直线与平面平行的性质定理完整PPT课件

合集下载

2025届高中数学一轮复习课件《直线、平面平行的判定及性质》ppt

2025届高中数学一轮复习课件《直线、平面平行的判定及性质》ppt
本题的核心条件,特殊的位置关系,必有点 F 特殊的数量关系.
(1)求证:EF∥平面 ADO; (2)若∠POF=120°,求三棱锥 P-ABC 的体积.此条件暗示 △POF 的特殊性,即平面 POF⊥平面 ABC.
高考一轮总复习•数学
第18页
(1)证明:如图,连接 DE.设 AF=tAC,t∈[0,1],则B→F=B→A+A→F=(1-t)B→A+tB→C,A→O= -B→A+12B→C.由 BF⊥AO,AB⊥BC,
第25页
高考一轮总复习•数学
∵∠DAB=120°,AD=AB, ∴∠ADB=∠ABD=30°,∠ADC=∠CDB+∠ADB=60°+30°=90°, ∴AD⊥CD,∴MB∥AD. 又 MB⊄平面 PAD,AD⊂平面 PAD, ∴MB∥平面 PAD. ∵EM∩MB=M,EM,MB⊂平面 EMB, ∴平面 EMB∥平面 PAD,∵EB⊂平面 EMB,∴EB∥平面 PAD.
高考一轮总复习•数学
第28页
题型
面面平行的判定与性质
典例 2(2024·四川绵阳中学月考)如图,在三棱柱 ABC-A1B1C1 中,E,F,G,H 分别是 AB,AC,A1B1,A1C1 的中点.求证:
(1)B,C,H,G 四点共面; (2)平面 EFA1∥平面 BCHG. 思考判定定理,即需要两组平行线的关系.
高考一轮总复习•数学
第32页
对点练 2(2024·四川达州一诊)如图所示,设正方体 ABCD-A1B1C1D1 的棱长为 a,P 是 棱 AD 上一点,且 AP=a3,过 B1,D1,P 的平面交平面 ABCD 于 PQ,Q 在直线 CD 上,则 PQ=( )
A.2 3 2a B. 3 2a C. 2 2a D.2 3 3a

《直线与平面平行》课件

《直线与平面平行》课件

的稳定性和美观性。
02
建筑测量
在建筑测量中,直线与平面平行的概念对于确定建筑物是否垂直和水平
非常重要。测量师使用铅锤和水平仪等工具来确保建筑物的基础、柱子
和横梁等结构与地面平行。
03
建筑结构分析
在建筑结构分析中,直线与平面平行的概念对于评估结构的稳定性和安
全性至关重要。工程师使用这些概念来分析建筑物的支撑结构和受力情
电子设备制造
在电子设备制造中,直线与平面平行的概念对于确保电子设备的精确度和质量非常重要。制造商使用这些概念来控制 装配和焊接过程,以确保电子元件的放置和连接正确。
电子设备维修
在电子设备维修中,直线与平面平行的概念对于检查和调整电子元件的位置非常重要。维修人员使用这 些概念来检查设备的平行度和垂直度,以确保设备的正常运行和性能。
文字描述
如果一条直线与一个平面平行, 那么这条直线与此平面内的任何 直线都平行。
解释
这个定理说明了直线与平面平行 的条件,即直线必须与平面内的 所有直线都平行,才能判定该直 线与该平面平行。
直线与平面平行判定定理的数学公式
数学公式
若直线$l$与平面$alpha$平行,则对于任意直线$m$在平面$alpha$上,都有 $l parallel m$。
02
若直线$l$与平面$alpha$平行, 则对于任意点$P$在平面$alpha$ 上,有$l cap P = emptyset$。
直线与平面平行性质定理的图形解释
当直线与平面平行时,该直线与平面 内的所有直线都保持平行关系,没有 交点。
在图形中,可以标出一些具体的点来 解释该性质定理,例如选择平面上的 一些点并观察它们是否与直线有交点 。
可以通过作一条与已知直线平行的直 线来验证该性质定理,观察新作的直 线是否与平面内的其他直线平行且无 交点。

直线与平面平行判定定理课件

直线与平面平行判定定理课件

A
平面CC’D’D 答:1)平面 )平面A’B’C’D’, 平面 答:2)平面 )平面A’B’C’D’,平面 ,平面ADD’A’
答:3)平面 )平面ADD’A’
问问1 问问2 问问3
D' B'
M D N
C'
若 M, N分 分 , 分 为 D'A,D'B的 , 的 中 中 , 则 MN 与 平 平_____ 平 平?
如何判断直线与平面平行? 如何判断直线与平面平行?
• 思考1:请大家利用手中的模型, 思考1 请大家利用手中的模型, 看看有哪些直线与平面是平行的, 看看有哪些直线与平面是平行的, 理由又是什么? 理由又是什么?
如何判断直线与平面平行? 如何判断直线与平面平行?
• 思考2:观察门扇转动,或者翻动 思考2 观察门扇转动, 书的封面这一运动变化过程中, 书的封面这一运动变化过程中,有 没有某些直线与某些平面平行? 没有某些直线与某些平面平行?为 什么? 什么? • 观察演示,想想在转动过程中,橡 观察演示,想想在转动过程中, 皮筋所在的直线与底面是否平行? 皮筋所在的直线与底面是否平行? 如何摆就能使它们平行? 如何摆就能使它们平行?
• 例1、求证:空间四边形相邻两 、求证: 边中点的连线平行于经过另外 两边所在的平面。 两边所在的平面。
A E B C F D
例2:P是平行四边形ABCD所在平面外 是平行四边形ABCD所在平面外 ABCD 一点, PA的中点 求证:PC//平 的中点, 一点,Q是PA的中点,求证:PC//平 面BDQ.
如何判断直线与平面平行? 如何判断直线与平面平行?
a
• 思考4: 思考4 如果平面外 b α 的一条直线a 的一条直线a与 平面内的直线b 平面内的直线b 平行,那么a 平行,那么a平行于平面α吗?

直线和平面平行的判定定理ppt课件

直线和平面平行的判定定理ppt课件

判定定理二:向量
03
共线法
向量共线法原理
定义
若两向量方向相同或相反,则称这两 向量共线。
性质
应用
在直线与平面平行判定中,通过判断 直线的方向向量与平面上两不共线向 量的关系,确定直线与平面的位置关 系。
共线的向量可以表示为同一基向量的 倍数。
向量运算规则
加法运算
向量加法满足平行四边形 法则或三角形法则。
$l parallel alpha$。
实例二
若直线$l$的方向向量$vec{a}$ 与平面$alpha$的法向量
$vec{n}$满足$vec{a} cdot vec{n} = 0$,则$l parallel
alpha$。
讨论
通过实例分析,我们可以发现向 量共线法在直线与平面平行判定 中的重要作用。同时,需要注意 判定条件的充分性和必要性,以
及特殊情况的处理。
判定定理三:距离
04
相等法
距离相等法原理
直线与平面平行时,直线上任意一点 到平面的距离都相等。
利用这一性质,可以通过比较直线上 不同点到平面的距离是否相等来判断 直线与平面是否平行。
点到直线距离公式
点$P(x_0, y_0, z_0)$到平面 $Ax + By + Cz + D = 0$的距 离公式为
直线与平面的距离为零
当直线上的任意一点到平面的距离都为零时,直线与平面平行。可 以通过计算点到平面的距离公式来判断。
复杂问题简化策略
转化为基本问题
将复杂问题转化为判断直线与平面是否平行的基本问题,以便运 用上述方法进行求解。
利用已知条件
充分利用题目中给出$d = frac{|Ax_0 + By_0 + Cz_0 + D|}{sqrt{A^2 + B^2 + C^2}}$

直线与平面平行的判定定理(公开课)ppt课件

直线与平面平行的判定定理(公开课)ppt课件

(2)直线 a与平面 相交吗?
a
不可能相交
b
.
直线与平面平行判定定理
平面外一条直线与此平面内的一条直线平行,则该 直线与此平面平行.
a
b
a
b
a
/
/b
a / /
证明直线与平面平行,三个条件必须具备,才能得 到线面平行的结论.
直线与平面平行关系
空间问题
.
直线间平行关系 平面问题
典型例题
例1 求证:空间四边形相邻两边中点的连线
∴MN // DE
2
BC.
A
M
N
C
B
∴四边形DMNE为平行四边形.
∴EN//DM
∵DM 平面PDC,EN 平面PDC
∴EN//平面PDC
.
变式:如图,在正方体ABCD——
A1B1C1D1中,E、F分别是棱BC与C1D1的
中点。
求证:EDF1 //平F面BDD1B1. C1
A1
A1
B1
D1
F
C1
பைடு நூலகம்
M
B1
ND M
A
C E B
D A
.
C E B
反思-顿悟
1.要证明直线与平面平行可以运用线面平行的判定定
理;
线线平行
线面平行
2.能够运用定理的条件要满足三个条件: “一线面内、
a
一线面外、
b
a //
两线平行”
b // a
3.运用定理的关键找平行线;找平行线又经常会用到
三角形中位线、梯形的中位线、平行四边形、平行线 的判定定理,平行公理.(一般题中有中点再找中点,有 分点再找分点得平行关系.)

直线与平面平行的性质ppt课件

直线与平面平行的性质ppt课件

举例 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
例4. 设平面α、β、γ两两相交,且 a , b , c 若a∥b,求证:b∥c .
a
c
b
α
β
γ
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
证明:因为 b,所以 b 因 为 a // b 所 以 a // , 又因为 a,所以 a 又因为 c 所 以 a // c, 因 为 a // b 所 以 b // c
小结
1. 复习直线与平面的位置关系 2. 复习直线与平面平行的判定 3. 学习并掌握直线与平面平行的性质
b (√)
a
举例 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
例2.在四面体ABCD中,E、F分别是 AB、AC的中点,过直线EF作平面α,分别 交BD、CD于M、N,求证:EF∥MN.
A
E
F
BM
D
N C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
直线与平面平行的性质定理:
如果一条直线和一个平面平行,经 过这条直线的平面和这个平面相交,那 么这条直线和交线平行.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

第八章 第三节 直线、平面平行的判定与性质 课件(共58张PPT)

第八章 第三节 直线、平面平行的判定与性质 课件(共58张PPT)
第八章 立体几何初步
第三节 直线、平面平行的判定与性质
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.以立体几何的定义、公理和定理为
出发,借助长方体,通过直观感知, 考情分析: 直线与平面以及平面与
了解空间中线面平行的有关性质与 平面平行的判定和性质仍会是高考
所以 A1G 綊 EB,所以四边形 A1EBG 是平行四边形,
所以 A1E∥GB. 因为 A1E⊄平面 BCHG,GB⊂平面 BCHG, 所以 A1E∥平面 BCHG. 又因为 A1E∩EF=E,所以平面 EFA1∥平面 BCHG.
1.如图,平面 α∥平面 β,△PAB 所在的平面与 α,β分别交于 CD,AB,
平行命题的判断 (1)解决与平行相关命题的判断问题,以与平行相关的判定定理和性质定 理为依据,注意定理中相关条件的检验,必须进行严密的逻辑推理. (2)如果判断某个命题错误,则往往利用正方体或其他几何体作为模型构 造反例说明.
直线与平面平行的判定与性质 角度一 直线与平面平行的判定
如图所示,斜三棱柱 ABC-A1B1C1 中,点 D,D1 分别为 AC,A1C1 的中点.求证:
BC∥平面ADF
BC⊂平面BCPQ
⇒BC∥PQ.
平面BCPQ∩平面ADF=PQ
PQ∥BC
PQ⊄平面ABCD PQ∥平面 ABCD.
BC⊂平面ABCD
应用线面平行的性质定理的关键是确定交线的位置,有时 需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化 为线线平行.
1.(2020·深圳市统一测试)如图,在直四棱柱 ABCD-A1B1C1D1 中,底面 ABCD 是平行四边形,点 M,

直线与平面平行的判定定理(公开课)ppt课件

直线与平面平行的判定定理(公开课)ppt课件
若两向量的点积为零,则 它们垂直。
应用
通过计算直线方向向量与 平面法向量的点积,可以 判断直线与平面是否平行 。
判定定理三:法向量垂直
定义
若一直线与一平面平行, 则该直线的法向量与该平 面的法向量平行。
推论
若两向量平行,则它们的 分量成比例。
应用
通过比较直线法向量与平 面法向量的分量比例,可 以判断直线与平面是否平 行。
直线与平面平行的定义
阐述直线与平面平行的基本概念,为后续判定定理 的引入做铺垫。
判定定理的重要性
说明直线与平面平行判定定理在几何学中的地位和 作用,以及在实际应用中的价值。
教学目标
80%
知识与技能
掌握直线与平面平行的判定定理 及其证明方法,理解相关概念, 能够运用所学知识解决相关问题 。
100%
过程与方法
应用举例二:判断两平面是否平行
方法一
利用平行平面的性质,通过证明一个 平面内有两条相交直线分别与另一个 平面平行,从而判定两个平面平行。
方法二
利用向量法,通过计算两个平面的法 向量是否共线,从而判定两个平面是 否平行。
应用举例三:解决实际问题中的平行问题
1 2
实例一
在建筑设计中,利用直线与平面平行的性质,确 保建筑物的立面、地面等各部分保持平行,以达 到美观和稳定的效果。
定义
应用
若一直线与一平面平行,则该直线与 该平面内任意一条直线的斜率相等。
通过比较直线与平面内某一直线的斜 率,可以判断直线与平面是否平行。
推论
若两直线的斜率相等,则它们或者平 行或者重合。
判定定理二:方向向量平行
01
02
03
定义
若一直线与一平面平行, 则该直线的方向向量与该 平面的法向量垂直。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
14
(3)已知直线a、b,平面,下列说法: ①若a∥b, b, 则a∥ ②若a∥, b∥,则a∥b ③若a∥b, b∥, 则a∥ ④若a∥,b,则a∥b 其中说法正确的个数是( )
A0 B1 C2 D3
.
15
2、求证:如果两个相交平面分别经过两平行 直线中的一条,那么它们的交线和这条直线 平行a /源自 aa//
b
b
βa αb
.
7
应用
例1:教室内日光灯管所在的直线与地面平行,如何 在地面上作一条直线与灯管所在的直线平行?
.
8
应用
例2 如图所示的一块木料中,棱BC平行于面 A′C′.(1)要经过面A′C′ 内一点P和棱BC将 木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系?
思想 (线线)
.
12
练习题
1、选择题
(1)若直线a不平行于平面,则下列结论成 立的是( ) A 内的所有直线都与直线a异面 B 内不存在与a平行的直线 C 内的直线都与a相交 D 直线a 与平面有公共点
.
13
(2)已知直线a∥平面,P∈,那么过点P且 平行于直线a的直线( ) A 只有一条,不在平面内 B 有无数条,不一定在内, C 只有一条,且在平面内 D有无数条,一定在内
天书才成就功山少是=勤有艰百小分苦路奋不之的、勤一劳守学为的动灵径习纪+感正,、,确学老自百的海分来强方之无、法徒九自崖+十少伤九苦律谈的悲!作空汗话水舟!
27.05.2020
27.05.2020
1
.
1
复习旧知识 提出新问题
1.直线与平面平行的判定定理是什么?
2. 反之,如果直线与平面平行,又可以得到 什么结论呢?
.
2
知识探究(一):直线与平面平行的性质探究
问题1:如果直线a与平面α平行,那么直线a与平 面α内的直线有哪些位置关系?
a
α
问题2:若直线a与平面α平行,那么在平面α内与 直线a平行的直线有多少条?这些直线的位置关系 如何?
.
3
问题3:已知直线 a∥平面α,如何在平面α内 找出一条和直线 a 平行的直线?
.
16
.
4
探究3.1:如果直线a与平面α平行,那么经过直 线a的平面与平面α有几种位置关系?
a
a
α
.
5
探究3.2:如果直线a与平面α平行,过直线a的 平面与平面α相交于直线b,那么直线a、b的位 置关系如何?
β
a
α
.
6
知识探究(二):直线与平面平行的性质定理
定理:如果一条直线与一个平面平行,则过这条 直线的任一平面与此平面的交线与该直线平行.
D′
A′
P
D
A
.
C′ B′
C
B
9
应用
例3 已知平面外的两条平行直线中的一条平行 于这个平面,求证另一条也平行于这个平面.
a c
α
.
b
10
应用
练习:一条直线和两个相交平面平行,求证: 它和这两个相交平面的交线平行。
.
11
小结
一、
线面平行的判定
线线平行
线面平行的性质
线面平行
二、 空间
(线面)
转化 平面
相关文档
最新文档