纵联电流差动保护-

合集下载

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是电力系统中常用的保护方式之一,用于检测和保护多个平行的发电机或变压器组的差动故障。

其原理是根据比较线圈中电流的差值来判断系统是否存在差动故障,并发出保护信号。

在纵联差动保护中,一组比较线圈置于发电机或变压器的两端,同时连接到保护装置中。

当正常运行时,比较线圈中的电流应该是相等的,差动电流为零。

而当系统发生差动故障时,比较线圈中的电流会出现差异,差动电流会产生并流入保护装置。

保护装置对比较线圈中的电流进行比较,并设定一个差动电流阈值。

当差动电流超过阈值时,保护装置会判断为故障发生,并发出保护信号,触发断路器进行故障切除,保护系统的正常运行。

为了提高纵联差动保护的检测能力和可靠性,通常还会采用差动电流的变比校正,以消除发电机或变压器的变比误差对差动保护的干扰。

此外,还可以通过差动电流的零序和负序成分的检测来区分故障类型,提高保护的选择性。

总之,纵联差动保护通过比较发电机或变压器两端的电流差异来检测差动故障,从而保护电力系统的安全运行。

它是一种常用且有效的保护方式,广泛应用于电力系统中。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理纵联差动保护是一种常用的电力系统保护方式,它主要用于保护输电线路和变电站设备,对于电力系统的安全稳定运行起着至关重要的作用。

纵联差动保护原理是基于电流的比较和判断,通过对电流进行差动比较,实现对设备内部故障的快速检测和定位,从而保护电力系统的安全运行。

首先,我们来了解一下纵联差动保护的基本原理。

在电力系统中,设备的正常运行需要保证电流的平衡和稳定。

当设备发生故障时,会导致电流不平衡,纵联差动保护就是利用这一点来实现对故障的检测和保护。

纵联差动保护装置会对设备的电流进行采样,并将采样值进行差动比较,当检测到电流不平衡时,就会发出保护动作信号,从而实现对设备的保护。

其次,纵联差动保护的实现需要考虑一些关键因素。

首先是采样精度和速度,高精度和快速的采样对于准确判断电流是否不平衡至关重要。

其次是保护装置的可靠性和稳定性,保护装置需要能够在各种复杂的工作环境下可靠地工作,确保对设备故障的快速响应。

另外,对于纵联差动保护的设计和参数设置也需要进行合理的考虑,以确保其在实际运行中能够有效地保护设备。

最后,纵联差动保护在实际应用中需要与其他保护装置配合工作。

在电力系统中,除了纵联差动保护外,还需要考虑过流保护、接地保护等其他保护方式,这些保护装置需要协同工作,共同保护电力系统的安全稳定运行。

因此,在设计和应用纵联差动保护时,需要考虑其与其他保护装置的配合,并进行合理的设置和调试,以实现对电力系统全面的保护。

综上所述,纵联差动保护原理是基于电流的差动比较,通过对电流的差异进行判断,实现对设备故障的快速检测和保护。

在实际应用中,需要考虑采样精度、保护装置可靠性、与其他保护装置的配合等关键因素,以确保纵联差动保护能够有效地保护电力系统的安全稳定运行。

纵联电流差动保护意义

纵联电流差动保护意义

纵联电流差动保护意义纵联电流差动保护是电力系统中常用的一种保护方式,它的作用是检测电力系统中的电流差异,当电流差异超过设定值时,发出保护信号,切断故障电路,保护电力设备的安全运行。

本文将从纵联电流差动保护的原理、应用和发展趋势等方面进行探讨。

纵联电流差动保护是一种基于电流差异的保护方式,它通过比较电流差动值与设定值的大小来判断系统是否存在故障。

在电力系统中,各个相位的电流值应该是相等的,但当系统存在故障时,电流的分布会发生变化,导致电流差异产生。

纵联电流差动保护利用这种差异来进行故障检测和保护动作。

纵联电流差动保护的主要应用是在变电站和输电线路中。

在变电站中,电流差动保护可以用于保护变压器、发电机和母线等设备,及时切断故障电路,防止故障扩大。

在输电线路中,电流差动保护可以用于保护线路的安全运行,检测和切除故障电流,保证电力系统的可靠性。

纵联电流差动保护具有以下几个优点。

首先,它可以实现快速的动作,及时切断故障电路,减小故障损失。

其次,它具有灵敏度高、可靠性好的特点,可以检测到微弱的电流差异,有效保护电力设备的安全运行。

此外,纵联电流差动保护还具有自适应性,可以根据系统的变化自动调整保护参数,提高保护的准确性和稳定性。

纵联电流差动保护在近年来得到了广泛的应用和发展。

随着电力系统规模的不断扩大和电力设备的不断更新,对保护技术的要求也越来越高。

纵联电流差动保护作为一种成熟的保护方式,具有较高的可靠性和适应性,受到了广大电力工程师的青睐。

然而,纵联电流差动保护也存在一些问题和挑战。

首先,纵联电流差动保护对系统的接地方式有一定要求,需要保证系统的中性点接地可靠。

其次,纵联电流差动保护对系统的接线方式和电流互感器的布置也有一定的要求,需要满足一定的准确性和可操作性。

此外,纵联电流差动保护在应对复杂故障情况时可能出现误动作或漏动作的情况,需要进一步提高保护的灵敏度和准确性。

为了解决以上问题,纵联电流差动保护的发展方向主要有以下几个方面。

纵联保护第03讲

纵联保护第03讲
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
电流差动的主要问题: • 数据同步 • 传输数据量大,对通道要求高 • 易受互感器饱和的影响
纵联电流相位差动保护在以上几方面具有优势
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(一)基本原理
仅利用输电线路两端电流相位 在区外短路时相差180°区内短 路时相差为0°,也可以区分区 内、外短路,这就是纵联电流相 位差动保护原理。 此时只需要两端传递各自的相 位信息,即可构成电流相位比 较式纵联差动保护。
.
I m
Rg
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
4.5 纵联电流差动保护
4.5.4 影响纵联电流差动保护的因素及其措施 (三)影响因素之三:负荷电流
解决措施: 故障分量差动保护 差动电流:
制动电流:
M
.
Im
Im In Im In K Im In Im In Im In Im In
当该电流为正(或负)半波时,操作发信机 发出连续的高频电流, 而当该电流为负(或正)半波时,则不发高 频电流。
4.5 纵联电流差动保护
4.5.1 纵联电流相位差动
(二)原理框图
收信比较时间t3元件
时间t3 元件对收到的高频电流进行整流并延时t3 后有输出,并展宽t4 时间。 区外短路时高频电流间断的时间短,小于t3 延时, 收信机回路无输出,保护不能跳闸。 区内短路时高频电流间断时间长, t3 延时满足, 收信机回路有输出,保护跳闸。 实际上考虑短路前两侧电势的相角差、分布电 容的影响、高频信号的传输延迟等因素,在区外 短路时收到的高频信号不完全连续,会有一定的 间断时间,同样在区内短路时收到的高频电流间 断时间也会小于半周波,因而对t3 要进行整定。

纵联差动保护原理

纵联差动保护原理

纵联差动保护原理
纵联差动保护是一种电力系统中常用的保护方式,用于检测和保护主变压器、发电机、母线等重要设备的故障。

其基本原理是比较设备两侧电流的差值,当差值超过设定值时,即认为发生了故障,触发保护动作。

纵联差动保护的工作原理可以分为两个阶段:采样和比较。

首先,在设备两侧分别安装电流互感器,采样得到两侧电流的信号。

这些信号经过放大和调节后,送入差动继电器。

差动继电器进行差动计算,即计算两侧电流的差值。

如果差值低于设定值,差动继电器保持动作,表示系统正常。

但当差值超过设定值,差动继电器即判定为发生故障,触发保护装置的动作。

纵联差动保护的核心是差动继电器,其内部包含了一个差动计算单元和一个保护决策单元。

差动计算单元计算两侧电流的差值,并将结果送入保护决策单元。

保护决策单元根据计算结果,进行故障判定和相应的保护动作。

纵联差动保护的设计要考虑到系统的复杂性和可靠性。

在设计时,需要合理选择互感器的参数、差动计算的方式和设定值。

此外,还需要考虑到与其他保护装置的协调工作,使整个保护系统能够快速、准确地检测和定位故障,并采取适当的措施进行隔离和保护。

综上所述,纵联差动保护通过比较设备两侧电流的差值来检测和保护设备的故障。

它是一种重要的电力系统保护方式,能够有效地提升系统的可靠性和安全性。

纵联电流差动保护-

纵联电流差动保护-

2)有制动作用
M IM
k1
IN
N k2
动作线圈: Im In
IImm
Im KD
Im In
I r In
IInn
制动线圈: Im In
Ir
动作方程: Im In k Im In Iop0
动作区
I
op0
I res
动作特性:动作电流不是定值,而是随制动电流变化的特性。
二、纵联电流差动保护的工作原理
M IM
k1
IN N
M IM
IN N k2
区内故障 I IM IN IK1
区外故障 I IM IN 0
工作原理 ——故障特征分析
2. 两端电流相位特征
假设:电源电势相角相等 ,无分布电容、TA、TV
无误差。
M IM
k1
IN N
M IM
IN N k2
区内故障
区外故障
0
180
工作原理 ——电流差动保护
谢谢!
引起保护误动,特别是对于超高压长线路,电容电流的影
响更为严重 。
M
.
IM
.
.
I MN
IN
N d
.
I CM
1 2
XC
.
I CN
图4-29 长距离输电线路的等值电路
四、影响因素分析
2、影响因素之二:电流互感器误差和不平衡电流
差动保护原理是建立在对一次系统的分析基础上的,但保 护所采用的电流信号是互感器的二次输出信号。二次信号 和一次信号之间的传变误差,导致了不平衡电流的出现。
——相位差动保护 1.电流相位特征
内部故障
外部故障
IM
IN

纵联差动保护

纵联差动保护

6.2 纵联差动保护6.2.1 基本原理6.2.1.1 定义差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

6.2.1.2 基本原理变压器纵差保护是按照循环电流原理构成的变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA 1、TA 2之间的范围)外故障时,流入差动继电器中的电流为零,即2•'I -2•''I =0,保证纵差保护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差保护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

(a) 双绕组变压器正常运行时的电流分布 (b) 三绕组变压器内部故障时的电流分布(图6.4 变压器纵差保护原理接线图)在图6.4(a )双绕组变压器中,变压器两侧电流1•'I 、1•''I 同相位,所以电流互感器TA 1、TA 2二次的电流2•'I 、2•''I 同相位,则2•'I -2•''I =0的条件是2•'I =2•''I ,即 2•'I =2•''I =11i n I •'=21i n I •'' (6.1) 即 12i i n n =11••'''I I =T K (6.2) 式中,1i n 、2i n ——分别为TA 1、TA 2的变比; T K ——变压器的变比。

若上述条件满足,则当变压器正常运行或纵差保护区外故障(以下简称“区外故障”或“区内故障”)时,流入差动继电器的电流为K I •=2•'I -2•''I =0 (6.3)当区内故障时,2•''I 反向流出,则流入差动继电器的电流为K I •=2•'I +2•''I > 0 (6.4) 当K I > 0时,差动继电器动作,驱动变压器两侧断路器分闸,对变压器起到保护作用。

纵联差动保护

纵联差动保护

(2)带制动特性的差动继电器
Ir
带制动特性的差动继电器动作方程为: m I n K res I res I
I 其中:K res为制动系数,res 为制动电流。
I set
• • m


动作区
非动作区
I res
I res 取值又可分为两种形式:
I res | I
I res | I
• m
- I
r
I

m
I

K2故障(或正常运行)时: K1故障(内部短路)时:

Im In

Ir 0
I m , I n 接近同相 I r 0
具有很大量值
因此利用差动电流的幅值大小可以区分区外和区内短路。 考虑实际在正常运行或外部故障时,由于两端TA不可能完全相同,以及两端 TA饱和情况不一致等因数,流入KD的电流通常不为零(不平衡电流),因而在设 计差动继电器的动作判据时需考虑其影响。
2.电流纵差保护的动作方程及特性
(1)不带制动特性的差动继电器
不带制动特性的差动继电器动作方程为: m I n I set I

Ir
动作区
I set
I set 的整定有两个方面 : 1)躲过外部短路时的最大不平衡电流 2)躲过最大负荷电流 取以上两者的最大值作为整定值。
非动作区
I res
n

|
n| | I|来自(3)差动继电器典型动作方程及特性

I

m
I
n
K res I
I op 0
m
I
n
I
m
I
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
.
Im
.
I m
.
Il
Rg
.
N
In
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
.
17
谢谢!
.
18
N d2
图1 输电线路纵联电流差动保护示意图
.
3
一、纵联电流差动保护概述
纵联电流保护仅反映线路内部故障,不反映 正常运行和外部故障。
理论上,具有输电线路内部短路时动作的绝 对选择性。
可以实现无时限跳闸(常用作主保护)。
按照动作原理分为:电流差动保护和电流相
位差动保护。
.
4
二、纵联电流差动保护的工作原理 ——故障特征分析
1. 两端电流相量特征(正方向:母
线-线路)
M IM
k1
IN N
M IM
IN N k2
区内故障
IIMINIK1
区外故障
IIMIN0
.
5
二、纵联电流差动保护的工作原理 ——故障特征分析
2. 两端电流相位特征
假设:电源电势相角相等 ,无分布电容、TA、TV
无误差。
M IM
k1
IN
M IM
IN N k2
差动保护原理是建立在对一次系统的分析基础上的,但保
护所采用的电流信号是互感器的二次输出信号。二次信号
和一次信号之间的传变误差,导致了不平衡电流的出现。
——解决措施
采用性能优良的互感器;
提高动作门槛;
采用制动特性。
.
16
四、影响因素分析
3、影响因素之三:负荷电流
重载线路发生高阻接地故障时,故障电流不大,穿越性 的负荷电流成为制动的主要因素。可能引起保护拒动。
➢时钟校正法
.
13
三、同步测量方法 2、基于全球定位系统同步时钟
M
GPS 接收机
IPPS
时钟同 步电路
RS232
串口信 息处理
N
同步时钟 控制单元
GPS 接收机
RS232
IPPS
串口信 息处理
时钟同 步电路
A/D 主处理器系统
远方 光纤 远方 通信 通信
主处理器系统 A/D
.
14
四、影响因素分析
I n
整定: 躲过外部短路最大不平衡电流; 躲过最大负荷电流。
.
8
2.保护特性
2)有制动作用
动作线圈: Im In 制动线圈: Im In
M IM
k1
I N
N k2
IImm
Im
KD
Im In
Ir I n
II nn
Ir
动作方程: ImInkImInIo0 p
动作区
I
I res
op0
动作特性:动作电流不是定值,而是随制动电流变化的特性。
输电线路纵联保护
纵联电流差动保护
.
1
主要内容
一、纵联电流差动保护概述 二、纵联电流差动保护的工作原理 (一)故障时电气量特征 (二)电流差动保护的基本原理 (三)相位差动保护的基本原理 三、同步测量方法 四、影响因素分析 五、致谢
.
2
一、纵联电流差动保护概述
M
.
IM
.
Im
d1
KD
.
Id
.
IN
.
In
区内故障
区外故障
0
180
.
6
二、纵联电流差动保护的工作原理 ——电流差动保护
1. 工作原理
基尔霍夫定律
M IM
k1
I N
N k2
KD
Im
I r
I n
正常、外部故障:IMIN 0
内部故障:IM. INIK
7
2.保护特性
1)无制动作用
Ir ImIn Iset
M IM Im
k1
KD Ir
I N
N k2
2、基本原理
I M
I N k
正常运行 或区外故障
1
i iM iN
连续信号
.
2
t
理 想 情 况
t
11
二、纵联电流差动保护的工作原理 ——电流差动保护
1、基本原理
I M
k
I N
区内故障
1
i iM iN
间断信号
.
2
t
理 想 情 况
t
12
三、同步测量方法 1、基于数据通道
➢采样时刻调整法
➢采样数据修正法
.
9
二、纵联电流差动保护的工作原理
——相位差动保护 1.电流相位特征
内部故障
外部故障
IM
IN
IM
IN
iM
iN
t
iM
t
t iN
t
IM IN 0

arg
IM

0
IN
IM
180
IN

arg
IM

180
IN
区内故障时,两侧电流同相位;
正常运行及区外故障时,两. 侧电流相位相反。
10
二、纵联电流差动保护的工作原理 ——相位差动保护
1、影响因素之一:分布电容电流
分布电容电流的存在,破坏了差动保护的基本原理。可能
引起保护误动,特别是对于超高压长线路,电容电流的影
响更为严重 。
M
.
IM
.
.
IMN
IN
N d
.
ICM
1 2 XC
.
ICN
图4-29 长距离输电线路的等值电路
.
15
四、影响因素分析
2、影响因素之二:电流互感器误差和不平衡电流
相关文档
最新文档