变形监测等级划分

合集下载

变形监测方法和技术要求

变形监测方法和技术要求

变形监测方法和技术要求1、变形监测方法(1)常规大地测量方法常规的大地测量方法通常指的是利用常规的大地测量仪器测量方向、角度、边长、高差等技术来测定变形的方法。

包括布设成边角网、各种交会法、极坐标法以及几何水准测量法、三角高程测量法等。

常规的大地测量仪器有水准仪、全站仪等。

常规大地测量方法主要用于变形监测网的布设以及每个周期的观测。

(2)测量机器人随着自动化技术的运用和发展,测量机器人在变形监测中的应用也日益普遍。

以智能全自动化全站仪为代表的测量机器人,在变形监测中,能够通过多周期的观测,得到更准确的数据。

这对分析出相应监测点的变形,并判断建筑变形是否在安全范围内更具有可靠性。

测量机器人通过CCD影像传感器和其它传感器对现实测量世界中的“目标”进行识别,并完成照准、读数等操作,以完全代替人的手工操作。

测量机器人在工程建筑物的变形自动化监测方面,已渐渐成为首选的自动化测量技术设备,测量机器人具有高效、全自动、准确、实时性强、结构简单、操作简便等特点,特别适合于小区域的变形监测,可实现全自动无人值守的变形监测。

(3)RTK方法GNSS动态实时差分测量技术(RTK)应用于变形监测在测量的连续性、实时性、自动化及受外界干扰小等方面表现出了越来越多的优越性。

使用GNSS动态差分技术进行变形监测时,需要将一台接收机安放在变形体以外的稳固地点作为基准站,另外一台或多台GNSS接收机天线安放在变形点上作为流动站。

GNSS方法可以用于测定场地滑坡的三维变形、大坝和桥梁水平位移、地面沉降以及各种工程的动态变形(如风振、日照及其他动荷载作用下的变形)等。

(4)数字近景摄影测量方法数字近景摄影测量方法观测变形时,首先在变形体周围的稳定点上安置高精度数码相机,对变形体进行摄影,然后通过数字摄影测量处理获得变形信息。

与其他方法相比较,数字近景摄影测量方法具有以下显著特点:①信息量丰富,可以同时获得变形体上大批目标点的变形信息;②摄影影像完整记录了变形体各时期的状态,便于后续处理;③外业工作量小,效率高,劳动强度低;④可用于监测不同形式的变形,如缓慢、快速或动态的变形;⑤观测时不需要接触被监测物体。

变形监测采用哪个等级

变形监测采用哪个等级

变形监测采用哪个等级,主要按下列方法确定。

(1)以高层建筑阶段平均变形量为依据;(2)以某些固定值为依据;(3)以高层建筑最小变形值为依据;(4)以预估变形量或变形速度为依据;(5)以地基允许变形值为依据。

在实际监测中,通常根据高层建筑的地基允许变形值来推算,高层建筑的地基允许变形值一般是由设计单位给定的或者由相应的建筑规范规定的。

地基允许变形值包括沉降量、沉降差、倾斜和局部倾斜四种。

根据《建筑地基基础设计规范(GBJ7-89)》规定,常用的高层建筑地基允许变形值,可以求出相应的允许变形量,根据实际情况取其就得到应该采用的测量精度。

由此可进一步确定采用的观测手段、仪器设备等,也为监测网网形的设计和优化提供参考。

经过广大测量科技工作者和工程技术人员近30年的共同努力,在变形监测领域取得了丰硕的理论研究成果,并发挥了实用效益。

以我国为例:①利用地球物理大地测量反演论,于1993年准确地预测了1996年发生在丽江大地震。

②1985年6月12日长江三峡新滩大滑坡的成功预报,确保灾害损失减少到了最低限度。

它不仅使滑坡区内457户1371人在活泼前夕全部安全撤离,无一伤亡,而且使正在险区长江上下游航行的11艘客货轮船及时避险,免遭灾害。

为国家减少直接经济损失8700万元,被誉为我国滑坡预报研究史上的奇迹。

③隔河岩大坝外观变形GPS自动化监测系统在1998年长江流域抗洪峰中所发挥的巨大作用,确保了安全度汛,避免了荆江大堤灾难性分洪。

科学、准确、及时地分析和预报工程及工程建筑物的变形情况,对工程建筑物id施工和运营管理极为重要,这一工作术语变形监测的范畴。

由于变形监测涉及到测量、工程地质、水文、结构力学、地球物理、计算机科学等诸多学科的知识,因此,它是一项跨学科的研究,并正向着边缘科学发展。

也已经成为测量工作者和其他学科专家合作的研究领域。

神经网络的研究始于20世纪40年代。

半个多世纪以来,它经历了一条由兴起到衰退、又由衰退到兴盛的曲折发展过程,这一发展过程大致可以分为四个阶段: 1. 初始发展阶段: 1943年,心理学家W.S.McCulloch和数学家W.Pitts在研究生物神经元的基础上提出了一种简单的人工神经元模型,即后来所谓的“M-P模型”,虽然M-P模型过于简单,且只能完成一些简单的逻辑运算,但它的出现开创了神经网络研究的先河,并为以后的研究提供了依据;1949年心理学家D.O.Hebb发表了论著《行为自组织》提出了Hebb学习律;1957年,F.Rosenblatt提出了著名的感知器模型,这是一个真正的人工智能网络,它确立了从系统角度研究神经网络的基础;1960年,B.Widrow和M.E.Hoff提出了自适应线性单元网络,同时还提出了Widrow-Hoff学习算法,即后来的LMS算法。

沉降变形观测水准测量等级选择及精度评定

沉降变形观测水准测量等级选择及精度评定

的经验公式为:
其中: S 为视线长度,且 S≤10m。
计算 ≤㎜,取㎜作为特级精度指标。 根据错误!未找到引用源。竖向监测精度的要求,从错误!未找到引用源。的 测站高差中误差表选择应使用的水准测量等级如错误!未找到引用源。。 同理,根据《建筑变形测量规范》,按照上述思路,由建筑物变形观测的等 级也可以进行水准测量等级的选择,见错误!未找到引用源。。 有了这样的理论计算,可以根据竖向位移报警值选用水准测量的等级。避免
由错误!未找到引用源。、错误!未找到引用源。推算等级水准的测站高差中 误差为:
表 4 等级水准的测站高差中误差表 单位为毫米(mm)
测量等级
一等
二等
三等
四等
每千米最少
18
12
6
4
站数
测站高差 中误差 《建筑变形测量规范》(JGJ8-2007)条文说明中,有根据单程观测测站高差 中误差计算公式,以国家水准测量规范规定的一二三等水准测量每公里往返测高 差中数的偶然中误差为依据,其公式为:
其中: 单程观测测站高差中误差,单位㎜。
等级水准每千米往返高差中数的偶然中误差,单位㎜。
S 建筑变形测量规范规定的各级别水准视线长度,单位 m。
表 5 建筑变形一二三级沉降观测精度指标计算
等级
(mm)
S (m)
换算的 值 (mm)
取用值 (mm)
一级
30
二级
50
三级
75
特级精度的建筑变形沉降观测,以 DS05 水准仪单程观测每测站高差中误差
推测测站高差全中误差为
,虽然较按照测站数定
权计算的测站高差全中误差大,但也符合监测精度要求。 以监测精度㎜至㎜选择二等水准,但实际采用三等水准也达到了精度要求。

(完整word版)建筑变形测量的等级及其精度要求

(完整word版)建筑变形测量的等级及其精度要求

2.0.6 对一个实际工程,变形测量的精度等级应先根据各类建(构)筑物的变形允许值按本规程第3、4章的规定进行估算,然后按以下原则确定∶1当仅给定单一变形允许值时,应按所估算的观测点精度选择相应的精度等级:2当给定多个同类型变形允许值时,应分别估算观测点精度,并应根据其中最高精度选择相应的精度等级;3当估算出的观测点精度低于本规程表2.0.5中三级精度的要求时,宜采用三级精度;4对于未规定或难以规定变形允许值的观测项目,可根据设计、施工的原则要求,参考同类或类似项目的经验,对照表2.0.5的规定,选取适宜的精度等级。

2.0.7 变形测量的观测周期应符合下列要求:1对于单一层次布网,观测点与控制点应按变形观测周期进行观测;对于两个层次布网,观测点及联测的控制点应按变形观测周期进行观测,控制网部分可按复测周期进行观测。

2变形观测周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界因素影响确定。

当观测中发现变形异常时,应及时增加观测次数。

3控制网复测周期应根据测量目的和点位的稳定情况确定,一般宜每半年复测一次。

在建筑施工过程中应适当缩短观测时间间隔,点位稳定后可适当延长观测时间间隔。

当复测成果或检测成果出现异常,或测区受到如地震、洪水、爆破等外界因素影响时,应及时进行复测。

4变形测量的首次(即零周期)观测应适当增加观测量,以提高初始值的可靠性。

5不同周期观测时,宜采用相同的观测网形和观测方法,并使用相同类型的测量仪器。

对于特级和一级变形观测,还宜固定观测人员、选择最佳观测时段、在基本相同的环境和条件下观测。

2.0.8 建筑变形测量,除使用本规程规定的各种方法外,亦可采用能满足本规程规定精度要求的其他方法。

3 高程控制3.1 网点布设3.1.1 高程控制网的布设应符合下列要求:1对于建筑物较少的测区,宜将控制点连同观测点按单一层次布设;对于建筑物较多且分散的大测区,宜按两个层次布网,即由控制点组成控制网、观测点与所联测的控制点组成扩展网。

JGJ8-2016建筑变形测量规范

JGJ8-2016建筑变形测量规范

3. 1. 1 下列建筑在施工期间和使用期间应进行变形测量:1 地基基础设计等级为甲级的建筑。

2 软弱地基上的地基基础设计等级为乙级的建筑。

3 加层、扩建建筑或处理地基上的建筑。

4 受邻近施工影晌或受场地地下水等环境因素变化影晌的建筑。

5 采用新型基础或新型结构的建筑。

6 大型城市基础设施。

7 体型狭长且地基土变化明显的建筑。

3. 1. 2 建筑在施工期间的变形测量应符合下列规定:1 对各类建筑,应进行沉降观测,宜进行场地沉降观测、地基土分层沉降观测和斜坡位移观测。

2 对基坑工程,应进行基坑及其支护结构变形观测和周边环境变形观测;对一级基坑,应进行基坑回弹观测。

3 对高层和超高层建筑,应进行倾斜观测。

4 当建筑出现裂缝时,应进行裂缝观测。

5 建筑施工需要时,应进行其他类型的变形观测。

3. 1. 3 建筑在使用期间的变形测量应符合下列规定:1 对各类建筑,应进行沉降观测。

2 对高层、超高层建筑及高耸构筑物,应进行水平位移观测、倾斜观测。

.3 对超高层建筑,应进行挠度观测、日照变形观测、风振变形观测。

4 对市政桥梁、博览(展览)馆及体育场馆等大跨度建筑,6 应进行挠度观测、风振变形观测。

5 对隧道、涵洞等,应进行收敛变形观测。

6 当建筑出现裂缝时,应进行裂缝观测。

7 当建筑运营对周边环境产生影响时,应进行周边环境变形观测。

8 对超高层建筑、大跨度建筑、异型建筑以及地下公共设施、涵洞、桥隧等大型市政基础设施,宜进行结构健康监测。

9 建筑运营管理需要时,应进行其他类型的变形观测。

建筑变形测量过程中发生下列情况之一时,应立即实施安全预案,同时应提高观测频率或增加观测内容:1 变形量或变形速率出现异常变化。

2 变形量或变形速率达到或超出变形预警值。

3 开挖面或周边出现塌陷、滑坡。

4 建筑本身或其周边环境出现异常。

5 由于地震、暴雨、冻融等自然灾害引起的其他变形异常情况。

3.2.2 中选择适宜的观测精度等级。

建筑变形测量的级别

建筑变形测量的级别

建筑变形测量的级别是指根据测量的目的、方法和精度要求将建筑变形测量分为不同
的等级。

常见的建筑变形测量级别一般分为以下几个:
一级变形监测:一级变形监测的精度要求相对较高,适用于对建筑物结构整体变形、
地基沉降等进行较为精确的监测。

通常需要采用高精度的测量仪器和方法,如全站仪、测斜仪等。

二级变形监测:二级变形监测的精度要求相对较低,适用于对建筑物局部变形、土体
位移等进行较为简化的监测。

通常需要采用常规的测量仪器和方法,如水平仪、测距
仪等。

三级变形监测:三级变形监测的精度要求较低,适用于对建筑物整体变形、地基沉降
等进行初步的监测。

通常采用简化的测量仪器和方法,如水准仪、刷线仪等。

需要注意的是,建筑变形监测的级别是根据测量的目的和精度要求来划分的,并非严
格的标准化分类。

具体的测量级别可以根据实际情况和需求进行调整和确定。

在进行
建筑变形测量之前,应根据具体项目的要求制定详细的测量方案,确保测量结果的准
确性和可靠性。

基坑变形监测及变形规律的探讨

基坑变形监测及变形规律的探讨

基坑变形监测及变形规律的探讨摘要:深基坑工程在中国城市建设中占有重要地位,而深基坑工程中,进行有效的变形监测及变形机理与规律分析对于对工程有着重大影响。

为了提高建筑安全水平,需要做好建筑基坑的变形监测工作,并对基坑的变形规律进行分析,为建筑的安全施工提供有力保障。

基于此,本文对基坑变形监测技术概述以及基坑变形监测及变形规律的措施进行了分析。

关键词:基坑;变形监测;变形规律1 基坑变形监测技术概述1.1监测特点基坑变形是基坑在荷载以及其他因素的作用下出现形状、大小、位置等方面的变化。

变形监测的目的在于得出变形的具体情况,与其它工程检测项目不同,变形监测具有以下几个特点:(1)变形监测是工程安全监测的一部分,具体包括内部监测与外部监测两个部分。

(2)为了提高建筑安全性,需要非常高的监测精度。

(3)监测周期较短,需要反复多次监测来得出多期有效数据。

1.2变形监测等级划分及精度要求变形监测划分了不同的精度等级,精度等级主要是根据观测点水平位移点位中误差、垂直位移高程中误差以及变形观测点高差中误差来进行划分。

精度的高低与观测工作复杂性、时间以及费用直接相关,然而为了减少误差,变形监测通常不允许低精度的情况发生。

1.3监测方法基坑变形监测经过了十几年的技术发展与创新,在水平与垂直位移的监测上,衍生出多种监测技术,如小角度法、投点法、视准线法、GPS测量法等。

2基坑监测工作的意义基于基坑工程施工技术尚未普及,地下地质水文环境相对复杂且地域性差异明显,所以对基坑安全设计的参数难以精准确定。

放大参数势必造成资源的浪费,过度收紧参数又会导致危险的发生。

所以结合理论设计、既往施工经验、实时动态监测三方面工作,对基坑进行综合安全分析是当下基坑施工过程中安全控制的常用手段。

对于某些创纪录工程,并无相似案列得以借鉴,而环境的不确定性导致了理论数值置信度降低,所以动态监测数据更加受到重视。

首先,于工程本身,基坑监测能及时发现险情以便提前采取安全措施,预防危险的发生。

建筑变形测量规范解析

建筑变形测量规范解析
强 条
复合地基或软弱地基上的设计等级为乙级的建筑
需要积累经验或进行设计反分析
加层、扩建建筑
变形测量级别
沉降观测
位移观测
主要使用范围
观测点测站 高差中误差(mm)
观测点坐标中误差(mm)
特级
0.05
0.3
特高精度要求的特种精密工程的变形测量
一级
0.15
1.0
地基基础设计为甲级、重要的古建筑、特大型市政桥梁等
地方
水电费
地方
沉降观测
பைடு நூலகம்
沉降观测
建筑物场地沉降观测
1
地基土分层沉降观测
2
建筑沉降观测
3
3.1 建筑场地沉降观测
3.1.1 建筑场地沉降观测应分别测定,建筑相邻、影响范围之内的相邻地基沉降与建筑相邻、影响范围之外的场地地面沉降。
3.1.2 建筑场地沉降点位的选择
相邻地基沉降观测点可选在建筑纵横轴线或边线的延长线上,亦可选在通过建筑重心的轴线延长线上。点位可在建筑基础深度倍的距离范围内
建筑的四个角、核心筒四角、大转角处及沿外墙没10-20cm处或每隔2-3根柱基上。
5.2 建筑沉降观测点的布设
对于宽度大于等于15m或小于15m而地质复杂以及膨胀土地区的建筑,应在承重内隔墙中部设内墙点,并在室内地面中心及四周设地面点 框架结构建筑的每个或部分柱基上或沿纵横轴线上。 筏型基础、箱型基础底板或接近基础的结构部分的四个角及中部位置
添加标题
地基土分层沉降观测
地基土分层沉降观测
分层沉降观测精度可按分层沉降观测点相对于邻近工作基点或基准点的高程中误差不大于正负1.0mm的要求设计确定。
分层沉降观测点应在建筑地基中心附近2m*2m或各点间距不大于50cm处。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档