,则AOC ∠的度数是__________.12.在上午10时30分到11时30分之间,时针和分针成直角的时刻是________. 13.如图,在33⨯的网格中标出了1∠和2∠,则12∠+∠=________.14.如图,45BOD ∠=︒,90AOE ∠=︒,那么不大于90︒的角有________个,它们的度数之和是_______.15.如图,在一个正方体的2个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于(). A .60︒ B .75︒C .90︒D .135︒16.如图,直线AB 、CD 相交于点O ,OE AB ⊥于点O ,OF 平分AOE ∠,11531'∠=︒,则下列结论中不正确的是().A .245∠=︒B .13∠=∠C .AOD ∠与1∠互为补角 D .1∠的余角等于7531'︒17.如图是一个33⨯的正方形,则图中1239∠+∠+∠++∠L 的和等于(). A .270︒ B .315︒ C .360︒ D .405︒21DOAB CECBADOA BCEF12318.如图,OB 、OC 是AOD ∠的任意两条射线,OM 平分AOB ∠,ON 平分COD ∠,若MON α∠=,BOC β∠=,则表示AOD ∠的式子是().A .2αβ-B .αβ-C .αβ+D .以上都不正确19.如图,在直线AB 上取一点O ,在AB 同侧引射线OC 、OD 、OE 、OF ,使COE ∠和BOE ∠互余,射线OF 和OD 分别平分COE ∠和BOE ∠,试探究AOF BOD ∠+∠与DOF ∠的关系,并说明理由.20.如图①,点O 为直线AB 上一点.过O 点作射线OC ,使120BOC ∠=︒,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角板绕点O 按逆时针方向旋转至图②,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠.问:直线ON 是否平分AOC ∠?请说明理由;(2)将图中的三角板绕点O 按每秒6︒的速度逆时针方向旋转一周,在旋转的过程中,直线ON 恰好平分AOC ∠,求t 的值;(3)将图①中的三角板绕点O 按顺时针方向旋转至图③的位置,使ON 在AOC ∠的内部.请探究:AOM ∠与NOC ∠之间数量关系,并说明理由. 应用探究乐园 21.(1)时钟在2点15分时,时针和分针的夹角是多少度?(2)晚饭后,小明准备外出散步,出发时看了一下钟,时间是6点多,时针与分针成90︒角,散完步后回家,小明又看了一下钟,还不到7点,而时针与分针又恰好成90︒角,问小明外出多少分钟?22.已知150AOB ∠=︒,OC 是AOB ∠内的一条射线,射线OD 平分AOC ∠,射线OE 平分BOD ∠. (1)若AOD EOC ∠=∠(如图①),求AOD ∠的度数;987654321BAD OMNAB CDOABCEF 图①CBAMO 图②OMA BC图③C BA NMO(2)设()50AOD αα∠=≠︒,求AOD BOECOE∠-∠∠的值.DABCE图①OA备用图A备用图角问题解决例1 ()()111''180'1807055222B OG BOB AOB ∠=∠=︒-∠=︒-︒=︒.例2 B 90AOC BOC ∠=∠=︒,12∠=∠,COD AOE ∠=∠.例3 2BOC x ∠=,3AOB x ∠=,32AOD x ∠=,由AOD AOC COD ∠-∠=∠,得3192x x -=︒,解得38x =︒,故338114AOB ∠=⨯︒=︒.例4 (1)在旋转的过程中,12MON AOD ∠=∠这一关系不变,从而22.5MON ∠=︒.(2)略数学冲浪1.75︒ 2.(1)35︒;(2)54︒ 3.1452DOE AOC ∠=∠=︒4.6 5.B 6.B 7.C 8.C 9.(1)有10个角;(2)80AOE ∠=︒;(3)416︒. 10.(1)略(2)30EPF ∠=︒,设CPE DPE x ∠=∠=,CPF y ∠=.(3)设运动时间为t 秒,则2BPM t ∠=,1802BPN t ∠=︒-,302DPM t ∠=︒-,3APN t ∠=,18090CPD DPM CPA APN t ∠=︒-∠-∠-∠=︒-. 90118022CPD t BPN t ∠︒-==∠︒-∴,为定值. 11.若射线在AOB ∠的内部,则820'AOC ∠=︒;若射线OC 在AOB ∠的外部,则75AOC ∠=︒.12.10点23811分或11点101011分设10点30分以后,过x 分钟,时针与分针的夹角为90︒,由60.513590x x -=-或60.513590x x -=+得2811x =或104011.13.45︒通过拼补计算14.10;450︒ 15.A 16.D17.D 沿AB 作对折时,上、下图形能够重合,得19264890∠+∠=∠+∠=∠+∠=︒. 18.A19.90COE BOE ∠+∠=︒,45DOF ∠=︒,135AOF BOD ∠+∠=︒,从而3AOF BOD DOF ∠+∠=∠. 20.(1)ON 平分AOC ∠;(2)10t =或40;(3)30AOM NOC ∠-∠=︒ 21.(1)22.5︒(2)由题意得:18060.590x x -+=,61800.590y y --=,解得41611x =,14911y =,148491632111111y x -=-=.即小明出去了83211分钟.22.(1)30AOD ∠=︒(2)如图①,当50α<︒时,原式31501503115031503αααα-︒︒-===︒-︒-;如图②,当50α>︒时,原式31503150131503150αααα-︒-︒===-︒-︒.O ED CBA图①ABCDEO图②。

人教版七年级上册数学:《图形认识初步》全章复习与巩固(基础)知识讲解(含答案)

人教版七年级上册数学:《图形认识初步》全章复习与巩固(基础)知识讲解(含答案)

《图形认识初步》全章复习与巩固(基础)知识讲解【学习目标】1认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2•掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3 •初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4•逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【高清课堂:图形认识初步章节复习399079 本章知识结构】【知识网络】【要点梳理】要点一、多姿多彩的图形1. 几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等•几何图形平面图形:三角形、四边形、圆等•要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2. 立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践(2)从不同方向看:主(正)视图--------- 从正面看几何体的三视图(左、右)视图-----从左(右)边看俯视图------------ 从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图②能根据三视图描述基本几何体或实物原型(3)几何体的构成元素及关系几何体是由点、线、面构成的•点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成•要点二、直线、射线、线段1. 直线,射线与线段的区别与联系ettA S 1J 8 ;責示方进①禹心归写爭毋;②一牛屮坊字母溺來大写字呼,表示工袁禾两晞血杓两个大写字母;②一个小馬丰*1 +2牛向眄才无限延伸囱一方无朋逐伸不可庭沖前点瑜定一条立啟itte可以作圈報述过A出柞直A.H以4肖端点柞射践連2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象•女口:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线②连接两点间的线段的长度,叫做两点的距离3. 画一条线段等于已知线段(1 )度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段11种展开图,三棱柱,圆柱(2 )用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4. 线段的比较与运算 (1 )线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法(2 )线段的和与差:如下图,有AB+BC=AC 或AC=a+b AD=AB-BDA aB b C(3)线段的中点:1 把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:AM MB AB2要点诠释:1①线段中点的等价表述:如上图,点M在线段上,且有AM - AB,则点M为线段AB2的中点•②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等•如下图,点M,N,P均为线段AB的四等分点•1AM MN NP PB AB4要点三、角1. 角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示•例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示(3)角度制及角度的换算1周角=360°, 1平角=180°, 1° =60', 1' =60〃,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4 )角的分类锐角直角钝角平角周角范围0<zp< 90°zp =90 °90°<Zp <180°Zp =180 °zp =360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0〜180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2. 角的比较与运算(1)角的比较方法:①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例1女口:如下图,因为OC是/ AOB勺平分线,所以/ 仁/2=—/ AOB或/ AOB=Z 1=2/2.23•角的互余互补关系余角补角(1)若/ 1 + / 2=90 °,则/ 1与/ 2互为余角.其中/ 1是/ 2的余角,/ 2是/ 1的余角.(2)若/ 1 + Z 2=180°,则/ 1与/ 2互为补角.其中/ 1是/ 2的补角,/ 2是/ 1的补角.(3)结论:同角(或等角)的余角相等;同角(或等角)的补角相等要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的,③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”4•方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角•要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的•所以在应用中一要确定其始边是正北还是正南•二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45。

七年级数学下思维探究-绝对值与方程(含答案)

七年级数学下思维探究-绝对值与方程(含答案)

七年级数学下思维探究-绝对值与方程(含答案)商高是公元前世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为和时,直角三角形的斜边就是,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前世纪发现的.9.绝对值与方程解读标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有:1.最简绝对值方程形如是最简单的绝对值方程,可化为两个一元一次方程与.2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解.问题解决例1 方程的解是________.试一试原方程变形为,再把此方程化为一般方程求解.例2 若关于的方程无解,只有一个解,有两个解,则,,的大小关系为().A.B..D.试一试从方程有解的条入手.例3 解下列方程:(1);(2);(3).试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例 4 如图,数轴上有、两点,分别对应的数为、,已知与互为相反数.点为数轴上一动点,其对应的数为.(1)若点到点、点的距离相等,求点对应的数.(2)数轴上是否存在点,使点到点、点的距离之和为?若存在,请求出的值;若不存在,说明理由;(3)当点以每分钟个单位长度的速度从点向左运动时,点以每分钟个单位长度的速度向左运动,点以每分钟个单位长度的速度向左运动,问几分钟时点到点、点的距离相等?试一试由绝对值的几何意义建立关于的绝对值方程.例讨论关于的方程的解的情况.分析与解与方程中常数、有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具.数轴上表示数的点到数轴上表示数和的点的距离和的最小值为,由此可得原方程的解的情况是:(1)当时,原方程有两解;(2)当时,原方程有无数解;(3)当时,原方程无解.数学冲浪知识技能广场1.若是方程的解,则_______;又若当时,则方程的解是_____.2.方程的解是_______;_______是方程的解;解方程,得_______.3.如果,那么的值为________.4.已知关于的方程的解满足,则的值为().A.或B.或.或D.或.若,则等于().A.或B.或.或D.或6.方程的解的个数为()A.个B.个.无数个D.不确定7.解下列方程(1);(2);(3);(4).8.求关于的方程的所有解的和.9.解方程.10.已知、、、都是整数,且,则_______.11.若、都满足条,且,则的取值范围是_______.12.满足方程的所有的和为________.13.若关于的方程有三个整数解,则的值为()A.B..D.14.方程的整数解的个数有()A.B..D.1.若是方程的解,则等于()A.B..D.16.解下列方程(1);(2).17.当满足什么条时,关于的方程有一解?有无数多个解?无解?应用探究乐园18.如图,若点在数轴上对应的数为,点在数轴上对应的数为,且,满足.(l)求线段的长;(2)点在数轴上对应的数为,且是方程的解,在数轴上是否存在点,使得?若存在,求出点对应的数;若不存在,说明理由;(3)在(1)、(2)的条下,点,,开始在数轴上运动,若点以每秒个单位长度的速度向左运动,同时,点和点分剐以每秒个单位长度和个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知,求的最大值和最小值.微探究从三阶幻方谈起相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出,就是一个阶幻方,也就是在的方阵中填入,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在的方阵图中,每行、每列、每条对角线上个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在的方格中填入个不同的数,使得各行各列及两条对角线上个数的和都相等,且为,若最中间数为,则.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方.(3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1 如图①,有个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试虽然问题要求的只是左上角的数,但是问题的条还与其他的数相关.故为充分运用已知条,需引入不同的字母表示数(如图②).例2 如图,在的方格表中填入九个不同的正整数:,,,,,,,和.使得各行、各列所填的三个数的和都相等,请确定的值,并给出一种填数法.试一试如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即为正整数,又,从估计和的最小值入手.整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,、、、、、、、、分别代表,,,,,,,,中某一个数,不同字母代表不同的数,使每个小圆内个数的和都相等,那么的值是多少?分析与解设这个相等的和是,现将这个小圆中个数求和,可得:,故.先从所在的小圆看,至少是,最多只能是,再从所在的小圆看,最多只能是,由于,所以必须,,由此可以求得图②.对照图①与图②中各数的位置,可看到.当然也可以有另一解法.将含、含、含、含、含与含的个小圆内个数求和,可得:,即,所以.练一练1.将到这个自然数填入图中的个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的个数的和是_______.2.请构造“幻角”,将这个整数填入图中的小三角形内(和已填好),使图中每个大三角形内四数之和都等于.3.请将,,,,,,,,,这个数分别填入图中方阵的个空格,使行、列、条对角线上的个数的和都是.4.如图,、、、、、均为有理数,图中各行各列及两条对角线上的和都相等,求的值..如图是一个的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求的值.6.图中显示的填数“魔方”只填了一部分,将下列个数:,,,,,,,,填入方格中,使得所有行、列及对角线上各数相乘的积相等,求的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中行、列以及条对角线上的点数之和都等于,是一种“ 阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从阶到阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用,,,…,构造阶幻方的方法是:先将,,,…,依次排成图③,然后以外四角对换,即与对换,与对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的阶幻方.8.把数字,,,…,分别填入图中的个圈内,要求三角形和三角形的每条边上三个圈内数字之和都等于.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础.(1);(2)利润=售价-进价;(3)售价=进价+利润=进价×(利润率).例1 一家商店将某商品按成本价提高后,标价为元,又以折出售,则售出这商品可获利润_______元.试一试从求出成本价切入.例 2 某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.试一试利用获利不变建立方程.例 3 某房地产开发商开发一套房子的成本随着物价上涨比原增加了,为了赚钱,开发商把售价提高了倍,利润率比原增加了,求开发商原的利润率.试一试因售价=成本×(利润率),故还需设出成本.例4 某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于元,则不予优惠;(2)若一次购物满元,但不超过元,按标价给予九折优惠;(3)若一次购物超过元,其中元部分给予九折优惠,超过元部分给予折优惠.小明两次去该超市购物,分别付款元与元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?分析与解第一次付款元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当元为购物不打折付的钱时,所购物品的原价为元,又,其中元为购物元打九折付的钱,元为购物打八折付的钱,(元).因此,元所购物品的原价为(元),于是购买小明花(元)所购的全部物品,小亮一次性购买应付(元).情形2 当元为购物打九折付的钱时,所购物品的原价为(元).仿情形1的讨论,购(元)物品一次性付款应为(元).练一练1.某商品的进价为元,售价为元,则该商品的利润率可表示为_______.2.某商店老板将一进价为元的商品先提价,再打八折卖出,则卖出这商品所获利润为_______元.3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为元的商品,共带省元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为元,打七折售出后,仍可获利”,你认为售货员应标在标签上的价格为________..一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每按原销售价的八折销售,售价为元,则这款羊毛衫每的原销售价为_______元.6.甲用元购买了一些股票,随即他将这些股票转卖给乙,获利.而后乙又将这些股票反卖给甲,但乙损失了,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲().A.盈亏平衡B.盈利元.盈利元D.亏损元7.年爆发的世界金融危机,是自世纪年代以世界最严重的一场金融危机,受金融危机的影响,某商品原价为元,连续两次降价后售价为元,下列所列方程正确的是().A.B..D.8.某商店出售某种商品每可获利元,利润率为.若这种商品的进价提高,而商店将这种商品的售价提高到每仍可获利元,则提价后的利润率为().A.B..D.9.某种商品的进价为元,出售标价为元,后由于该商品积压,商店准备打折销售,但要保证利润率不低于,则最多可打().A.新B.折.折D.折10.某商场对顾客实行优惠,规定:①如一次购物不超过元,则不予折扣;②如一次购物超过元但不超过元,按标价给予九折优惠;③如一次购物超过元,则其中元按第②条给予优惠,超过元的部分则给予八折优惠.某人两次去购物,分别付款元和元,如果他只去一次购买同样的商品,则应付款是().A.元B.元.元D.元11.某商场用元购进、两种新型节能台灯共盏,这两种台灯的进价、标价如下表所示:类别价格型型进价(元/盏)标价(元/盏)(1)这两种台灯各购进多少盏?(2)若型台灯按标价的九折出售,型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售、、三种产品,在去年的销售中,高新产品的销售金额占总销售金额的.由于受国际金融危机的影响,今年、两种产品的销售金额都将比去年减少,因而高新产品是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过元的不给优惠,超过元而不超过元时,按该次购物全额折优惠,超过元的其中元仍按折优惠,超过部分按折优惠.小美两次购物分别用了元和元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车、、分别以、、的速度匀速行驶,从甲站开往乙站,同时,、从乙站开往甲站.在与相遇小时后又与相遇,则甲、乙两站相距_____ .(2)小王沿街匀速行走,他发现每隔从背后驶过一辆路公交车;每隔迎面驶一辆路公交车.假设每辆路公交车行驶速度相同,而且路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______ .试一试对于(2),“背后驶过与迎面驶”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例 2 (1)一艘轮船从港到港顺水航行,需小时,从港到港逆水需小时,若在静水条下,从港到港需()小时.A.B..D.(2)甲、乙两动点分别从正方形的顶点、同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的倍,则它们第次相遇在边().A.上B.上.上D.上试一试对于(2),设正方形边长为,甲的速度为,相遇时甲行的路程为,利用“相遇时甲、乙两动点运动时间相等”建立方程,把用的代数式表示.例 3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了圈,此时它们行驶了多少分钟?试一试当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比.例4 甲、乙二人分别从、两地同时出发,在距离地千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达地、地后,又在距地千米处相遇,求、两地相距多少千米?解法一第一次相遇时,甲、乙两人所走的路程之和,正是、两地相距的路程,即当甲、乙合走完、间的全部路程时,乙走了千米,第二次相遇时,两人合走的路程恰为两地间距离的倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为(千米).考虑到乙从地走到后又返回了千米,所以、两地间的距离为(千米).解法二甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例.到第一次相遇,甲走了(全程)千米,乙走了千米;到第二次相遇,甲走了(全程)千米,乙走了(全程)千米.设全程为,易得到下列方程,解得,(舍去),所以、两地相距千米.解法三设全程为千米,甲、乙两人速度分别为,.则,①÷②得,解得或(舍去).乘车方案例老师带着两名学生到离学校千米远的博物馆参观,老师乘一辆摩托车,速度为千米/时,这辆摩托车后座可带乘一名学生,带人速度为千米/时,学生步行的速度为千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过个小时.分析若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键.解要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆.如图,设老师带甲乘摩托车行驶了千米,用了小时,比乙多行了(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了(小时).乙遇到老师时,已经步行了(千米),离博物馆还有(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有,解得.即甲先乘摩托车千米,用时小时,再步行千米,用时小时,共计小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过个小时.另解:设乙先步行的时间为小时,步行的路程为,则(千米),此时老师带甲走的路程为(千米),老师返回接乙走的路程为.故有,解得,甲乘车的时间为(小时),故甲从学校到博物馆共用(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则小时相遇;若同向而行,则小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需小时,从乙地到甲地逆流行驶需小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为和,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______.4.甲、乙分别自、两地同时相向步行,小时后中途相遇,相遇后,甲、乙步行速度都提高了千米/时,当甲到达地后立刻按原路向地返行,当乙到达地后也立刻按原路向地返行.甲、乙两人在第一次相遇后小时分又再次相遇,则、两地的距离是_______千米..甲、乙两人沿同一路线骑车(匀速)从到,甲需要分钟,乙需要分钟.如果乙比甲早出发分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有米,丙距终点还有米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从地到地,小明骑自行车从地到地,两人都匀速前进.已知两人在上午时同时出发,到上午时,两人还相距千米,到中午时,两人又相距千米,求、两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟出发,上高速公路途经舟跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了小时;返回时平均速度提高了千米/时,比去时少用了半小时回到舟.(1)求舟与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:大桥名称舟跨海大桥杭州湾跨海大桥大桥长度千米千米过桥费元元据浙江省交通部门规定:轿车的高速公路通行费(元)的计算方法为:,其中(元/千米)为高速公路里程费,(千米)为高速公路里程(不包括跨海大桥长),(元)为跨海大桥过桥费,若林老师从舟到嘉兴所花的高速公路通行费为元,求轿车的高速公路里程费.9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为千米/时,骑车人的速度为千米/时,如果有一列火车从他们背后开过,它通过行人用了秒,通过骑车人用了秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在、两地同时相向而行,于处相遇后,甲继续向地行走,乙则休息了分钟,再继续向地行走.甲和乙到达和后立即折返,仍在处相遇.已知甲每分钟行走米,乙每分钟行走米,则和两地相距多少米?11.某单位有人要到千米外的某地参观,因为步行时速只有千米,为了使他们上午到达,配备了一辆最多载人名、时速千米的大客车.于是早晨时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图.12.、、三辆车在同一条直路上同向行驶,某一时刻,在前,在后,在、正中间.分钟后,追上;又过了分钟,追上.问再过多少分钟,追上?&#819;9.绝对值与方程问题解决例1 由,得或,所以或.经检验知时,方程左右两边不等,故舍去.从而原方程的解为.例2 A ,,,由题意得,,,从而,.例3 (1)或.原方程化为或,即或.(2)当时,原方程化为,得.当时,原方程化为,得.当时,原方程化为,得.综上知原方程的解为,,.(3)由绝对值的几何意义得原方程的解为.例4 (1);(2)存在,或(3)或数学冲浪1.;或2.或;;或3.4.A .D 6.7.(1)或;(2);(3)或;(4)或.8.,,,得,,,,故.9.当,原方程无解;当时,原方程有两解:或;当时,原方程化为,此时原方程有四解:;当时,原方程化为,此时原方程有三解:或或;当时,原方程有两解:.10.或,又、都是整数,得,,.当,则,即矛盾;若,令,满足题意;若,令,满足题意.11.12.13.14.B 由数轴知,且为偶数1.D16.(1)或可以得到;(2).17.由绝对值几何意义知:当时,方程有一解;当时,方程有无穷多个解,当或时,方程无解.18.(1),,;(2)存在点,点对应的数为或;(3),为常数.19.,同理,,得.当且仅当,,时,上面各式等号成立.又,由得①+②③,,因此,的最大值为,最小值为.从三阶幻方谈起(微探究)例l 由已知条得:,这样前面两个式子之和等于后面的两个式子之和,即,,得.例 2 与的最小值是,所以,即.而为整数,且是不同于,,,,,,,的正整数,故.练一练1.,,;,,设中间的圆圈中的数是,同一直线上的个数的和是,则,.2.如图3.如图:4.由条得:,,.上述三式相加有,故..如图,由及,得,,从而(注:这个幻方是可以完成的,如第行为,,;第行为,,;第行为,,).6.这个数的积为,所以每行、每列、每条对角线上三个数字积为,得,,,、、、分别为、、、中的某个数,推得.。

第4章图形的认识同步训练(含答案)2024-2025-湘教版(2024)数学七年级上册

第4章图形的认识同步训练(含答案)2024-2025-湘教版(2024)数学七年级上册

第4章图形的认识4.1 立体图形与平面图形1.下列学习或生活中的物品,它的形状可以近似看作圆柱体的是[教材P150“说一说”变式]( )2.下列图形是几何体的展开图,其中是三棱柱的展开图的是[教材P151“做一做”变式]( )(第3题)3.七巧板游戏是我国古代人民创造的益智游戏.如图所示的是由一副七巧板组成的一个“狐狸”,组成这个图案的平面图形中不包括 [教材P152“练习”T2变式]( )A.等腰直角三角形B.正方形C.等边三角形D.平行四边形4.如图所示的平面图形都是几何体的展开图,分别写出它们所对应的几何体的名称. [教材P153“习题4.1”T3变式](第4题)①________;②________;③________.4.2 线段、射线、直线第1课时线段、射线、直线1.将手电筒发射出的光线射向天空,此时的光线给我们的形象似[教材P154“观察”变式]( )A.线段B.折线C.直线D.射线2.如图所示,下列说法不正确的是 [教材P154“表格”变式]( )(第2题)A.线段AC与线段CA表示同一条线段B.射线AC与射线BC表示同一条射线C.直线AB与直线BC表示同一条直线D.射线AB与射线AC表示同一条射线3.用恰当的几何语言描述图形,如图①可描述为______________;如图②可描述为______________. [教材P155“做一做”变式](第3题)4.将一根木条钉在墙上,至少需要两颗钉子,其数学原理是____________________. [教材P155“思考”变式]5.点A,B,C,D的位置如图所示,按下列语句画出图形:(第5题)(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F;(4)找一点P,使点P既在直线AB上又在直线CD上. [教材P156“练习”T2变式]4.2 线段、射线、直线第2课时线段的长短比较与和差关系1.借助圆规,可得图中最长的线段是 [教材P158“练习”T1变式]( )A.BA B.CA C.DA D.EA(第1题) (第2题) (第3题) 2.如图,修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是__________________________. [教材P157“议一议”变式]3.如图,点C,D是线段AB上的两点(CD>AC,CD>BD),用圆规在线段CD上截取CE=AC,DF=BD,若点E与点F恰好重合,AC=3,BD=2,则AB的长为__________. [教材P158“例1”变式] 4.如图,AB=16,M是AB的中点,点N在BM上,MN=3BN,则AN 的长为________. [教材P158“练习”T2变式](第4题)5.如图,已知线段a,b,求作一条线段使它等于2a+b. [教材P158“例2”变式](第5题)第4章图形的认识4.3 角4.3.1 角与角的大小比较1.下列关于角的说法正确的是 [教材P160“角的概念”变式]( ) A.角是由具有公共端点的两条射线组成的图形B.角的大小与角的边的长短有关C.在角一边的延长线上取一点DD.平角是一条直线2.如图,下列表示角的方法中,不正确的是 [教材P162“练习”T1变式]( )A.∠A B.∠E C.∠αD.∠1(第2题) (第3题)(第4题) (第5题)3.如图,已知OC为∠AOB内部的一条射线,下列角之间的关系总是成立的是 [教材P162“练习”T2变式]( )A.∠AOC=∠BOC B.∠BOC>∠AOCC.∠AOC>∠COB D.∠AOB=∠BOC+∠AOC4.如图,将∠AOB折叠,使射线OA落在OB上,展开后,OC是折痕,则下列结论错误的是 [教材P162“练习”T3变式]( )A.∠AOC=∠BOC B.∠AOB=2∠AOCC .∠BOC =12∠AOBD .∠AOB <2∠BOC5.如图,若OB 平分∠AOC ,OC 平分∠BOD ,且∠AOB =25°,则∠AOD等于 [教材P162“角的平分线概念”变式]( )A .25°B .50°C .75°D .90°4.3 角4.3.2 角的度量与计算第1课时 角的度量与计算1.将21.54°用度、分、秒表示为 [教材P163“例1”变式]( )A .21°54′B .21°50′24″C .21°32′40″D .21°32′24″ 2.“叮、叮、叮”的上课铃声响了,小明看了教室黑板上方时钟显示如图,已知一节课时长为40 min ,那么准时下课时,时钟的时针与分针所成夹角的度数为 [教材P164“练习”T3变式]( )(第2题)A .180°B .170°C .160°D .150°3.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,对给出的角的关系判断正确的是 [教材P167“习题4.3”T4变式]( )A .∠α=∠βB .∠α=∠γC.∠β=∠γD.∠α、∠β、∠γ互不相等4.用度表示57°19′12″为__________. [教材P163“例2”变式] 5.计算: [教材P164“例3”变式](1)15°37′+42°51′;(2)90°-68°17′50″.4.3 角4.3.2 角的度量与计算第2课时余角与补角1.已知∠α和∠β互为余角,若∠α=45°,则∠β=[教材P164“余角概念”变式]( )A.25°B.35°C.45°D.135°2.若一个角的补角为25°,则这个角为 [教材P165“补角概念”变式]( )A.65°B.175°C.165°D.155°3.如图,直线a,b相交,则推导出“∠2=∠4”的依据中,最合理的是[教材P165“补角、余角性质”变式]( )(第3题)A.等角的余角相等B.同角的余角相等C.同角的补角相等D.等角的补角相等4.如图,∠COD=90°,OC平分∠AOB.若∠BOD=59°30′,则∠AOB 的度数为________. [教材P165“例4”变式](第4题)5.已知一个角的余角是这个角的补角的14,则这个角的度数为________. [教材P166“例5”变式]答案4.1 立体图形与平面图形1.A 2.B 3.C4.①长方体②圆锥③圆柱4.2 线段、射线、直线第1课时线段、射线、直线1.D 2.B3.点A在直线l上或直线l经过点A;直线a,b相交于点O 4.两点确定一条直线5.解:(1)(2)(3)(4)如图所示.(第5题)4.2 线段、射线、直线第2课时线段的长短比较与和差关系1.C 2.两点之间,线段最短 3.10 4.145.解:如图所示,线段AD即为所求线段.(第5题)4.3 角4.3.1 角与角的大小比较1.A 2.B 3.D 4.D 5.C4.3 角4.3.2 角的度量与计算第1课时角的度量与计算1.D 2.C 3.B4.57.32°5.解:(1)原式=58°28′. (2)原式=21°42′10″.4.3 角4.3.2 角的度量与计算第2课时余角与补角1.C 2.D 3.C 4.61° 5.60°。

第1章 丰富的图形世界 七年级上册数学北师大版(2024)单元质检A卷(含答案)

第1章 丰富的图形世界 七年级上册数学北师大版(2024)单元质检A卷(含答案)

(1)丰富的图形世界—七年级上册数学北师大版(2024)单元质检卷(A卷)【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下面四个立体图形中,和其他三个立体图形类型不同的是( )A. B. C. D.2.下列图形中,正方体展开图错误的是( )A. B.C. D.3.下列说法中,正确的个数是( )①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个4.如图,一个几何体上半部为正四棱锥,下半部为正方体,且有一个面涂有颜色,该几何体的表面展开图可能是( )A. B. C. D.5.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是( )A. B. C. D.6.下列说法错误的是( )A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面,侧面均为长方形D.从正面、左面、上面看球体得到的图形均为同样大小的圆形7.用一个平面去截一个几何体,得到的截面形状是长方形,那么这个几何体不可能是( )A长方体 B.圆柱 C.圆锥 D.正方体8.如图是的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A.1种B.2种C.3种D.4种9.某棱柱共有14个顶点,用一个平面去截该棱柱,截面不可能是( )A.十一边形B.五边形C.三角形D.九边形10.一个不透明小立方块的六个面上分别标有数字1,2,3,4,5,6,其展开图如图1所示.在一张不透明的桌子上,按图2方式将三个这样的小立方块搭成一个几何体,则该几何体能看得到的面上数字之和最小是( )A.31B.32C.33D.34二、填空题(每小题4分,共20分)11.如图所示的立体图形是由___________个面组成的;面与面相交成___________条线;其中有___________条线是曲的.12.如图,这是由若干个大小相同的小正方体组合而成的几何体,那么从三个方向看到的平面图形中,面积最大的是从________面看.(填“上”“前”或“左”)13.如图,节日的焰火可以看成由点运动形成的,这可以说__________.14.一个立方体木块,6个面都涂上红色,然后把它切成大小相等的27个小立方体,其中有两个面是红色的小立方体有__________个.15.在综合实践课学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.甲、乙、丙三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形是正方形乙:如图2,盒子底面的四边形是正方形丙:如图3,盒子底面的四边形是长方形,请将这三位同学所折成的无盖长方体的容积()按从大到小的顺序排列:____________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)写出下列立体图形的名称:17.(8分)如图,左面立.体图形中四边形表示平面截正方体的截面,请在右面展开图中画出四边形的四条边.18.(10分)如图,这是一个由小正方体所搭的几何体从上面观察所得到的形状图,正方形中的数字表示在该位置上小正方体的个数,请你画出从正面、左面观察该几何体所看到的形状图.19.(10分)已知一个直棱柱有15条棱,它的底面边长都相等.(1)该直棱柱是几棱柱?它有几个面?侧面是什么图形?(2)用一个平面去截该直棱柱,截面形状可能是;(写出一种即可)(3)若该直棱柱的底面周长为,侧棱长为,求它的所有侧面的面积之和.20.(12分)如图所示,在长方形ABCD中,,.现绕这个长方形的一边所在直线旋转一周得到一个几何体.请解决以下问题:(1)说出旋转得到的几何体的名称?(2)如果用一个平面去截旋转得到的几何体,那么截面有哪些形状(至少写出3种)?(3)求以CD边所在直线进行旋转所得几何体的体积?(结果保留)21.(12分)(1)如图所示的长方体,长、宽、高分别为4,3,6.若将它的表面沿某些棱剪开,展成一个平面图形,则下列图形中,可能是该长方体表面展开图的有________(填序号).(2)图A,B分别是题(1)中长方体的两种表面展开图,求得图A的外围周长为52,请你求出图B的外围周长.(3)第(1)题中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.答案以及解析1.答案:B解析:B选项是棱锥,A,C,D选项是棱柱,所以和其他三个立体图形类型不同的是B选项.故选B.2.答案:D解析:由正方体展开图的知识可知,四个小正方形绝对不可能展开成“田”字形,故D选项的展开图错误.故选D.3.答案:B解析:①柱体包括圆柱、棱柱;柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,错误;④长方体符合柱体的条件,一定是柱体,正确;⑤棱柱分为直棱柱和斜棱柱,直棱柱的侧面应是长方形,故错误;共有3个正确,故选:B.4.答案:B解析:根据涂有颜色一面的位置,排除A,C项;D中的图形不是这个几何体的表面展开图,排除D.5.答案:C解析:一个立体图形从正面、左面看到的平面图形是长方形,从上面看到的平面图形是一个三角形,则这个立体图形是有两个底面是三角形的三棱柱.故选:C.6.答案:B解析:A、长方体和正方体都是特殊的四棱柱,故本选项不符合题意;B、三棱柱的底面是三角形,侧面是矩形或平行四边形,故本选项符合题意;C、直六棱柱有六个侧面,侧面都是矩形,本选项不符合题意;D、从正面、左面、上面看球体得到的图形均为同样大小的圆形,本选项不符合题意;故选B.7.答案:C解析:A.长方体的截面可以是长方形,不符合题意;B.用垂直于地面的一个平面截圆柱截面为长方形,不符合题意;C.圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意;D.正方体的截面可以是长方形,不符合题意.故选:C.8.答案:B解析:如图所示:共有2种方法,故选:B.9.答案:A解析:因为该棱柱共有14个顶点,所以该棱柱是7棱柱,所以用一个平面去截该棱柱,截面可能是三角形、五边形、九边形,但不可能是十一边形.10.答案:B解析:由正方体表面展开图的“相间、Z端是对面”可知,“1”与“3”,“2”与“4”,“5”与“6”是对面,因此要使题图2中几何体能看得到的面上数字之和最小,最右边的那个正方体所能看到的4个面的数字为1,2,3,5,最上边的那个正方体所能看到的5个面的数字为1,2,3,4,5,左下角的那个正方体所能看到的3个面的数字为1,2,3,所以该几何体能看得到的面上数字之和最小为.11.答案:5;9;2解析:由立体图形可以看出立体图形由5个面组成的,面与面相交成9条线,其中曲线有2条.故答案为:5;9;2.12.答案:上解析:所给的几何体从前面看由5个小正方形组成;从左面看由5个小正方形组成;从上面看由6个小正方形组成.故面积最大的是从上面看.故答案为上.13.答案:点动成线解析:节日的焰火可以看成由点运动形成的,这可以说点动成线;故答案为:点动成线.14.答案:12解析:两面涂色的在每条棱长上(除去顶点处的小正方体),有:(个);答:其中有两个面是红色的小立方体有12个.故答案为:12.15.答案:解析:由图1可得:盒子底面的正方形的边长为(厘米),高为(厘米),则甲所折成的无盖长方体的容积为:(立方厘米),由图2可得:盒子底面的正方形的边长为(厘米),高为(厘米),则乙所折成的无盖长方体的容积为:(立方厘米),由图3可得:盒子底面的长方形的边长为(厘米),(厘米),高为(厘米),则丙所折成的无盖长方体的容积为:(立方厘米),.故答案为:.16.答案:球;圆柱;圆锥;长方体;三棱柱解析:如图所示:故答案为球,圆柱,圆锥,长方体,三棱柱.17.答案:图见解析解析:截面的线在展开图中,如图18.答案:见解析解析:由图例,可画从正面、左面观察该几何体所看到的形状图,如下图所示:从正面看:从左面看:19.答案:(1)该直棱柱为五棱柱,它有7个面,侧面是长方形(2)五边形(3)它的所有侧面的面积之和为解析:(1),所以该直棱柱为五棱柱,它有7个面,侧面是长方形;(2)用一个平面去截该直棱柱,截面形状可能是五边形,故答案为:五边形(答案不唯一);(3),,即它的所有侧面的面积之和为.20.答案:(1)圆柱(2)长方形或圆形或梯形(3)解析:(1)长方形绕一边旋转一周,得到圆柱;(2)如果用一个平面去截这个圆柱,则截面可能是:长方形或圆形或梯形;(3)当以CD为边所在直线进行旋转,得到的是底面半径为6 cm,高为8 cm的圆柱,则体积为:.21.答案:(1)①②③(2)58(3)70,图见解析解析:(1)根据长方体展开图的特征可得答案为:①②③;(2)由已知可以给图B标上尺寸如下:图B的外围周长为.(3)能.如图所示.外围周长为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陈景润(19331996-),福建省福州市人,1953年毕业于厦门大学数学系,主要从事解析数论方面的研究.20世纪60年代以来对筛法及其有关重要问题作了深入研究,1960年5月证明了命题“12+”,将200多年来人们未能解决的哥德巴赫猜想的证明大大推进了一步,这一结果被国际上誉为“陈式定理”.27.图形生长的奥秘 解读课标从一个简单的、基本的图形开始,按照一定的规律,生长繁衍成复杂有趣而美丽的图形,并探寻图形的边长、周长、面积的变化规律,这类图形生长的问题是近年中考竞赛的一个热点问题. 以“点”的方式扩散、以“面”的方式膨胀、以“体”的方式“堆砌”,是图形生长的常见形式,解图形生长问题的基本方法是:(1)分析图形生长的方式、规律;(2)分析相关数量的特征,找寻相关数量与图形序号的联系,观察发现,归纳猜想. 问题解决例1 (1)观察图①至图④中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则m =________.(用含n 的代数式表示)(2)观察下列图形:① ② ③ ④ 根据图①②③的规律,图④中的三角形的个数为___________. 试一试 对于(2),从寻找第n 个图与第1n -个图三角形个数的关系入手.例2 (1)如图是一个水平摆放的小正方体木块,图②③是用这样的小正方形木块叠放而成,按照这样的规律,继续叠放下去,至第七个叠放的图形中,小正方体木块总数是( ). A .25 B .66 C .91 D .120(2)黑色等边三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正方形分上下两行,上面的一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满,按第1、2、3个图案所示规律依次下去:则第n 个图案中,黑色正三角形和白色正六边形的个数分别是( ).A .22n n ++,21n +B .22n +,21n +C .4n ,23n n -+D .4n ,21n +①m =5n =1时②m =8n =2时③m =11n =3时④m =14n =4时①②……③第1个第2个第3个试一试 略. 例3 操作:(1)如图①,先画一个等边三角形,每边长为1;(2)如图②,在图①中,每边三等分中间的一份处再凸出一个等边三角形;(3)如图③,在②的边上,重复进行三等分,中间的一份处凸出一个等边三角形,按上述方法,就画出一个美丽的雪花图形.探究:图○n 的周长是多少?试一试 每“生长一次”,边长变化的规律,以及每“生长一次”,新增三角形个数的规律,这是解本例的突破口.例4 有一堆砖堆放如图,第1层有3块,第2层有8块,第3层有15块,……,如此继续下去,第9层有多少块?第n 层有多少块?这样共n 层的砖堆总共有多少块砖?试一试 从第2层起,每一层横里比上一层多一块,纵里也比上一层多一块,这是解本例的关键,亦可从分析每层砖的数据特征入手.例5 如图的图案均是用长度相同的火柴棍按一定的规律拼搭而成的:第1个图案需7根火柴,第2个图案需13根火柴,……,依此规律,第11个图案需多少根火柴?分析 当数据规律不明显时,可从分析图形构成入手.为使图形结构清晰,可适当改变图形. 解 将图中各个图案右下角的一个正方形移除3根火柴后得如下图:图中第1个图案需要横向火柴112+=(根),纵向火柴112+=(根),共需4根火柴; 第2个图案需要横向火柴1225++=(根),纵向火柴1225++=(根),共需10根火柴; 第3个图案需要横向火柴12339+++=(根),纵向火柴12339+++=(根),共需18根火柴; ……第n 个图案需要横向火柴的根数是()31232n n n n ++++++=,纵向火柴的根数也是()32n n +,共需()3n n +根火柴.故拼搭图中第11个图案需火柴()111133157⨯++=(根). 图案设计例6 如图是一个由12个相似的直角三角形组成的图案,像商标?像蜗牛?像台风眼?①②……③第1个第2个第3个…第4个第1个第2个第3个第4个…由简单的相似图形出发,展开想象的翅膀,开发头脑无尽的创意,你也能画出更美的图案. 下列图案分别是由相似的正方形、正五边形、正六边形、圆组成的.数学冲浪 知识技能广场1.观察下列图形,它们是按一定规律排列的,依照此规律,第8个图形共有_______枚五角星.2.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,……,则第⑥个图形中五角星的个数为_________.3.如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒,……,按此规律摆下去,第n 个图案需要小棒________根(用含有n 的代数式表示).4.用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为________(用含n 的代数式表示).5.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_________.(1)漩涡(2)玫瑰花(4)海螺背影n =1★★★★n =2★★★★★★★n =3★★★★★★★★★★n =4……★★★★★★★★★★★★★图①★★图②★★★★★★★★…图③★★★★★★★★★★★★★★★★★★(1)(2)(3)(4)……第一个图案第三个图案6.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面.如果铺成一个22⨯的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个33⨯的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个44⨯的正方形图案(如图④),其中完整的圆共有25个.若这样铺成一个1010⨯的正方形图案,则其中完整的圆共有________个.序号1 2 3 … n 图形… …… ●的个数 8 24 …★的个数 1 4 …(2)试求第几个图形中的“●”的个数与“★”的个数相等.8.已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形,如图所示,当n k =时,共向外作出了多少个小等边三角形?这些小等边三角形的面积和为多少?(用含k 的式子表示)9.某体育馆用大小相同的长方形镶嵌地面,第一次铺2块,如图①;第二次把第一次铺的完全围起来,如图②;第三次把第二次铺的完全围起来,如图③;……;依此方法,第n 次铺完后,用字母n 表示第n 次镶嵌所使用的木块数为______________.10.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于_______.(1)(2)(3)①②③④……●●●●●●●★●●●●●●●●●●●●●●●●★●★★★★★★●●●●●★★●●●★★★●★●●●●●●●●●●●●●●●n =3n =4…n =5①②③11.在图①中取阴影等边三角形各边的中点,连成一个等边三角形,将其挖去,得到图②;对图②中的每个阴影等边三角形各边按照先前的做法,得到图③;……;如此继续,如果图①的等边三角形面积为1,则第n 个图形中所有阴影三角形面积的和为___________.12.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为()3n a n ≥. (1)求5a 的值;(2)当3451111n a a a a ++++的结果是197600时,求n 的值为_________.13.用大小相同的正六边形瓷砖按如图所示的方式来铺设广场,中间的正六边形瓷砖记为A ,定义为第一组;在它的周围铺上6块同样大小的正六边形瓷砖,定义为第二组;在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,……,按这种方式铺下去,用现有的2005块瓷砖最多能完整地铺满多少组?还剩几块瓷砖?应用探究乐园14.在下图中,每个正方形由边长为1的小正方形组成:正方形边长1 3 5 7 … n (奇数) 第6行第5行第4行第3行第2行第1行①②③(1)(2)(3)……(4)A黑色小正方形个数 …正方形边长2 4 6 8 … n (偶数) 黑色小正方形个数 …(2)在边长为()的正方形中,设黑色小正方形的个数为1p ,白色小正方形的个数为2p ,问是否存在偶数n ,使215p p =若存在,请写出n 的值;若不存在,请说明理由. 15.将棱长为1cm 的正方体按如图方式放置,求第20个几何体的表面积.27.图形生长的奥秘 问题解决例1(1)32n +(2)161 图①有145+=个,图②有143417++⨯=个,图③有214343453++⨯+⨯=个,图④有2314343434161++⨯+⨯+⨯=个.例2(1)C 1591317212591++++++=; (2)D例3 图○n 中每个小等边三角形的边长为13n⎛⎫⎪⎝⎭,图○n 周长为143n n -. 例4 第9层有99块,第n 层有()2n n +块,这样的n 层砖堆共有()()()()()31425321212223232n n n n ⨯+⨯+⨯+++=+⨯++⨯++⨯+++⨯()()()()()()2222111232123121112766n n n n n n n n n n =+++++++++=++++=++(块).数学冲浪1.25 2.72 3.62n - 4.22n +5.()53132n n +-=+(个) 6.()2210101181+-=(个) 7.(1)略;(2)由28n n =,得8n =或0n =(舍去).8.n k =时,共向外作了()23k -⨯个小等边三角形,每个小等边三角形的面积为21S k⨯,这些小等边三角形的面积为()()2232123k k S S k k--⨯⨯⨯=⨯. 9.()()()221232286n n n n n ----=-10.377 各行的实心圆点数组成斐波那契数列 11.134n -⎛⎫ ⎪⎝⎭12.(1)()1n a n n =+,530a =;(2)199n =. 13.铺满n 组时,所用瓷砖总数为()()1616261131n n n +⨯+⨯++-=+-.当26n =时,()131********n n +-=<,当27n =时,()131********n n +-=>,故最多能完整地铺满26组,还剩2005195154-=(块)瓷砖. 14.(1)略;(2)n 为偶数时,12p n =,222p n n =-,由题意得2252n n n -=⨯,12n =或0n =(舍去).故存在偶数12n =,使得215p p =.15.由图呈现的规律知,第20个几何体有20层,从上往下第1层有1个正方体,第2层有33⨯个正方体,第3层有55⨯个正方体,……,第20层有3939⨯个正方体,所以第20个几何体的表面积由以下三部分组成:(1)俯视图:边长为39厘米的正方形,面积为39391521⨯=(平方厘米). (2)底面积:边长为39厘米的正方形,面积为1521平方厘米. (3)侧面积:四个形如39个正方形的金字塔三角形的面积和,即()13913539420416002+++++⨯=⨯⨯=(平方厘米).故第20个几何体的表面积为1521216004642⨯+=(平方厘米).………………………………………。

相关文档
最新文档