七年级数学思维探究(19)乘法公式(含答案)
初一数学专题训练(乘法公式+因式分解)(含答案)

初一数学专题训练(乘法公式+因式分解)(一) 巧用乘法公式进行计算类型一 巧用乘法公式的变形求式子的值1.阅读下面的材料,解答相应问题:数学知识随着人类文明的起源而产生,人类祖先为我们留下了许多珍贵的原始贵料, 古巴比伦泥板上记载了两种利用平方数表计算两数乘积的公式:221[()()]4ab a b a b =+--①; 221[()2ab a b a =+- ]②. (1)补全材料中公式②中的空缺部分.(2)验证材料中的公式①.(3)当5,7a b a b +=-=时,利用公式①计算ab 的值.类型二 巧用乘法公式进行简便计算2.化简:6X (7+1) X(72+1) X(74+1) X(78+1)X (716+1)+1.3.观察下列等式:22()()a b a b a b -+=-;2233()()a b a ab b a b -++=-;322344()()a b a a b ab b a b -+++=-;…利用你发现的规律解决下列问题:(1)计算: 432234()()a b a a b a b ab b -++++= .(2)计算: 123221()()n n n n n a b a a b a b ab b ------+++⋅⋅⋅++= .(3)利用(2)中得出的结论求20192018266661++⋅⋅⋅+++的值.类型三 巧用乘法公式解决整除问题4.当n 为自然数时,22(5)(3)n n +--能被16整除吗?请说明理由.5.当n 为自然数时,22(7)(5)n n +--能被24整除吗?请说明理由.(二) 常见因式分解的方法类型一 提公因式法1.分解因式(1) 2222464x y x z -= .(2) 2222898a b ab -+== .(3) 323612ma ma ma -+-= .(4) 2(1)(32)(23)x x x --+-= . 类型二 公式法2.分解因式:(1) 2244816x y x y -- = .(2) 2222(328)(28)a a a a +----= .类型三 分组分解法3.观察“探究性学习”小组的甲、乙两名同学进行的因式分解:甲: 244x xy x y -+-=2()(44)x xy x y -+-)=()4()x x y x y -+-=()(4)x y x -+.乙: 2222a b c bc --+=222(2)a b c bc -+- =22()a b c --=()()a b c a b c +--+请你在他们解法的启发下,分解因式: 22441x x y +-+.类型四 配方法4.阅读与思考:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但 对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式 2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有2223x ax a +-=2222(2)3x ax a a a ++--=22()(2)x a a +- =(2)(2)x a a x a a +++-=(3)()x a x a +-.像这样,先添一适当项,使式中一出现完全 平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法’,分 解因式:(1) 268a a -+= .(2) 21213x x +-= .类型五 十字相乘法5.阅读与思考:整式乘法与因式分解是方向相反的变形,由2()()()x p x q x p q x pq ++=+++,得 2()()()x p q x pq x p x q +++=++.利用这个式子可以将某些二次项系数是1的二次三 项式分解因式.例如将式子26x x --分解因式,这个式子的常数项-6=2X(-3),一次项 系数-1=2+(-3),这个过程可用“十字相乘”的形式形象地表示:先分解二次项系数,分 别写在十字交叉线的左上角和左下角;再分解常数项,分别写在干字交叉线的右上有和右 下角;然后交叉相乘,求代数和;使其等于一次项系数(如图),这种分解二次三项式的方法 叫“十字相乘法”.请同学们认真观察,分析理解后,解答下面的问题:(1)分解因式: 2718x x +-.(2)若28x px +-可分解为两个一次因式的积,则整数p 的所有可能值是 .参考答案(一) 巧用乘法公式进行计算1.(1)2b -(2)略(3)6ab =-2. 原式327=3. (1) 55a b -(2) n n a b - (3)原式2020615-= 4. 能点拨:22(5)(3)16(1)n n n +--=+5. 能点拨:22(7)(5)24(1)n n n +--=+(二) 常见的因式分解方法1.(1) 24()()x y z y z +-(2) 22(7)ab -(3) 23(424)ma a a --+(4) (32)(2)x x x --2.(1)22(2)(2)x y x y -+-(2)28(2)(2)a a a +-3. 22441(21)(21)x x y x y x y +-+=+++-4.(1)(2)(4)a a --(2)(13)(1)x x +-5. (1)2718(9)(2)x x x x +-=+-(2)7,7,2,2--。
新北师大版七年级数学下册第一章《整式的乘除》单元复习题含答案解析 (49)

一、选择题(共10题)1.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为56,面积之和为58,则长方形ABCD的面积为( )A.98B.49C.20D.102.已知a+b+c=1,a2+b2−c2+2c=3,则ab的值为( )A.1B.−1C.2D.−23.计算(x−y)2n−1⋅(y−x)4的值是( )A.(x−y)2n+3B.(y−x)2n+3C.−(x−y)2n+3D.−(y−x)2n−54.如图,有三种规格的卡片共9张,其中边长为a的正方形卡片4张,边长为b的正方形卡片1张,长,宽分别为a,b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A.2a+b B.4a+b C.a+2b D.a+3b5.若x+y=2,x2+y2=4,则x2018+y2018的值是( )A.4B.20182C.22018D.420186.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A.0.25×10−5B.0.25×10−6C.2.5×10−5D.2.5×10−67.若(x+2)是多项式4x2+5x+m的一个因式,则m等于( )A.−6B.6C.−9D.98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿黑线剪开,如图(1)所示,然后拼成一个梯形,如图(2)所示.根据这两个图形的面积关系,表明下列式子成立的是 ( )A . a 2−b 2=(a +b )(a −b )B . (a +b )2=a 2+2ab +b 2C . (a −b )2=a 2−2ab +b 2D . a 2−b 2=(a −b )29. 已知 a 1,a 2,⋯,a 2020 都是正数,如果 M =(a 1+a 2+⋯+a 2019)(a 2+a 3+⋯+a 2020),N =(a 1+a 2+⋯+a 2020)(a 2+a 3+⋯+a 2019),那么 M ,N 的大小关系是 ( ) A . M >N B . M =N C . M <N D .不确定10. 在数学中,为了书写简便,18 世纪数学家欧拉就引进了求和符号“∑”.如记 ∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(x +k )n k=3=(x +3)+(x +4)⋯+(x +n );已知 ∑[(x +k )(x −k +1)]nk=2=3x 2+3x −m ,则 m 的值是 ( ) A . −40B . 20C . −24D . −20二、填空题(共7题)11. 若代数式 x 2+4x +3 可以表示为 (x −1)2+a (x −1)+b 的形式,则 a +b = .12. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a +b )n (n =1,2,3,4,⋯) 的展开式的系数规律(按 n 的次数由大到小的顺序):11(a +b )1=a +b 121(a +b )2=a 2+2ab +b 21331(a +b )3=a 3+3a 2b +3ab 2+b 314641(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4⋯⋯请依据上述规律,写出 (x −2)2018 展开式中含 x 2017 项的系数是 .13. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的有关规律.例如,在三角形中第三行的三个数 1,2,1,恰好对应着 (a +b )2=a 2+2ab +b 2 展开式中各项的系数;第五行的五个数 1,4,6,4,1,恰好对应着 (a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 展开式中各项的系数,等等.请观察图中数字排列的规律,求出代数式 x +y +z 的值为 .111121133114641151010511615x y z114.已知x2−2x−3是多项式3x3+ax2+bx−3的因式(a,b为整数),则a=,b=.15.如果9m+3×27m+1÷34m+7=81,那么m=.16.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图所示)就是一例.这个三角形的构造法则为:两腰上的数都是1,其余每个数均为其上方左右两数之和.事实上,这个三角形给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.根据上面的规律,(a+b)4的展开式中各项系数最大的数为;式子75+5×74×(−5)+10×73×(−5)2+10×72×(−5)3+5×7×(−5)4+(−5)5的值为.17.计算:(a+b−c)(a−b−c)=.三、解答题(共8题)18.解答下列问题.(1) 计算(m+3n)(m−3n)−(m−3n)2;(2) 已知(a+b)2=7,(a−b)2=4,求ab的值.19.计算下列各题:(1) 你能求出(a−1)(a99+a98+a97+⋯+a2+a+1)的值吗?遇到这样的问题,我们可以先从简单的情况入手,分别计算下列各式的值.(a−1)(a+1)=;(a−1)(a2+a+1)=;(a−1)(a3+a2+a+1)=;⋯由此我们可以得到:(a−1)(a99+a98+a97+⋯+a+1)=.(2) 利用(1)的结论,完成下面的计算:2199+2198+2197+⋯+22+2+1.20.已知(x3)n+2=(x n−1)4,其中n为正整数,求(n3)4的值.21.计算:(1) 3a⋅(−a2)+a4÷a;(2) (2x−y)(x+3y);(3) (a−b+1)(a−b−1);22.乘法公式的探究及应用.(1) 如图①,可以求出阴影部分的面积是;(写成两数平方差的形式)(2) 如图②,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是,长是,面积是;(写成多项式乘法的形式)(3) 比较左、右两图的阴影部分面积,可以得到乘法公式:(用式子表达);(4) 运用你所得到的公式,计算:(2m+n−p)⋅(2m−n+p).23.已知(x2+nx+3)(x2−3x+m)的展开式中不含x2和x3项,求m,n的值.24.解答下列问题.(1) 如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是;(2) 根据下面四个算式:52−32=(5+3)×(5−3)=8×2;112−52=(11+5)×(11−5)=16×6=8×12;152−32=(15+3)×(15−3)=18×12=8×27;192−72=(19+7)×(19−7)=26×12=8×39.请你再写出两个(不同于上面算式)具有上述规律的算式;(3) 用文字写出反映(2)中算式的规律,并证明这个规律的正确性.25.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1) 观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(2) 若要拼出一个面积为(a+2b)(a+b)的矩形,则需要A号卡片1张,B号卡片2张,C号卡片张.(3) 根据(1)题中的等量关系,解决问题:已知:a+b=5,a2+b2=13,求ab的值.答案一、选择题(共10题) 1. 【答案】D【解析】设 AB =DC =x ,AD =BC =y , 由题意得:{2×4x +2×4y =56,2x 2+2y 2=58,化简得:{x +y =7, ⋯⋯①x 2+y 2=29. ⋯⋯②将 ① 两边平方再减去 ② 得:2xy =20. ∴xy =10.【知识点】完全平方公式2. 【答案】B【解析】 ∵a 2+b 2−c 2+2c =3, ∴a 2+b 2−2=c 2−2c +1=(1−c )2, ∵a +b +c =1, ∴a +b =1−c , ∴(a +b )2=(1−c )2, ∴(a +b )2=a 2+b 2−2,展开得 a 2+b 2+2ab =a 2+b 2−2, ∴ab =−1.【知识点】完全平方公式3. 【答案】A【知识点】同底数幂的乘法4. 【答案】A【解析】大正方形的面积 S =4a 2+b 2+4ab =(2a +b )2. ∴ 大正方形的边长为 2a +b . 选A .【知识点】完全平方公式5. 【答案】C【解析】 ∵x +y =2,∴(x +y )2=x 2+2xy +y 2=4, ∵x 2+y 2=4, ∴4+2xy =4, ∴xy =0, ∴x =0 或 y =0,当 x =0 时,y =2,∴x 2018+y 2018=02018+22018=22018, 当 y =0 时,x =2,∴x 2018+y 2018=22018+02018=22018. 【知识点】完全平方公式6. 【答案】D【知识点】负指数科学记数法7. 【答案】A【解析】 ∵4x 2+5x +m =(x +2)(4x +n )=4x 2+(8+n )x +2n , ∴8+n =5,m =2n , ∴n =−3,m =−6. 【知识点】多项式乘多项式8. 【答案】A【知识点】平方差公式9. 【答案】A【解析】设 S =a 2+a 3⋯+a 2019, M −N=(a 1+a 2+⋯+a 2019)(a 2+a 3+⋯+a 2020)−(a 1+a 2+⋯+a 2020)(a 2+a 3⋯+a 2019)=(a 1+S )(S +a 2020)−(a 1+a 2020+S )S=a 1S +a 1a 2020+a 2020S +S 2−a 1S −a 2020S −S 2=a 1a 2020.∵a 1,a 2,⋯,a 2020 都是正数, ∴a 1a 2020>0, ∴M >N .【知识点】多项式乘多项式10. 【答案】B【解析】根据题意可知: ∵ 二次项的系数为 3, ∴n =4,∴∑[(x +k )(x −k +1)]n k=2=(x +2)(x −1)+(x +3)(x −2)+(x +4)(x −3)=3x 2+3x −m,整理得:x 2+x −2+x 2+x −6+x 2+x −12=3x 2+3x −20=3x 2+3x −m , 则 m =20. 故选:B .【知识点】多项式乘多项式二、填空题(共7题) 11. 【答案】 14【解析】 (x −1)2+a (x −1)+b =x 2−2x +1+ax −a +b=x 2+(a −2)x +1+b −a =x 2+4x +3,∴{a −2=4,1+b −a =3, 解得 {a =6,b =8,∴a +b =14. 【知识点】完全平方公式12. 【答案】 −4036【解析】 (x −2)2018 展开式中含 x 2017 项的系数, 由 (x −2)2018=x 2018−2018⋅x 2017⋅2+⋯−22018, 可知,展开式中第二项为 −2018⋅x 2017⋅2=−4036x 2017, ∴(x −2)2018 展开式中含 x 2017 项的系数是 −4036. 【知识点】完全平方公式13. 【答案】 41【解析】根据图表的特征,可得 x =10+10=20,y =10+5=15,z =5+1=6,故 x +y +z =20+15+6=41. 【知识点】完全平方公式14. 【答案】 −5 ; −11【解析】设另一个因式是:mx +n ,则 (x 2−2x −3)(mx +n )=mx 3+(n −2m )x 2+(−3m −2n )x −3n =3x 3+ax 2+bx −3.则:{m =3,n −2m =a,−3m −2n =b,−3n =−3,解得:{m =3,n =1,a =−5,b =−11.故答案为:−5,−11. 【知识点】多项式乘多项式15. 【答案】 2【知识点】单项式除以单项式16. 【答案】6;32【解析】根据题意得:(a+b)4的展开式中各项系数分别为1,4,6,4,1,即最大的数为6;75+5×74×(−5)+10×73×(−5)2+10×72×(−5)3+5×7×(−5)4+(−5)5 =(7−5)5=32.【知识点】完全平方公式17. 【答案】a2−2ac+c2−b2【知识点】平方差公式三、解答题(共8题)18. 【答案】(1) 原式=m 2−9n2−m2+6mn−9n2=6mn−18n2.(2) ∵(a+b)2=7,(a−b)2=4,∴ab=14×[(a+b)2−(a−b)2]=14×3=34.【知识点】完全平方公式、平方差公式19. 【答案】(1) a2−1;a3−1;a4−1;a100−1(2)2199+2198+2197+⋯+22+2+1=(2−1)×(2199+2198+2197+⋯+22+2+1) =2200−1.【解析】(1) (a−1)(a+1)=a2−1,(a−1)(a2+a+1)=a3+a2+a−a2−a−1=a3−1,(a−1)(a3+a2+a+1)=a4+a3+a2+a−a3−a2−a−1=a4−1,(a−1)(a99+a98+⋯+a+1)=a100−1.【知识点】简单的代数式求值、合并同类项、多项式乘多项式20. 【答案】1012.【知识点】幂的乘方21. 【答案】(1) 原式=−3a3+a3=−2a3.(2) 原式=2x2+6xy−xy−3y2=2x2+5xy−3y2.(3) 原式=(a−b)2−1=a2−2ab+b2−1.【知识点】多项式乘多项式、平方差公式、完全平方公式、单项式乘单项式、同底数幂的除法22. 【答案】(1) a2−b2(2) a−b;a+b;(a+b)(a−b)(3) (a+b)(a−b)=a2−b(4) 原式=[2m+(n−p)]⋅[2m−(n−p)] =(2m)2−(n−p)2=4m2−(n2−np−np+p2)=4m2−n2+2np−p2.【知识点】平方差公式23. 【答案】(x2+nx+3)(x2−3x+m)=x4−3x3+mx2+nx3−3nx2+mnx+3x2−9x+3m =x4+(−3+n)x3+(m−3n+3)x2+(mn−9)x+3m.∵展开式中不含x2和x3项,∴−3+n=0,m−3n+3=0,解得m=6,n=3,∴m,n的值分别为6,3.【知识点】多项式乘多项式24. 【答案】(1) a2−b2=(a+b)(a−b)(2) 72−52=8×3;92−32=8×9等.(3) 规律:任意两个奇数的平方差是8的倍数.设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2−(2n+1)2=4(m−n)(m+n+1).当m,n同是奇数或偶数时,m−n一定为偶数,∴4(m−n)一定是8的倍数;当m,n一偶一奇时,则m+n+1一定为偶数,∴4(m+n+1)一定是8的倍数.∴任意两个奇数的平方差是8的倍数.【知识点】平方差公式25. 【答案】(1) (a+b)2=a2+b2+2ab(2) 3(3) ∵(a+b)2=a2+b2+2ab,a+b=5,a2+b2=13,∴25=13+2ab,∴ab=6.答:ab的值为6.【解析】(1) 大正方形的面积可以表示为:(a+b)2,或表示为:a2+b2+2ab;因此有(a+b)2=a2+b2+2ab.(2) ∵(a+2b)(a+b)=a2+3ab+2b2,∴需要A号卡片1张,B号卡片2张,C号卡片3张.【知识点】完全平方公式、多项式乘多项式、公式的变形11。
人教版七年级数学上册有理数乘除法试题(含答案)

人教版七年级数学上册有理数乘除法试题(含答案)1.有理数乘除法的基本法则如下:1) 乘法交换律:对于有理数a和b,有ab=ba。
2) 乘法结合律:对于有理数a、b和c,有(ab)c=a(bc)。
3) 乘法分配律:对于有理数a、b和c,有a(b+c)=ab+ac。
4) 有理数的乘法法则:对于有理数a和b,同号得正,异号得负,并将绝对值相乘。
5) 倒数的定义:乘积为1的两个数互为倒数。
6) 除以一个数等于乘以这个数的倒数。
2.单选题:1) 答案为C,因为只有①和①互为倒数。
2) 答案为B,因为1的倒数的绝对值是1.3) 答案为C,因为只有选项C是正确的。
4) 答案为B,因为-2×3=-6.5) 答案为C,因为0.24×(1/15)×(-14/61)=-0.016.6) 答案为B,因为a1=-1/2,a2=-3/2,a3=-1/2,a4=-5/2,依此类推,可得a2019=-1008.7) 答案为B,因为12-7×(-4)+8÷(-2)=36.8) 答案为D,因为-2①3=-2+(-2)×3=-8.9) 答案为A,因为取-5和4相乘得到最大积20.10) 答案为丙同学,因为他的计算是正确的。
二、填空题1.272.2019a - 2018b3.(1) 2.(2) -27.(3) -4.(4) -3a4.-145.-1三、解答题16.1) -0.31252) -0.517.1) 6802) -1/5618.1) 正确。
因为(-115)/(-1236) = 115/1236,(-)×(-12) = 12,所以(-115)/(-1236) = 12/1236 = 1/103,1/103 = 0.xxxxxxxx,所以(-)÷(-) = 0.xxxxxxxx。
2) (-1113)/(-) = 1113/,(-)×(-12) = 12,所以(-1113)/(-) = 12/ = 3/6092,3/6092 = 0.xxxxxxxx,所以(-1113)/(-) = 0.xxxxxxxx。
乘法公式精选题(含答案)

5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。
初一数学乘法公式含答案

乘法公式知识点睛模块一 平方差公式22()()a b a b a b +-=-平方差公式的特点:即两数和与它们差的积等于这两数的平方差。
①左边是一个二项式相乘,这两项中有一项完全相同,另一项互为相反数。
②右边是乘方中两项的平方差(相同项的平方减去相反项的平方)。
注意:①公式中的a 和b 可以是具体的数也可以是单项式或多项式。
如:2(2)(2)4a a a +-=-;22(3)(3=9x y x y x y +--); 22()()()a b c a b c a b c +++-=+-;3535610()()a b a b a b +-=-。
②不能直接运用平方差公式的,要善于转化变形,也可能运用公式。
如:97103(1003)(1003)9991⨯=-+=;22()()()()a b b a a b a b a b +-+=+-=-。
模块二 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+,即两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍。
完全平方公式的特点:左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中的每一项的平方,另一项是左边二项式中二项乘积的2倍,可简单概括为口诀:“首平方,尾平方,首尾之积2倍加减在中央”。
注意:①公式中的a 和b 可以是单项式,也可以是多项式。
②一些本来不是二项式的式子的平方也可以利用完全平方公式来计算,22()[()]a b c a b c ++=++22()2()a b a b c c =+++⨯+222222a ab b ac bc c =+++++222222a b c ab ac bc =+++++例题精讲【例1】 计算:⑴2(3)(3)(9)x x x +-+;⑵(23)(45)(23)(54)a b a b a b b a ++--;【答案】⑴2224(3)(3)(9)(9)(9)81x x x x x x +-+=-+=-;⑵原式2222(49)(2516)a b b a =--22442242241006422514464244225a b a b a b a a b b =--+=-+-;【例2】 计算:()()()()2432212121211+++++【答案】原式()()()()()243264212121212112=-+++++=【例3】 2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【答案】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.【例4】 计算:2481632(31)(31)(31)(31)(31)(31)++++++【答案】设2481632(31)(31)(31)(31)(31)(31)S =++++++,两边乘以(31)-,得2481632(31)(31)(31)(31)(31)(31)(31)(31)S -=-++++++22481632(31)(31)(31)(31)(31)(31)=-+++++=6431=-∴641(31)2S =-,即6423231(31)(31)(31)2-+++=.【例5】 求123517.....(21)n -⨯⨯⨯⨯+的值.【答案】观察原式的每一项,均可写成121(1,2,...2)n n n -+=的形式,而121=-,故原式1122223517.....(21)(21)(21)(21)....(21)21n n n --=⨯⨯⨯⨯+=-⨯+⨯+⨯⨯+=-.【例6】 ⑴求()()()()()()()24816326421212121212121A =+++++++的个位数字:⑵2222222212345699100-+-+-++-的值是( )A.5050.B.5050-.C.10100.D.10100-.【答案】⑴()()()()26421212121A =-+++()()6464128212121=-+=-2n 各位数字的循环4个一周期,周期为:2、4、8、6,128432÷=,所以1282个位为6,故12821-个位为5.(另解:5的奇数倍个位一定是5)⑵原式(12)(12)(34)(34)(56)(56)(99100)(99100)=+-++-++-+++-1(3711199)=-⋅++++31991502+⎛⎫=-⨯⨯ ⎪⎝⎭5050=-,故选B.【例7】 已知200520072006a ⨯=,200620082007b ⨯=,200720092008c ⨯=,比较三者大小.【答案】20052007(20061)(20061)12006200620062006a ⨯-+===-,200620081200720072007b ⨯==-,200720091200820082008c ⨯==-,易得a b c <<.【例8】 若243(2)25x a x --+是完全平方式,求a 的值.【答案】222243(2)25(2)3(2)5(25)x a x x a x x --+=--+=±即2243(2)2542025x a x x x --+=-+或2243(2)2542025x a x x x --+=++故3(2)20a --=或3(2)20a --=-,解得:143a =-或263a =【例9】 已知2216m km ++是完全平方式,则______k =【答案】∵2216m km ++是完全平方式,∴28km m =±,解得4k =±【例10】已知正方形的面积是222520x xy ny ++(0x >,0y >),则正方形的边长是_________(用含x 、y的代数式表示)【答案】设正方形的边长为a .则2222520a x xy ny =++∴222520x xy ny ++是a 的完全平方形式,∴22222520(5)25)x xy ny x x ++=+⋅+∴20=,即4n =∴正方形的面积是:222225204(52)a x xy y x y =++=+,∴52a x y =+故正方形边长为:52x y +【例11】推导2()a b c ++、2()a b c d +++的公式,比较2()a b +、2()a b c ++、2()a b c d +++的公式,并探索规律.【答案】222()2a b a b ab +=++2222()222a b c a b c ab bc ca ++=+++++222()()2()()()a b c d a b a b c d c d +++=++++++2222222222a b c d ab ac ad bc bd cd =+++++++++ 观察上述三个公式,可发现如下规律:一、项数:设字母(或者说元)的个数为n ,则公式的展开式的项数为(1)12..2n n n ++++=; 二、次数:每个公式的展开式中的每一项的次数均为2;三、系数:每个公式中每个字母的二次项的系数为1,其余均为2.根据上述规律,可写出任意个字母的完全平方公式.【例12】利用例题得出的规律推导2()a b c d ++-、2()a b c d +--、2()a b c d e ++++的展开式.【答案】令22222()222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++中d d =-,也就是以d -替换d 可得,22222()222222a b c d a b c d ab ac ad bc bd cd ++-=+++++-+--同理可知,22222()222222a b c d a b c d ab ac ad bc bd cd +--=++++----+根据例题中归纳出来的规律,2()a b c d e ++++的展开式共有15项,所有字母的二次项的系数均为1,其他项的系数均为2,每一项的次数均为2,由上述特点可知 222222()2222222222a b c d e a b c d e ab ac ad ae bc bd be cd ce de ++++=++++++++++++++【例13】2()________________________________________a b c d e +-+-=.【答案】222222222222222a b c d e ab ac ad ae bc bd be cd ce de +++++-+--+--+-.【例14】已知三个数a b c ,,满足方程222214229221b ac c ab a bc ⎧+=⎪+=⎨⎪+=⎩,求a b c ++.【答案】三式相加,得22222264a b c ab bc ca +++++=,所以()264a b c ++=,8a b c ++=±.【例15】计算:⑴222()()()________________________________________a b b c a c +++++=⑵222()()()________________________________________a b b c a c -+-+-=⑶222()()()________________________________________a b b c a c ++-+-=【答案】⑴222222222a b c ab bc ac +++++;⑵222222222a b c ab bc ac ++---;⑶222222222a b c ab bc ac +++--;【例16】已知12020a x =+,11920b x =+,12120c x =+,求代数式222a b c ab bc ca ++---的值. 【答案】由12020a x =+,11920b x =+,12120c x =+,可知,1a b -=,2b c -=-,1c a -= 故22222211()()()6322a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-=⨯=⎣⎦ 【例17】已知35a b b c -=-=,2221a b c ++=,求ab bc ca ++的值. 【答案】由35a b b c -=-=可知,65a c -=, 故2222221()()()()2ab bc ca a b c a b b c c a ⎡⎤++=++--+-+-⎣⎦1993621()225252525=-⨯++=-. 【例18】如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A.等边三角形B.直角三角形C.钝角三角形D.形状不确定【答案】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A . 【例19】x ,y ,z 为有理数且2222()()()(2)y z z x x y y z x -+-+-=+-22(2)(2)x z y x y z ++-++-, 求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值. 【答案】先将已知等式222()()()y z x y z x -+-+-222(2)(2)(2)y z x x z y x y z =+-++-++-的等号两边分别展开,得:左边222222222x y z xy yz xz =++---;右边222666666x y z xy yz xz =++---对等号两边合并同类项,得2222222220x y z xy yz xz ++---=即222()()()0.x y x z y z -+-+-=因为x ,y ,z 均为实数所以x y z ==,故222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++222222(1)(1)(1)1(1)(1)(1)x y z x y z +++==+++.【例20】如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A.1a +B.21a +C.221a a ++D.1a +【答案】∵自然数a 是一个完全平方数,∴a ∴比a 的算术平方根大11,∴这个平方数为:21)1a =+.故选D .【例21】设x 为正整数,若1x +是完全平方数,则它前面的一个完全平方数是( )A.xB.1x -C.1x -D.2x -【答案】设21y x =+,则y =22(1)21112y y y x x -=-+=+-=-,故选D .【例22】⑴先化简后求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3x =, 1.5y =.⑵计算:(22)(22)x y y x -+-+.【答案】⑴222222()()()2(2)2(22)2x y x y x y x x xy y x y x x xy x x y⎡⎤-++-÷=-++-÷=-÷=-⎣⎦ 又3x =, 1.5y =,故原式3 1.5 1.5x y =-=-=.法2:2()()()2()22 1.5x y x y x y x x y x x x y ⎡⎤-++-÷=-⋅÷=-=⎣⎦⑵原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-【例23】已知2()2210x y x y +--+=,则999()x y +=___________.【答案】解法一:由已知条件可知,2221222(1)0x y xy y x x y +++--=+-=,故1x y +=,999()1x y +=.解法二:由已知条件可知,22()2()1(1)0x y x y x y +-++=+-=,故1x y +=,999()1x y +=.课后作业【习题1】记248(12)(12)(12)(12)(12)n x =++++⋅⋅⋅+,且12812x +=,则______n =【答案】248(12)(12)(12)(12)(12)n x =++++⋅⋅⋅+248(21)(12)(12)(12)(12)(12)n =-++++⋅⋅⋅+2(21)(21)21n n n =-+=-∴2212112n n x +=-+=∴2128n =,∴64n =【习题2】224488()()()()()________x y x y x y x y x y -++++=【答案】1616x y -【习题3】计算:23221111(1)(1)(1)(1)23410---- 【答案】原式11111111(1)(1)(1)(1)(1)(1)(1)(1)2233441010=-+-+-+-+ 13243491111111223345101021020=⨯⨯⨯⨯⨯⨯=⨯= 【习题4】若式子294x M ++是完全平方式,请你写出所有满足条件的单项式M .【答案】若把M 视为2ab 这一项,22294(3)2x M x M ++=++,此时M 可以为12x ±;若把29x 视为2ab 这一项,2229942224x M M x ++=++⨯⨯,此时M 可以为48116x ; 若把4视为2ab 这一项,22294(3)233x M x M x x ++=++⨯⨯,此时M 可以为249x , M 还可以是29x -、4-.【习题5】计算:⑴2222111111(__________________)9164643a b c ab bc ca +++++=++; ⑵22224164816(____________4)m n p mn np pm p ++--+=-+; 【答案】⑴13a ,14b ,12c ;⑵2m ,n . 【习题6】计算:⑴22111111()()()()333939a a a a a a -+-+++ ⑵22(3)(93)b a a ab b +-+⑶222(2)4(2)a b a a b b ⎡⎤+--⎣⎦ ⑷4224(2)(2)(816)a b a b a a b b +--+【答案】⑴22336111111111()()()()()()3339392727729a a a a a a a a a -+-+++=-+=-; ⑵22223333(3)(93)(3)(39)(3)27b a a ab b b a b ab a b a b a +-+=+-+=+=+;⑶2222222(2)4(2)(2)(42)a b a a b b a b a ab b ⎡⎤+--=+-+⎣⎦3326336(8)6416a b a a b b =+=++; ⑷4224223642246(2)(2)(816)(4)124864a b a b a a b b a b a a b a b b +--+=-=-+-.【习题7】已知10x y +=,33100x y +=,求22x y +的值.【答案】由333()3()x y x y xy x y +=+-+,得1000310100xy -⨯=,即30xy =.所以222()240x y x y xy +=+-=.。
初中竞赛数学18.乘法公式(含答案)

18.乘法公式知识纵横乘法公式(multiplication formula)是在多项式乘法的基础上,•将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、•又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解【例1】•(•1)•已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.(江苏省竞赛题)(2)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=________.(2000年重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000-a)·(1998-a)为整体,•由平方和想到完全平方公式(formula for the square the sum)及其变形.解:(1)设两个连续奇数为x,y,且x>y,则2220002x yx y⎧-=±⎨-=⎩得x+y=1000或x+y=-1000,解得(x,y)=(499,501)或(-501,-499).(2)4002 提示:(2000-a)2+(1998-a)2=[(2000-a)-(1998-a)]2+2(2000-a)·(1998-a)【例2】若x是不为0的有理数,已知M=(x2+2x+1)(x2-2x+1),N=(x2+x+1)(x2-x+1),则M与N 的大小关系是( ). (“祖冲之”杯邀请赛试题)A.M>NB.M<NC.M=ND.无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.解:选B【例3】计算:(1)6(7+1)(72+1)(74+1)(78+1)+1; (天津市竞赛题)(2)1.345×0.345×2.69-1.3453-1.345×0.3452. (江苏省竞赛试题)思路点拨 若按部就班计算,显然较繁,能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,•可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.解:(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1=716(2)设1.345=x,则原式=x(x-1)·2x-x 3-x(x-1)2=-x=-1.345【例4】(1)已知x 、y 满足x 2+y 2+54=2x+y,求代数式xy x y+的值. (“希望杯”邀请赛试题) (2)整数x,y 满足不等式x 2+y 2+1≤2x+2y,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是 2a b + (a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. (2003年河北省竞赛题)思路点拨 对于(1)、(2)两个未知数一个等式或不等式,•须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.解:(1)提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13(2)原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•所以可能有的结果是1010x y -=⎧⎨-=⎩或1110x y -=±⎧⎨-=⎩或1011x y -=⎧⎨-=±⎩,解得11x y =⎧⎨=⎩或21x y =⎧⎨=⎩ 或 12x y =⎧⎨=⎩或10x y =⎧⎨=⎩,x+y=1或2或3 (3)甲、乙、丙三个商场两次提价后,价格分别为(1+a)(1+b)=1+a+b+ab; (1+2a b +)·(1+2a b +)=1+(a+b)+( 2a b +)2; (1+b)(1+a)=1+a+b+ab; 因(2a b +)2-ab>0,所以(2a b +)2>ab, 故乙商场两次提价后,价格最高.【例5】已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从a 2+b 2=c 2的变形入手;a 2=c 2-b 2,运用质数、奇偶数性质证明.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a 应为奇质数,c+b 与c-b 同奇同偶,b 与c 必为一奇一偶.(2)c+b=a 2,c-b=1,两式相减,得2b=a 2-1,于是2(a+b+1)=2a+2b+2=2a+a 2-1+2=(a+1)2,为一完全平方数.学力训练一、 基础夯实1.观察下列各式:(x-1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1;(x -1)(x 3+x 2+x+1)=x 4-1.根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______.(2001年武汉市中考题)2.已知a 2+b 2+4a -2b+5=0,则a b a b+-=_____. (2001年杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655=_______;(2)19492-19502+19512-19522+……+19972-19982+19992=_________;(3) 2221999199819991997199919992+-=___________. 4.如图是用四张全等的矩形纸片拼成的图形,•请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式________.(2003年太原市中考题) 5.已知a+1a =5,则=4221a a a++=_____. (2003年菏泽市中考题)6.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( ).A.-15B.-2C.-6D.6 (2003年扬州市中考题)7.乘积(1-212)(1-213)……(1-211999)(1-212000)等于( ). A. 19992000 B. 20012000 C. 19994000 D. 20014000(2002年重庆市竞赛题)8.若x -y=2,x 2+y 2=4,则x 2002+y 2002的值是( ).A.4B.2002C.2D.49.若x 2-13x+1=0,则x 4+41x的个位数字是( ). A.1 B.3 C.5 D.710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.a 2-b 2=(a+b)(a -b)B.(a+b)2=a 2+2ab+b 2C.(a -b)2=a 2-2ab+bD.(a+2b)(a -b)=a 2+ab -2b 2 (2002年陕西省中考题)11.(1)设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值?如果是定值,•求出它的值;否则请说明理由.(2)已知x 2-2x=2,将下式先化简,再求值:(x -1)2+(x+3)(x-3)+(x-3)(x-1).(2003年上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写了一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000·2001·2002·2003+1的结果(用一个最简式子表示).(2001年黄冈市竞赛题)二、能力拓展14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,•任意一个个位数为5的自然数可写在10n+5(n为自然数),即求(10n+5)2的值,试分析n=1,n=2,n=3,……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+•25;•……752=•5625•可成写__________;852=7225可写成__________.(2)从第(1)题的结果,归纳,猜想得(10n+5)2=________.(3)根据上面的归纳猜想,请算出19952=________. (福建省三明市中考题)15.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.(2001天津市选拨赛试题)16.(1)若x+y=10,x3+y3=100,则x2+y2=________. (2)若a-b=3,则a3-b3-9ab=________.17.1,2,3,•……,•98•共98•个自然数中,•能够表示成两整数的平方差的个数是________.(全国初中数学联赛试题)18.已知a-b=4,ab+c2+4=0,则a+b=( ).A.4B.0C.2D.-219.方程x2-y2=1991,共有( )组整数解.A.6B.7C.8D.920.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤yB.x≥yC.x<yD.x>y (2003年太原市竞赛题)21.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-•ab-•bc-c a的值为( ).A.0B.1C.2D.3 (2002年全国初中数学竞赛题)22.设a+b=1,a2+b2=2,求a7+b7的值. (西安市竞赛题)23.已知a满足等式a2-a-1=0,求代数式a8+7a-4的值. (2003年河北省竞赛题)24.若x+y=a+b,且x2+y2=a2+b2,求证:x1997+y1997=a1997+b1997. (北京市竞赛题)三、综合创新25.有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1•顺次表示第一号选手胜与负的场数;用x2,y2顺次表示第二号选手胜与负的场数,……;用x10,y10•顺次表示十号选手胜与负的场数.求证:x12+x22+……+x102=y12+y22+……+y102.26.(1)请观察:25=521225=352112225=335211122225=33352……写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?答案1.x n+1-12.-133.(1)4;(2)3897326;(3)124.(a+b)2-4ab=(a-b)25.246.C7.D 提示;逆用平方差公式,分解相约8.C 提示:由已知条件得xy=09.D 提示:x≠0,由条件得x+1x=13,x4+41x=(x2+21x)2-2=[(x+1x)2-2]2-2 10.A11.(1)定值为0 提示:由条件得x-3y=-2z,原式=(x-3y)·(x+3y)+4z2+4xz=-2z·(x+3y)+4z2+4xz=4z2+2xz-6yz=4z2+2z(x-3y)=0(2)原式=3x2-6x-5=3(x2-2x)-5=1.12.提示:设这个自然数为x,由题意得224544x m x n ⎧-=⎪⎨+=⎪⎩②-①得n2-m2=89 即(n+m)(n-m)=89×1从而891n mn m+=⎧⎨-=⎩,解得4544nm=⎧⎨=⎩(m,n都为自然数) 故 x=45-44=1981.13.(1)对于自然数n,有n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,证明略.(2)由(1)得原式=(20002+3×2000+1)2=4006001214.(1)100×7×(7+1)+25;100×8×(8+1)+25.(2)(10n+5)2=10n(n+1)+25(3)19952=(10×199+5)2=10×199×(199+1)+25=398002515.216.(1)40 提示:x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy];(2)27.17.73 提示:x=n2-m2=(n+m)(n-m)(1≤m<n≤98,m,n为整数),因n+m与n-m•的奇偶性相同,故x是奇数或是4的倍数.18.B提示:把a=b+4代入ab+c2+4=0得(b+2)2+c2=019.C 提示:(x+y)(x-y)=1×1991=11×181=(-1)×(-1991)=(-11)×(-181)20.B提示:x-y=(a+2)2+(b-4)2≥021.D 提示:原式=12[(a-b)2+(b-c)2+(a-c)2]22. 718 提示:由a+b=1,a 2+b 2=2,得ab=-12, 利用a n+1+b n+1=(a n +b n )(a+b)-ab(a n-1+b n-1)•可分别求得 a 3+b 3=52,a 4+b 4=72,a 5+b 5=194 ,a 6+b 6=264. 23.48 提示:由a 2-a-1=0,得a -a -1=1,进而a 2+a -2=3,a 4+a -4=7, 所以a 8+7a -4=a 4(a 4+a -4)+7a -4-•1=7a -4+7a -4-1=7(a 4+a -4)-1=48.24.提示:设2222x y a b x y a b+=+⎧⎨+=+⎩, 则由①2-②得2xy=2ab ③ ②-③,得(x-y )2=(a -b)2,即│x-y │=│a-b │则x-y=a-b 或x-y=b-a,分别与x+y=a+b 联立解得x a y b =⎧⎨=⎩或x b y a =⎧⎨=⎩25.提示:由题意知:x i +y i =9(i=1,2,…,10)且x 1+x 2+…+x 10=y 1+y 2+…+y 10 因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=026.(1)提示:经观察,发现规律: (1)111n - 个 2225n 个=((1)3335n - 个)2 ,实际上, ((1)3335n - 个)2=(3332n + 个)2=(13×9992n + 个)2 =[13(10n -1)+2]2=(1053n +)2=2109n +1109n ++259 =21019n -+11019n +-+2529+= 2111n 个+ (1)111n + 个+3 = (1)111n - 个 2225n 个(2)一般地,设m=a 2+b 2,n=c 2+d 2,则mn=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a2c2+b2d2+2abcd+b2c2-•2abcd+a2d2=(ac+bd)2+(bc-ad)2或(a c-bd)2+(bc+ad)2.。
苏科版数学七年级下册《9.4乘法公式》说课稿3

苏科版数学七年级下册《9.4 乘法公式》说课稿3一. 教材分析乘法公式是数学中的一种基本公式,广泛应用于各个领域。
苏科版数学七年级下册《9.4 乘法公式》这一节主要介绍了平方差公式和完全平方公式。
平方差公式可以帮助我们简化计算,快速求出两个数的平方差;而完全平方公式则可以帮助我们求出一个数的平方,或者两个数的乘积的平方。
这两个公式在解决实际问题中具有重要的作用。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方等基础知识,对于公式有一定的认识。
但乘法公式较为抽象,需要学生在理解的基础上进行记忆。
同时,学生需要掌握如何将实际问题转化为乘法公式的形式,从而解决问题。
三. 说教学目标1.知识与技能目标:学生能够掌握平方差公式和完全平方公式,并能够灵活运用这两个公式解决实际问题。
2.过程与方法目标:通过小组合作、讨论等方式,培养学生主动探究、合作学习的意识,提高学生的数学思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,使学生能够积极主动地参与到数学学习中。
四. 说教学重难点1.重点:平方差公式和完全平方公式的记忆与运用。
2.难点:如何将实际问题转化为乘法公式的形式,以及如何在复杂问题中灵活运用乘法公式。
五. 说教学方法与手段1.采用启发式教学,引导学生主动探究、发现规律,培养学生的数学思维能力。
2.利用多媒体课件,生动形象地展示乘法公式的推导过程,帮助学生理解记忆。
3.小组合作、讨论,鼓励学生发表自己的观点,培养学生的合作意识。
4.创设实际问题情境,引导学生运用乘法公式解决问题,提高学生的应用能力。
六. 说教学过程1.导入:通过复习有理数的乘法、乘方等基础知识,引出本节课的主题——乘法公式。
2.讲解:讲解平方差公式和完全平方公式的推导过程,让学生理解并记忆这两个公式。
3.练习:布置一些简单的练习题,让学生运用平方差公式和完全平方公式进行计算,巩固所学知识。
4.应用:创设一些实际问题情境,让学生运用乘法公式解决问题,培养学生的应用能力。
新人教版七年级数学上册1.5.1《乘方》教学设计1

新人教版七年级数学上册1.5.1《乘方》教学设计1一. 教材分析新人教版七年级数学上册1.5.1《乘方》是学生在掌握了有理数的乘法运算之后,进一步引导学生探索有理数乘方的运算方法。
通过学习乘方,学生能够理解乘方的概念,掌握乘方的运算规则,并能够运用乘方解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,掌握了有理数的乘法运算。
但是,对于乘方的概念和运算规则,学生可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。
三. 教学目标1.理解乘方的概念,掌握乘方的运算规则。
2.能够运用乘方解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.乘方的概念的理解。
2.乘方运算规则的掌握。
五. 教学方法1.讲授法:通过讲解乘方的概念和运算规则,引导学生理解和掌握。
2.案例分析法:通过具体的例子,让学生动手操作,加深对乘方运算的理解。
3.问题解决法:设计一些实际问题,让学生运用乘方进行解决,培养学生的应用能力。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示乘方的概念和运算规则。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用乘法来解决。
例如,计算100的平方根,学生可能会想到10的平方等于100,从而引出乘方的概念。
2.呈现(15分钟)讲解乘方的概念,乘方表示的是一个数自乘的次数。
例如,2的3次方表示2自乘3次,即2×2×2=8。
同时,展示乘方的运算规则,例如,a的m次方乘以a的n次方等于a的m+n次方。
3.操练(15分钟)让学生动手计算一些乘方的例子,例如,计算2的3次方、3的4次方等。
同时,让学生观察和总结乘方的运算规则。
4.巩固(10分钟)让学生做一些练习题,巩固对乘方的理解和掌握。
可以设置一些选择题和填空题,让学生判断和填充。
5.拓展(10分钟)讲解乘方在实际问题中的应用,例如,科学计算中的幂次方运算,物理中的能量公式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯()17771855-,德国数学家、天文学家和物理学家,有“数学王子”之称,高斯的成就遍及数学的各个领域,在数论、非欧几何、重变函数论、椭圆函数论等方面均有开创性贡献,他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法19.乘法公式解读课标多项式的形式是多种多样的,两个有一定关联的特殊多项式相乘,结果常常简洁而优美. 乘法公式是多项式相乘得出的既有特殊性又有实用性的具体结论,学习乘法公式应注意: 1.理解公式,掌握公式的结构特征;2.了解公式的变形与发展;3.灵活运用公式,既能正用、又能逆用,而且还能适当变形或重新组合,综合运用公式; 4.把握公式的几何意义,领悟数形结合的思想.问题解决例1如果正整数x ,y 满足方程2264x y -=,则这样的正整数对(),x y 的个数是______.试一试()()22a b a b a b -=+-,a b +以a b -的奇偶性相同,这个十分简单的结论是解本例的基础.例2已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-则a b c ++的值等于( ) A .9 B .3 C .4 D .5 试一试 由条件等式联想到完全平方式,解题的切入点是整体考虑.例3计算(1)()()()()()2481621212121211++++++ (2)2222004200312004200220042004++ (3)3345.113.945.113.931.2-+⨯ 试一试对于(1),通过对待求式恰当变形,使之符合平方差公式的结构特征;对于(2),用字母表示数,将数值计算转化为式的计算.例4老师在黑板上写出三个算式225382-=⨯,229784-=⨯,22153827-=⨯,王华接着又写了两个具有同样规律的算式:22115812-=⨯,22157822-=⨯……(1)请你再写出两具有上述规律的版式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.试一试 由特殊到一般,用字母表示算式反映的规律并证明.例5(1)已知222246140x y z x y z ++-+-+=,求x y z ++的值.(2)222651=+,225372=+,26531378⨯=,221378373=+任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?分析 对于(1),由平方和联想到完全平方公式及其逆用,利用配方求出x ,y ,z ,的值:对于(2),从试验入手,然后给出一般情形的证明.解(1)由条件得()()()2221230x y z -+++-=,1x =,2y =-,3z =,原式2=.(2)一般地,设22m a b =+,22n c d =+,则()()2222mn a b c d =++ 22222222a c b d b c a d =+++2222222222a c b d abcd b c abcd a d =+++-+()()22ac bd bc ad =++- 或()()22ac bd bc ad -++智慧数例6整数问题常是饶有兴趣又发人思考的,若对整数作一些特殊的规定,就会得到一些特殊定义下的新数,并由此产生令人思考的问题,我们规定:若一个自然数能表示成两个非零自然数的平方差,则把这个自然数称为“智慧数”,如221653=-,则16称为智慧数. 请判断:在自然数列中,从数1起,第2000个智慧是哪个数?分析与解 要确定第2000个智慧数,应先找到智慧数的特征及分布规律.因为()22211k k k +=+-,显然,每个大于4,并且是4的倍数的数也是智慧数.由此可知,被4除2的偶数都不是智慧数.所以,自然数列中最小的智慧数是3,第2个智慧数是5,从5起,依次是5,7,8;9,11,12;13,15,16;17,19,20;…即按2个奇数,一个4的倍数,三个一组地依次排列下去.根据这个结论,我们容易知道:因为2000136661=+⋅+,所以第1999个智慧数是466642668⋅+=,故第2000个智慧数是2669.数学冲浪知识技能广场1.若2220a ab b ++=,则代数式()()()422a a b a b a b +-+-的值为.2.已知()28m n -=,()22m n +=,则22m n +=______.3.已知()22210x y x y +--+=,则()999x y +=______.4.已知222450a b a b ++-+=,则2243a b +-的值为_______.5.已知以a 、b 、x 、y 满足3ax by +=,5ay bx -=,则()()2222a b x y ++的值为______. 6.如图,从边长为a 的正方形内去掉一个边长为b 的小正方形,然后将剩余部分剪拼成一个长方形,上述操作所能验证的等式是( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()2a ab a a b +=+ 7.已知12020a x =+,11920b x =+,12120c x =+,则代数式222a b c ab bc ac ++---的值是( ) A .4 B .3 C .2 D .18.已知1x y +=,222x y +=,那么44x y +的值是( )A .4B .3C .72D .529.若a 、b 为有理数,且2222440a ab b a -+++=,则22a b ab +=( )A .8-B .16-C .8D .1610.在2004,2005,2006,2007这四个数中,不能表示为两个整数平万的数是( )A .2004B .2005C .2006D .200711.计算(1)()()()()2486717171711+++++ (2)224690123461234512347-⨯ (3)2222005200420052003200520052+- 12. 一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.思维方法天地13.已知()()200720052006a a --=,那么()()2220072005a a -+-=_____. 14.已知4a b -=,240ab c ++=,则a b +=______.15.杨辉三角是一个由数字排列成昀三角形数表,一般形式如图所示,其中每一横行都表示()n a b +(此处0n =,1,2,3,4,5,6)的展开式中的系数,杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它“肩”上的两个数之和.11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 1()01a b += ()1a b a b +=+ ()2222a b a ab b +=++()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++()6654223245651520156a b a a b a b a b a b ab b +=++++++ …… 上图的构成规律你看懂了吗?请你直接写出()7a b +=______.杨辉三角还有另一个特征(1)从第二行到第五行,每一行数字组成的数(如第三行为121)都是上一行的数与______积. (2)由此你可写出511=______.(3)由第_____行可写出811=______.16.如果2312a b c ++=,且222a b c ab bc ca ++=++,则23a b c ++的值是( )A .12B .14C .16D .1817.如果1x y +=,223x y +=,那么33x y +的值为( )A .2B .3C .4D .518.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种19.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如22420=-,221242=-,222064=-,因此4,12,20这三个数都是神秘数. (1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?20.已知0a b c ++=,2221a b c ++=(1)求ab bc ca ++的值;(2)求444a b c ++的值.应用探究乐园21.(1)证明:奇数的平方被8除余1.(2)请你进一步证明:2006不能表示为10个奇数的平方之和.22.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?19乘法公式答案问题解决例1 2对()()64x y x y +-=,0x y x y +>->且x y +与x y -的奇偶性相同,得 322x y x y +=⎧⎨-=⎩,164x y x y +=⎧⎨-=⎩, 则1715x y =⎧⎨=⎩,106x y =⎧⎨=⎩例2B 三等式相加得:()()()2223110a b c -+++-=3a =,1b =-,1c =例3(1)原式()()()()()()248162121212121211=-++++++ ()()()()()22481621212121211=-+++++32211=-+322=(2)设200420003a =,则原式()()222111a a a +=-++()2211221a a +==+ (3)原式()()2245.113.945.145.113.913.945.113.945.113.9-+⨯+-+⨯- ()245.113.9=+3481=例4(1)略(2)规律:任意两个奇数的平方差等于8的倍数(3)设m 、n 为整数,()()()()22212141m n m n m n +-+=-⨯++当m 、n 同奇或同偶,()4m n -是8的倍数,当m 、n 一奇一偶,()41m n ++是8的倍数. 数学冲浪1.0 2.53.1由条件得()210x y +-= 4.75.34原式22222222a x a y b x b y =+++()()22ax by ay bx =++- 6.A7.B 原式()()()22212a b b c c a ⎡⎤=-+-+-⎣⎦8.C9.B ()()2220a b a -++=10.C 形如4k 或21k +的数为“智慧数”11.(1)167;(2)24690;(3)1212.设这个自然为x ,由题意得224445n m x x +=⎧-=⎪⎨⎪⎩①②②-① 得2289n m -=,即()()891n m n m +-=⨯从而891n m n m +=⎧⎨-=⎩,解得4544n m =⎧⎨=⎩ 故245441981x =-=13.4016 原式()()()()220072005220072005a a a a =---+--⎡⎤⎣⎦ 14.0 把4a b =+代入240ab c ++=得()2220b c ++=,2b =-,0C =,242a =-+=,0a b += 15.略(1)11(2)161051(3)9;21435888116.B 由222a b c ab bc ac ++=++, 得()()()222102a b b c a c ⎡⎤-+-+-=⎣⎦,从而2a b c === 17.C ()()22222xy x y x y =+--=-1xy =-,()()33224x y x y x xy y +=+-+=18.C 提示:()()22009741x y x y +-==⨯有6个正因数,分别是1,7,41,49,287和2009, 因此对应的方程组为:1,7,41,49,2872009,1,7,41,49,287,20092009,287,49,41,7,1,2009,287,49,41,7,1x y x y +=-----⎧⎪-⎪⎨-=------⎪⎪⎩ 故(),x y 共有12组不同的表示19.(1)22284786=⨯=-,2220124503504502=⨯=- 故28和2012都是神秘数.(2)()()()22222421k k k +-=+,为4的倍数.(3)神秘数是4的倍数,但一定不是8的倍数,但()()2221218n n n +--=,故两个连续奇数的平方差不是神秘数20.(1)()2222222a b c a b c ab bc ac ++=+++++, 得12ab bc ca ++=- (2)由12ab bc ca ++=-, 得()214ab bc ca ++=,即()222222124a b b c c a abc a b c +++++= 得22222214a b b c c a ++= 又2221a b c ++=,平方得4442222222221a b c a b b c c a +++++=故()44422222211121242a b c a b b c c a ++=-++=-⨯= 21.(1)()()221411n n n +=++()8|41n n +,故奇数的平方被8除余1(2)假设2006可以表示为10个奇数的平方之和,也就是2222123102006x x x x ++++=….(其中1x ,2x ,……,10x 是奇数)等式左边被8除余2,而2006被8除余6,矛盾.故2006不能表示为10个奇数的平方之和.22.设228128002=1x m x n -⎧+=⎪⎨⎪⎩①②,m 、n 均为正整数,且m n >,①-② 得()()4240235m n n n +-==⨯⨯2m ,2n 都是8的倍数,则m 、n 能被4整除,m n +、m n -均能被4整除, 得604m n m n +=⎧⎨-=⎩或2012m n m n +=⎧⎨-=⎩ ∴3228m n =⎧⎨=⎩或164m n =⎧⎨=⎩ 28120904x m =-=,或28120136x m =-=。