课后思考题 补充

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-15 在电压负反馈单闭环有静差调速系统中,下列参数发生变化时系统是否有调节作用?为什么?

(1)放大器的放大系数Kp。

有。假设Kp 减小,则控制电压减小,则电力电子变换器输出减小,则电动机转

速下降;而电动机转速下降,则反馈电压减小,则偏差电压增大,则控制电压增大,则转速上升。

(2)供电电网电压Ud。

有。电网电压是系统的给定,反馈控制系统完全服从给定。

(3)电枢电阻Ra。

有。Ra的变化会影响到转速,会被测速装置检测出来,再通过反馈控制的作用,减小它对稳态转速的影响。

(4)电动机励磁电流If。

有。If的变化会影响到转速,会被测速装置检测出来,再通过反馈控制的作用,减小它对稳态转速的影响。

(5)测速反馈系数α。

当电压反馈系数α发生变化时,它不能得到反馈控制系统的抑制,反而会增大被调量的误差。反馈控制系统所能抑制的只是被反馈环包围的前向通道上的扰动。

习题3.8(2)

转速、电流双闭环直流调速系统电路原理图

3-6 在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数Kn行不行? 改变电力电子变换器的放大倍数Ks行不行? 改变转速反馈系数α行不行?若要改变电动机的堵转电流,应调节系统中的哪些参数?

答:①在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节的参数有:转速给定电压U*n,因为转速反馈系统的转速输出服从给定。

②改变转速调节器的放大倍数Kn,只是加快过渡过程,但转速调节器的放大倍数Kn 的影响在转速负反馈环内的前向通道上,它引起的转速变化,系统有调节和抑制能力。因此,

不能通过改变转速调节器的放大倍数Kn,来改变转速

③改变改变电力电子变换器的放大倍数Ks,只是加快过渡过程,但转电力电子变换器的放大倍数Ks的影响在转速负反馈环内的前向通道上,它引起的转速变化,系统有调节和抑制能力。因此,不能通过改变电力电子变换器的放大倍数Ks,来改变转速

④改变转速反馈系数α,能改变转速。转速反馈系数α的影响不在转速负反馈环内的前向通道上,它引起的转速变化,系统没有调节和抑制能力。因此,可以通过改变转速反馈系数α来改变转速,但在转速、电流双闭环调速系统中稳定运行最终的转速还是服从给定。

⑤若要改变电动机的堵转电流,应调节系统中的参数有:转速的给定U*n、转速调节器的放大倍数Kn、转速调节器的限幅值、转速反馈系数α等,因为它们都在电流环之外。

3-9 试从下述五个方面来比较转速、电流双闭环调速系统和带电流截止环节的转速单闭环调速系统:

①调速系统的静态性能;②动态限流性能;③启动的快速性

④抗负载扰动的性能;⑤抗电源波动的性能

答:

①调速系统的静态性能:

在转速、电流双闭环调速系统中,转速调节器采用PI调节器,整个系统成为一个无静差的系统。

带电流截止环节的转速单闭环调速系统中,转速调节器采用PI调节器,整个系统成为一个无静差的系统。

②动态限流性能:

在转速、电流双闭环调速系统中,电流调节器采用PI调节器,将电流限制在I dm内。

带电流截止环节的转速单闭环调速系统中,将电流限制在I dcr-I dbl内。

③启动的快速性:

在转速、电流双闭环调速系统在启动/制动过程中,转速调节器饱和,电流调节器在最大电流I dm附近进行PI调节,时间最短,提高了启动/制动的快速性。

带电流截止环节的转速单闭环调速系统中,在启动/制动过程中,当电流大于截止电流

I dcr时,电流调节器起作用,并不是在最大电流附近进行调节,启动/制动的快速性较差。

④抗负载扰动的性能:

在转速、电流双闭环调速系统中,负载扰动在转速外环中,负载扰动作用在电流环之后,因此只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。

带电流截止环节的转速单闭环调速系统中,负载扰动立即引起电流变化,当电流大于截止电流I dcr时,电流调节器起作用,可以进行调节。

⑤抗电源波动的性能

在转速、电流双闭环调速系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗电源波动的性能大有改善。

在电流截止环节的转速单闭环调速系统中,电网电压扰动的作用点离被调量较远,调节作用受到多个环节的延滞,因此单闭环调速系统抵抗电源电压扰动的性能要差一些。

4-1分析直流脉宽调速系统的不可逆和可逆电路的区别。

直流PWM调速系统的不可逆电路电流、转速不能够反向,直流PWM调速系统的可逆电路电流、转速能反向。

4-2 晶闸管电路的逆变状态在可逆系统中的主要用途是什么?

晶闸管电路处于逆变状态时,电动机处于反转制动状态,成为受重物拖动的发电机,将重物的位能转化成电能,通过晶闸管装置回馈给电网。

4-3 V-M系统需要快速回馈制动时,为什么必须采用可逆线路。

由于晶闸管的单向导电性,对于需要电流反向的直流电动机可逆系统,必须使用两组晶闸管整流装置反并联线路来实现可逆调速。快速回馈制动时,电流反向,所以需要采用可逆线路。

4-5晶闸管可逆系统中的环流产生的原因是什么?有哪些抑制的方法?

原因:两组晶闸管整流装置同时工作时,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流。

抑制的方法:

1. 消除直流平均环流可采用α=β配合控制,采用α≥β能更可靠地消除直流平均环流。

2. 抑制瞬时脉动环流可在环流回路中串入电抗器(叫做环流电抗器,或称均衡电抗器)。

4-6 试从电动机与电网的能量交换,机电能量转换关系及电动机工作状态和电动机电枢电流是否改变方向等方面对本组逆变和反组回馈制动列表作一比较。

①本组逆变:大部分能量通过本组回馈电网。电动机正向电流衰减阶段,VF组工作,VF

组是工作在整流状态。电动机电枢电流不改变方向。

②反组回馈制动:电动机在恒减速条件下回馈制动,把属于机械能的动能转换成电能,其中大部分通过VR逆变回馈电网。电动机恒值电流制动阶段,VR组工作。电动机电枢电流改变方向。

4-7 试分析配合控制的有环流可逆系统正向制动过程中各阶段的能量转换关系,以及正、反组晶闸管所处的状态。

在制动时,当发出信号改变控制角后,同时降低了u d0f和u d0r的幅值,一旦电机反电动势E>|u d0f|=|u d0r|,整流组电流将被截止,逆变组才真正投入逆变工作,使电机产生回馈制动,

将电能通过逆变组回馈电网。当逆变组工作时,另一组也是在等待着整流,可称作处于“待整流状态”。即正组晶闸管处于整流状态,反组晶闸管处于逆变状态。

4-8逻辑无环流系统从高速制动到低速时需经过几个象限?相应电动机与晶闸管状态如何?(P109)

逻辑无环流系统从高速制动到低速时需经过一,二两个象限。

相应电动机与晶闸管状态:

正组逆变状态:电动机正转减速,VF组晶闸管工作在逆变状态,电枢电流正向开始衰减至零;

它组整流状态:电动机减速,电枢电流过零并反向,反组VR由“待整流”进入整流。

它组逆变状态:VR组晶闸管工作在逆变状态,电枢电流反向至最大并保持恒定。

4-9从系统组成、功用、工作原理、特性等方面比较直流PWM可逆调速系统与晶闸管直流可逆调速系统的异同点。

相关文档
最新文档