高一数学平面向量知识点及典型例题解析
第4讲 平面向量万能建系法5种常见题型(解析版) 高一数学讲义(新人教2019)必修二

第4讲平面向量万能建系法5种常见题型【考点分析】考点一:常见建立坐标系方法边长为a 的等边三角形正方形已知夹角的任意三角形矩形直角梯形平行四边形等腰梯形圆【题型目录】【题型目录】题型一:建坐标系求向量值题型二:三角形建坐标系求向量最值问题题型三:四边形建坐标系求向量最值问题题型四:多边形建坐标系求向量最值问题题型五:建坐标系设三角函数求向量最值问题【典型例题】题型一:建坐标系求向量值【例1】如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅= ()A .-15B .-13C .13D .14则()120A -,,(00)B ,,(08)C ,,(60)F -,,又3CE =,8CB =,12AB =,则2210CF CB BF =+=,即310CE FC =,即710FE FC =,则()77601010BE BF FE BF FC +==+=-+ ,()(776,81010EA EF FA CF FA =+=+=--+- 【例2】已知正方形ABCD 的边长为2,以CD 为边作正三角形CDE ,使得,A E 位于直线CD 的两侧,则AC AE →→⋅的值为()A .6-B .6-C .6+D .6+【答案】D 【分析】建立平面直角坐标系,利用向量的坐标运算求解.【详解】以A 为坐标原点,以,AB AD 为,x y 轴非负半轴,建立平面直角坐标系,如图,由正三角形CDE 及正方形ABCD ()()2,2,1,23C E +,所以()()2,21,23AC AE →→⋅=⋅+=故选:D【例3】如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼.其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则以下结论错误的是()A 0OE OG ++=B .OA OD ⋅=-C .4AG EH +=D .AO 在OH 方向上的投影向量为2OH - 【答案】C【分析】选择合适的位置建立平面直角坐标系,写出相应点的坐标,逐项验证即可.【详解】由题意,分别以,HD BF 所在直线为,x y 轴,建立平面直角坐标系,如图所示:在正八边形ABCDEFGH 中,由AOB BOC COD DOE ∠=∠=∠=∠360458GOH HOA =∠=∠== 过A 作AM HD OM AM⊥⇒=因为2OA =,所以OM AM ==所以(2,2),(0,2),(2,A B E ---【例4】《九章算术》中有一个“引葭赴岸”问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”其大意为现有水池1丈见方(即1CE =丈10=尺),芦苇生长在水池的中央,长出水面部分的长度为1尺.将芦苇向池岸牵引,牵引至恰巧与水岸齐接的位置(如图所示).试问水深、芦苇的长度各是多少?若将芦苇,AB AC 均视为线段,在芦苇移动的过程中,设其长度不变,则AC DE ⋅=().A .90平方尺B .92平方尺C .94平方尺D .98平方尺【答案】C 【分析】设AB x =(尺),利用勾股定理可构造方程求得AB ,以A 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算可求得结果.【详解】设AB x =(尺),则1AC x =+(尺),5AD = (尺),()22251x x ∴+=+,解得:12x =.以A 为坐标原点,建立如图所示的平面直角坐标系(单位:尺),则()0,0A ,()5,0D ,()5,12C ,()5,12E -,()5,12AC ∴= ,()10,12DE =- ,5014494AC DE ∴⋅=-+= (平方尺).故选:C.【例5】已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅= _________.【答案】(1).(2).1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =- ,因此,PD == ()021(1)1PB PD ⋅=⨯-+⨯-=- .【题型专练】1.已知矩形ABCD 中,4AB =uuu r ,2AD = ,3DM MC = ,BP PC = ,则AM AP ⋅= ()A .6B .10C .14D .38【答案】C 【分析】以B 为原点,,BA BC 分别为,x y 轴建立平面直角坐标系,由条件得出点,P M 的坐标,进而得出向量,AP AM uuu r uuur的坐标,从而得出向量的数量积.【详解】以B 为原点,,BA BC 分别为,x y 轴建立平面直角坐标系.则()0,4A ,()2,4,D ()2,0C 由BP PC = ,则()1,0P ,由3DM MC = ,则()2,1M 所以()1,4AP =-uuu r ,()2,3AM =-uuur 所以()()124314AM AP ⋅=⨯+-⨯-=uuur uuu r 故选:C。
平面向量知识点总结、经典例题及解析、高考题50道及答案

)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。
2、了解平面向量的基本定理,掌握平面向量的坐标运算。
3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。
【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。
高一数学平面向量的概念及几何运算试题答案及解析

高一数学平面向量的概念及几何运算试题答案及解析1.下列说法正确的是().A.方向相同或相反的向量是平行向量B.零向量是C.长度相等的向量叫做相等向量D.共线向量是在一条直线上的向量【答案】B【解析】选项A:方向相同或相反的非零向量是平行向量;选项C:方向相同且长度相等的向量叫相等向量;选项D:共线向量所在直线可能重合,也可能平行;故选B.【考点】平面向量的有关概念.2.已知点A(-1,5)和向量,则点B的坐标为.【答案】(5,14)【解析】设B(m,n),∵点A(-1,5),∴=(m+1,n-5),∵由已知得,∴m+1=6且n-5=9,解之得m=5,n=14.即点B的坐标为(5,14)故答案为:(5,14).【考点】平面向量的坐标运算.3.已知均为单位向量,它们的夹角为,那么()A.B.C.D.4【答案】C【解析】因为且,所以,所以,因此,选C.【考点】1.平面向量的模;2.平面向量的数量积.4.在平行四边形ABCD中,下列结论中错误的是A.B.C.D.0【答案】C【解析】根据题意,由于向量的大小和方向相等就是相等向量,故成立,对于B,由于,对于D,,故排除法. 应该是,选C.【考点】向量的加减法点评:主要是考查了向量的加减法是运算,属于基础题。
5..【答案】【解析】【考点】向量加减法点评:利用相反向量可将向量减法运算转化为加法运算,向量加法运算首尾相接最终结果是由起点指向终点的向量6.以下说法错误的是()A.零向量与任一非零向量平行B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量【答案】C【解析】平行向量的方向相同或相反,所以,说法错误的是“平行向量方向相同”,选C。
【考点】本题主要考查向量的基础知识。
点评:简单题,确定说法错误的选项,应将各选项逐一考察。
7.下列命题正确的是A.若·=·,则=B.若,则·="0"C.若//,//,则//D.若与是单位向量,则·=1【答案】B【解析】解:因为选项A中不能约分,选项B中,两边平方可知成立,选项C中,当为零向量时不成立,选项D中,夹角不定,因此数量积结果不定,选B8.定义平面向量之间的一种运算“”如下:对任意的向量,令,给出下面四个判断:①若与共线,则;②若与垂直,则;③;④.其中正确的有(写出所有正确的序号).【答案】①④【解析】①若,则,即,正确.②由①知错.③错.④,正确.9.已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则()A.B.C.D.【答案】B【解析】解:因为\选B10.如图,在平行四边形中,已知,,,为的中点,则【答案】【解析】解:因为运用平面向量的基本定理可知,,结合向量的数量积公式得到结论为11.下列各说法中,其中错误的个数为⑴向量的长度与向量的长度相等⑵平行向量就是向量所在直线平行⑶⑷ (5)A.2个B.3个C.4个D.5个【答案】C【解析】选C (1)正确(2)因为平行向量是向量所在直线平行或重合,所以此命题错误;(3)若向量,本命题是错误命题.(4)没有说明是非零向量,所以此命题也是错误的.(5)若再加上,才成立.因而此命题也是错误的.故错误命题共有四个.12.已知下列命题:①若向量∥,∥,则∥;②若>,则>;③若,则=或=;④在△中,若,则△是钝角三角形;⑤. 其中正确命题的个数是().A.0B.1C.2D.3【答案】A【解析】时①不正确;向量不能比较大小,②不正确;,③不正确;为锐角,不能判断△的形状,④不正确;,⑤不正确.13.已知平面向量,则向量()A.B.C.D.【答案】D【解析】本题考查向量的坐标运算.若则.故选D14.已知四边形是菱形,点在对角线上(不包括),则()A.B.C.D.【答案】A【解析】设,其中,则。
高中平面向量知识点详细归纳总结(附带练习)

向量的概念一、高考要求:理解有向线段及向量的有关概念,掌握求向量和与差的三角形法则和平行四边形法则,掌握向量加法的交换律和结合律.二、知识要点:1. 有向线段:具有方向的线段叫做有向线段,在有向线段的终点处画上箭头表示它的方向.以A 为始点,B 为终点的有向线段记作AB ,注意:始点一定要写在前面,已知AB ,线段AB 的长度叫做有向线段AB 的长(或模),AB 的长度记作AB ||.有向线段包含三个要素:始点、方向和长度.2. 向量:具有大小和方向的量叫做向量,只有大小和方向的向量叫做自由向量.在本章中说到向量,如不特别说明,指的都是自由向量.一个向量可用有向线段来表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.用有向线段AB 表示向量时,我们就说向量AB .另外,在印刷时常用黑体小写字母a 、b 、c 、…等表示向量;手写时可写作带箭头的小写字母a 、b 、c 、…等.与向量有关的概念有:(1) 相等向量:同向且等长的有向线段表示同一向量或相等的向量.向量a 和b 同向且等长,即a 和b 相等,记作a =b .(2) 零向量:长度等于零的向量叫做零向量,记作0.零向量的方向不确定.(3) 位置向量:任给一定点O 和向量a ,过点O 作有向线段OA a =,则点A 相对于点O 的位置被向量a 所唯一确定,这时向量a 又常叫做点A 相对于点O 的位置向量.(4) 相反向量:与向量a 等长且方向相反的向量叫做向量a 的相反向量,记作a -.显然,()0a a +-=.(5) 单位向量:长度等于1的向量,叫做单位向量,记作e .与向量a 同方向的单位向量通常记作0a ,容易看出:0a a a =│ │. (6) 共线向量(平行向量):如果表示一些向量的有向线段所在的直线互相平行或重合,即这些向量的方向相同或相反,则称这些向量为共线向量(或平行向量).向量a 平行于向量b ,记作a ∥b .零向量与任一个向量共线(平行).三、典型例题:例:在四边形ABCD 中,如果AB DC =且AB BC =│ │ │ │ ,那么四边形ABCD 是哪种四边形? 四、归纳小结:1. 用位置向量可确定一点相对于另一点的位置,这是用向量研究几何的依据.2. 共线向量(平行向量)可能有下列情况: (1)有一个为零向量;(2)两个都为零向量;(3)方向相同,模相等(即相等向量);(4)方向相同,模不等;(5)方向相反,模相等;(6)方向相反,模不等.五、基础知识训练:(一)选择题:1. 下列命题中: (1)向量只含有大小和方向两个要素. (2)只有大小和方向而无特定的位置的向量叫自由向量. (3)同向且等长的有向线段表示同一向量或相等的向量. (4)点A 相对于点B 的位置向量是BA . 正确的个数是( )A.1个B.2个C.3个D.4个2. 设O 是正△ABC 的中心,则向量,,AO OB OC 是( )A.有相同起点的向量B.平行向量C.模相等的向量D.相等向量3. a b =的充要条件是( )A.a b =│ │ │ │ B.a b =│ │ │ │ 且a b ∥ []l C.a b ∥ D.a b =│ │ │ │ 且a 与b 同向 4. AA BB ''=是四边形ABB A ''是平行四边形的( )A.充分条件B.必要条件C.充要条件D.既非充分又非必要条件5. 依据下列条件,能判断四边形ABCD 是菱形的是( )A.AD BC =B.AD BC ∥且AB CD ∥C.AB DC =且AB AD =│ │ │ │ D.AB DC =且AD BC = 6. 下列关于零向量的说法中,错误的是( )A.零向量没有方向B.零向量的长度为0C.零向量与任一向量平行D.零向量的方向任意7. 设与已知向量a 等长且方向相反的向量为b ,则它们的和向量a b +等于( )A.0B.0C.2aD.2b(二)填空题:8. 下列说法中: (1)AB 与BA 的长度相等 (2)长度不等且方向相反的两个向量不一定共线 (3)两个有共同起点且相等的向量,终点必相同(4)长度相等的两个向量必共线。
平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。
向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。
向量不能比较大小,但向量的模可以比较大小。
向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。
由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。
(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。
(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。
任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。
由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。
(精选试题附答案)高中数学第六章平面向量及其应用知识点总结归纳

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用知识点总结归纳单选题1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .3 答案:A分析:利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a 2−b 2=4c 2,由余弦定理推论可得 −14=cosA =b 2+c 2−a 22bc , ∴c 2−4c 22bc=−14 , ∴3c 2b =14 , ∴b c =32×4=6,故选A .小提示:本题考查正弦定理及余弦定理推论的应用.2、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b ⃑⃑的夹角为( ) A .30°B .60°C .120°D .150° 答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0, 解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A.3、向量PA ⃑⃑⃑⃑⃑⃑=(k,12),PB ⃑⃑⃑⃑⃑⃑=(4,5),PC ⃑⃑⃑⃑⃑⃑=(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA⃑⃑⃑⃑⃑⃑,CA ⃑⃑⃑⃑⃑⃑,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃑⃑⃑⃑⃑⃑=PA ⃑⃑⃑⃑⃑⃑−PB ⃑⃑⃑⃑⃑⃑=(k,12)−(4,5)=(k −4,7), CA⃑⃑⃑⃑⃑⃑=PA ⃑⃑⃑⃑⃑⃑−PC ⃑⃑⃑⃑⃑⃑=(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA ⃑⃑⃑⃑⃑⃑∥CA ⃑⃑⃑⃑⃑⃑,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11. 故选:C.4、在△ABC 中,已知B =120°,AC =√19,AB =2,则BC =( ) A .1B .√2C .√5D .3 答案:D分析:利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 设AB =c,AC =b,BC =a ,结合余弦定理:b 2=a 2+c 2−2accosB 可得:19=a 2+4−2×a ×c ×cos120∘, 即:a 2+2a −15=0,解得:a =3(a =−5舍去), 故BC =3. 故选:D.小提示:利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形.5、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB=CG−EH+EGCG−EH ×DE=EG×DECG−EH+DE=表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.6、已知向量a⃑=(−1,m),b⃑⃑=(2,4),若a⃑与b⃑⃑共线,则m=()A.−1B.1C.−2D.2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m=−4,即m=−2.故选:C7、在正方形ABCD 中,BC ⃑⃑⃑⃑⃑⃑−DC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=( ) A .BD ⃑⃑⃑⃑⃑⃑⃑B .DB ⃑⃑⃑⃑⃑⃑⃑C .AD ⃑⃑⃑⃑⃑⃑D .DA ⃑⃑⃑⃑⃑⃑ 答案:C分析:根据平面向量加减运算法则计算可得.解:BC ⃑⃑⃑⃑⃑⃑−DC ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=BC ⃑⃑⃑⃑⃑⃑+CD ⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=BD ⃑⃑⃑⃑⃑⃑⃑+AB ⃑⃑⃑⃑⃑⃑=AD ⃑⃑⃑⃑⃑⃑. 故选:C.8、已知边长为1的正方形ABCD ,设AB ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑,AC ⃑⃑⃑⃑⃑⃑=c ⃑,则|a ⃑−b ⃑⃑+c ⃑|=( ) A .1B .2C .3D .4 答案:B分析:根据向量加法的平行四边形法则,结合正方形的性质可得答案. 因为ABCD 是边长为1的正方形,AB ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑,AC ⃑⃑⃑⃑⃑⃑=c ⃑, 所以a ⃑−b ⃑⃑+c ⃑=AB ⃑⃑⃑⃑⃑⃑−AD ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑−AD ⃑⃑⃑⃑⃑⃑+(AB ⃑⃑⃑⃑⃑⃑+AD ⃑⃑⃑⃑⃑⃑)=2AB ⃑⃑⃑⃑⃑⃑ 又|AB ⃑⃑⃑⃑⃑⃑|=1,所以|a ⃑−b ⃑⃑+c ⃑|=|2AB ⃑⃑⃑⃑⃑⃑|=2 故选:B9、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( ) (1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b ⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4) 答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果. 已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a⃗⋅c⃗=b⃑⃗⋅c⃗,则(a⃗−b⃑⃗)⋅c⃗=0,所以a⃗=b⃑⃗或(a⃗−b⃑⃗)⊥c⃗,即(1)错;(2)若|a⃗+b⃑⃗|=|a⃗|+|b⃑⃗|,则a⃗与b⃑⃗同向,所以a⃗//b⃑⃗,即(2)正确;(3)若|a⃗+b⃑⃗|=|a⃗−b⃑⃗|,则|a⃗|2+|b⃑⃗|2+2a⃗⋅b⃑⃗=|a⃗|2+|b⃑⃗|2−2a⃗⋅b⃑⃗,所以2a⃗⋅b⃑⃗=0,则a⃗⊥b⃑⃗;即(3)正确;(4)若(a⃗+b⃑⃗)⋅(a⃗−b⃑⃗)=0,则|a⃗|2−|b⃑⃗|2=0,所以|a⃗|=|b⃑⃗|,不能得出向量共线,故(4)错;故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.10、已知不共线的平面向量a⃗,b⃑⃗,c⃗两两所成的角相等,且|a⃗|=1,|b⃑⃗|=4,|a⃗+b⃑⃗+c⃗|=√7,则|c⃗|=()A.√2B.2C.3D.2或3答案:D分析:先求出θ=2π3,转化|a⃗+b⃑⃗+c⃗|=√(a⃗+b⃑⃗+c⃗)2=√7,列方程即可求出.由不共线的平面向量a⃗,b⃑⃑,c⃑两两所成的角相等,可设为θ,则θ=2π3.设|c⃑|=m.因为|a⃗|=1,|b⃑⃗|=4,|a⃗+b⃑⃗+c⃗|=√7,所以|a⃗+b⃑⃗+c⃗|2=7,即a⃗2+2a⃗⋅b⃑⃗+b⃑⃗2+2b⃑⃗⋅c⃗+2a⃗⋅c⃗+c⃗2=7,所以12+2×1×4cos2π3+42+2×4×mcos2π3+2×1×mcos2π3+m2=7即m2−5m+6=0,解得:m=2或3.所以|c⃑|=2或3故选:D填空题11、已知向量a⃑=(3,1),b⃑⃑=(1,0),c⃑=a⃑+kb⃑⃑.若a⃑⊥c⃑,则k=________.答案:−103.分析:利用向量的坐标运算法则求得向量c⃗的坐标,利用向量的数量积为零求得k的值∵a ⃗=(3,1),b ⃑⃗=(1,0),∴c ⃗=a ⃗+kb ⃑⃗=(3+k,1), ∵a ⃗⊥c ⃗,∴a ⃗⋅c ⃗=3(3+k )+1×1=0,解得k =−103, 所以答案是:−103.小提示:本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量p ⃗=(x 1,y 1),q ⃗=(x 2,y 2)垂直的充分必要条件是其数量积x 1x 2+y 1y 2=0.12、若向量a →=(1,1)与向量b →=(1,x )的夹角为锐角,则x 的取值范围是___________. 答案:(−1,1)∪(1,+∞)解析:设向量a →与向量b →的夹角为θ,由cosθ=a⃑⃗⋅b ⃑⃗|a⃑⃗||b ⃑⃗|=√2×√1+x 2,.设向量a →与向量b →的夹角为θ,则cosθ=a⃑⃗⋅b ⃑⃗|a⃑⃗||b ⃑⃗|=√2×√1+x 2因为夹角为锐角, 所以0<cos θ<1,即 0<√2×√1+x 2<1,所以x >−1 且(1+x)2<2(1+x 2), 解得 −1<x <1 或 x >1, 所以答案是:(−1,1)∪(1,+∞)13、已知向量a ⃗,b ⃑⃗的夹角为120°,|a ⃗|=2,|b ⃑⃗|=1,若(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗),则实数λ=___________. 答案:−1分析:由(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗),可得(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,化简后结已知条件可求得答案 解:因为向量a ⃗,b ⃑⃗的夹角为120°,|a ⃗|=2,|b ⃑⃗|=1,且(a ⃗+3b ⃑⃗)⊥(2a ⃗+λb ⃑⃗), 所以(a ⃗+3b ⃑⃗)⋅(2a ⃗+λb ⃑⃗)=0,即2a ⃗2+(6+λ)a ⃗⋅b ⃑⃗+3λb ⃑⃗2=0, 所以8+(6+λ)×2×1×(−12)+3λ=0,解得λ=−1, 所以答案是:−114、已知点A (3,−4)与B (−1,2),点P 在直线AB 上,且|AP ⃑⃑⃑⃑⃑⃑|=|PB ⃑⃑⃑⃑⃑⃑|,则点P 的坐标为________. 答案:(1,−1)分析:根据模长相等关系可确定P 为线段AB 中点,由中点坐标公式计算得到结果. ∵P 在直线AB 上,且|AP⃑⃑⃑⃑⃑⃑|=|PB ⃑⃑⃑⃑⃑⃑|,∴P 为线段AB 中点, 又A (3,−4),B (−1,2),∴P (1,−1). 所以答案是:(1,−1).15、已知|b ⃑⃑|=3,向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,则a ⃑·b ⃑⃑=____________. 答案:18解析:由题意向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,分析可得|a ⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|,代入公式,即可得答案. 因为向量a ⃑在向量b ⃑⃑上的投影向量为2b ⃑⃑,则可得|a ⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|, 所以a ⃑·b ⃑⃑=|a ⃑||b ⃑⃑|cos <a ⃑,b ⃑⃑>=2|b ⃑⃑|·|b ⃑⃑|=2|b ⃑⃑|2=18, 所以答案是:18.小提示:本题考查向量投影的应用,考查分析理解的能力,属基础题. 解答题16、已知函数f (x )=2cosxsin (x +π6).(1)求f (x )的最小正周期及f (x )在区间[−π6,π4]上的最大值(2)在锐角△ABC 中,f (A 2)=32,且a =√3,求b +c 取值范围.答案:(1)最小正周期为π,最大值32;(2)(3,2√3].分析:(1)先利用三角恒等变换对函数进行化简,进而通过三角函数的图像和性质的应用得到答案; (2)利用正弦定理进行边化角,然后借助三角恒等变换进行化简,最后通过三角函数的图像和性质的应用求出结果.(1)f(x)=2cosx ⋅(sinx ⋅√32+cosx ⋅12) =√32sin2x +1+cos2x2=sin(2x +π6)+12,所以f (x )的最小正周期为π.因为−π6≤x ≤π4,所以−π6≤2x +π6≤2π3于是,当2x +π6=π2,即x =π6时,f (x )取得最大值32(2)在△ABC 中,A +B +C =πf(A2)=sin(A +π6)+12=32,∴sin(A +π6)=1,A ∈(0,π2),∴A +π6∈(π6,23π),∴A +π6=π2,∴A =π3.由正弦定理asinA=b sinB=c sinC=2,∴b =2sinB,c =2sinC ,∴b +c =2sinB +2sinC =2sinB +2sin (A +B )=2sinB +2sin (π3+B)=2sinB +√3cosB +sinB =3sinB +√3cosB =2√3sin(B +π6),∵{0<B <π20<C <π2⇒{0<B <π20<23π−B <π2⇒π6<B <π2,∴B +π6∈(π3,2π3),∴sin(B +π6)∈(√32,1], ∴b +c =2√3sin(B +π6)∈(3,2√3].17、平面内给定三个向量a ⃗=(3,2),b ⃑⃗=(−1,2),c ⃗=(4,1). (1)求满足a ⃗=mb ⃑⃗−nc ⃗的实数m ,n ; (2)若(a ⃗+kc ⃗)//(2b ⃑⃗−a ⃗),求实数k 的值. 答案:(1)m =59,n =−89;(2)k =−1613.分析:(1)依题意求出mb ⃑⃗−nc ⃗的坐标,再根据向量相等得到方程组,解得即可; (2)首先求出a ⃗+kc ⃗与2b ⃑⃗−a ⃗的坐标,再根据向量共线的坐标表示计算可得; 解:(1)因为a ⃗=(3,2),b ⃑⃗=(−1,2),c ⃗=(4,1),且a ⃗=mb ⃑⃗−nc ⃗ (3,2)=a ⃗=mb ⃑⃗−nc ⃗=m(−1,2)−n(4,1)=(−m −4n ,2m −n).∴ {−m −4n =32m −n =2,解得m =59,n =−89.(2)a ⃗+kc ⃗=(3,2)+k(4,1)=(3+4k ,2+k). 2b ⃑⃗−a ⃗=2(−1,2)−(3,2)=(−5,2). ∴−5(2+k)−2(3+4k)=0,解得k =−1613.18、如图,已知ΔABC 中,D 为BC 的中点,AE =12EC ,AD ,BE 交于点F ,设AC ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b⃑⃑.(1)用a ⃑,b ⃑⃑分别表示向量AB ⃑⃑⃑⃑⃑⃑,EB ⃑⃑⃑⃑⃑⃑; (2)若AF⃑⃑⃑⃑⃑⃑=tAD ⃑⃑⃑⃑⃑⃑,求实数t 的值. 答案:(1)AB ⃑⃑⃑⃑⃑⃑=2b ⃑⃑−a ⃑,EB ⃑⃑⃑⃑⃑⃑=−43a ⃑+2b⃑⃑;(2)t =12. 解析:(1)根据向量线性运算,结合线段关系,即可用a ⃑,b ⃑⃑分别表示向量AB ⃑⃑⃑⃑⃑⃑,EB ⃑⃑⃑⃑⃑⃑; (2)用a ⃑,b ⃑⃑分别表示向量FB ⃑⃑⃑⃑⃑⃑,EB⃑⃑⃑⃑⃑⃑,由平面向量共线基本定理,即可求得t 的值. (1)由题意,D 为BC 的中点,AE =12EC ,可得AE ⃑⃑⃑⃑⃑⃑=13AC ⃑⃑⃑⃑⃑⃑,AC ⃑⃑⃑⃑⃑⃑=a ⃑,AD ⃑⃑⃑⃑⃑⃑=b ⃑⃑. ∵AB ⃑⃑⃑⃑⃑⃑+AC ⃑⃑⃑⃑⃑⃑=2AD ⃑⃑⃑⃑⃑⃑, ∴AB ⃑⃑⃑⃑⃑⃑=2b ⃑⃑−a ⃑, ∴EB ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑–AE⃑⃑⃑⃑⃑⃑ =2b ⃑⃑−a ⃑−13a ⃑=−43a ⃑+2b⃑⃑ (2)∵AF ⃑⃑⃑⃑⃑⃑=tAD ⃑⃑⃑⃑⃑⃑=tb ⃑⃑, ∴FB ⃑⃑⃑⃑⃑⃑=AB ⃑⃑⃑⃑⃑⃑–AF ⃑⃑⃑⃑⃑⃑ =−a ⃑+(2−t )b⃑⃑∵EB ⃑⃑⃑⃑⃑⃑=−43a ⃑+2b ⃑⃑,FB ⃑⃑⃑⃑⃑⃑,EB⃑⃑⃑⃑⃑⃑共线, 由平面向量共线基本定理可知满足−1−43=2−t 2,解得t =12.小提示:本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题. 19、在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知a =√6,b =2c,cosA =−14. (1)求c 的值; (2)求sinB 的值; (3)求sin(2A −B)的值. 答案:(1)c =1(2)sinB =√104(3)sin(2A −B)=√108分析:(1)根据余弦定理a 2=b 2+c 2−2bccosA 以及b =2c 解方程组即可求出; (2)由(1)可求出b =2,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin2A,cos2A ,再根据两角差的正弦公式即可求出.(1)因为a 2=b 2+c 2−2bccosA ,即6=b 2+c 2+12bc ,而b =2c ,代入得6=4c 2+c 2+c 2,解得:c =1. (2)由(1)可求出b =2,而0<A <π,所以sinA =√1−cos 2A =√154,又a sinA=b sinB ,所以sinB =bsinA a=2×√154√6=√104. (3)因为cosA =−14,所以π2<A <π,故0<B <π2,又sinA =√1−cos 2A =√154, 所以sin2A =2sinAcosA =2×(−14)×√154=−√158,cos2A =2cos 2A −1=2×116−1=−78,而sinB =√104,所以cosB =√1−sin 2B =√64, 故sin(2A −B)=sin2AcosB −cos2AsinB =(−√158)×√64+78×√104=√108.。
第6讲 平面向量等和线定理求系数和问题(解析版) 高一数学讲义(新人教2019)必修二

第6讲平面向量等和线定理求系数和问题【考点分析】考点一:平面向量等和线问题①平面向量共线定理则,,A B C 三点共线,O 为直线外一点,则OA OB OC λμ=+ 且1λμ+=⇔,,A B C 三点共线。
②平面向量等和线问题如图:B A ,两点共线,若O 为直线AB 外一点,MN 为与AB平行的直线,若k =,点P 为MN 上一点,若OB OA OP μλ+=,则k =+μλ。
证明如下:因为MN 与AB平行,所以k ==,所以ON kOB OM k OA 1,1==,所以ON k OM k OB OA OP μλμλ+=+=,因为P N M ,,三点共线,所以1=+kk μλ,所以k =+μλ③利用等和线解题的步骤第一步:确定系数和为1的直线;第二步:平移该直线,结合题目给出动点范围,分析在何处取得最值;第三步:从长度比,点的位置的角度计算最值。
【典型例题】题型一:平面向量等和线求系数和问题【例1】如图,在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上,若满足AP mAB nAD =+ ,则n m +的最大值为()A .3B .22C .5D .2【答案】A【解析】法一:如图:以A 为原点,以AB ,AD 所在的直线为x ,y 轴建立如图所示的坐标系,则(0,0)A ,(1,0)B ,(0,2)D ,(1,2)C , 动点P 在以点C 为圆心且与BD 相切的圆上,设圆的半径为r ,2BC = ,1CD =,22215BD ∴+=∴1122BC CD BD r = ,5r ∴=∴圆的方程为224(1)(2)5x y -+-=,设点P 的坐标为25(15θ+252)5θ+, AP AB AD λμ=+ ,25(15θ∴+,25sin 2)(15θλ+=,0)(0μ+,2)(λ=,2)μ,∴2515θλ+=,5225θμ+=,2552sin()255λμθθθϕ∴+=++=++,其中tan 2ϕ=,∵1)sin(1≤+≤-ϕθ,∴31≤+≤μλ,故λμ+的最大值为3,故选A .法二:由等和线性质知:APAP AD AN n m 1==+,所以当1P 在如图所示位置时,n m +取得最大值,33==+rr n m 【例2】如图,边长为2的等边三角形的外接圆为圆O ,P 为圆O 上任一点,若AP xAB yAC =+ ,则22x y+的最大值为()A .83B .2C .43D .1【答案】A【详解】作BC 的平行线与圆相交于点P ,与直线AB 相交于点E ,与直线AC 相交于点F ,设AP AE AF λμ=+ ,则1λμ+=,∵BC//EF ,∴设AE AF k AB AC ==,则4[0,]3k ∈∴,AE k AB AF k AC == ,AP AE AF k AB k AC λμλμ=+=+ ∴,x k y kλμ==∴22x y=+8223k k λμ+=≤()故选:A.【例3】在ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN AB AC λμ=+ (λ,μ∈R ),则λμ+的取值范围是()A .10,3⎡⎤⎢⎥⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .[0,1]D .[1,2]【答案】C【解析】【分析】设AN t AM = ,()01t ≤≤,当0=t 时,可得0λμ==,从而有0λμ+=;当01t <≤时,有B A A M AC t tλμ=+ ,根据M 、B 、C 三点共线,可得1t tl m +=,进而可得(]0,1t λμ+=∈,从而即可求解.【详解】解:由题意,设AN t AM = ,()01t ≤≤,当0=t 时,0AN = ,所以0AB AC λμ+= ,所以0λμ==,从而有0λμ+=;当01t <≤时,因为AN AB AC λμ=+ (λ,μ∈R ),所以B t A A A M C λμ=+ ,即B A A M AC t tλμ=+ ,因为M 、B 、C 三点共线,所以1t t l m +=,即(]0,1t λμ+=∈.综上,λμ+的取值范围是[0,1].故选:C.【例4】如图,已知点P 在由射线OD 、线段OA ,线段BA 的延长线所围成的平面区域内(包括边界),且OD与BA 平行,若OP xOB yOA =+ ,当12x =-时,y 的取值范围是()A .[]0,1B .1,12⎡⎤-⎢⎥⎣⎦C .13,22⎡⎤-⎢⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D【解析】【分析】根据向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,得到y 的取值范围.【详解】∵//OD AB ,OP xOA yOB =+uuu r uur uuu r ,由向量加法的平行四边形法则,OP 为平行四边形的对角线,该四边形应是以OA 与OB 的反向延长线为两邻边,∴当12x =-时,要使P 点落在指定区域内,即P 点应落在EF 上,13,22CE OA CF OA ==,∴y 的取值范围为1322⎡⎤⎢⎥⎣⎦,.故选:D.【例5】在扇形OAB 中,60AOB ∠=,C 为弧AB 上的一动点,若OC xOA yOB =+ ,则3x y +的取值范围是_________.【答案】[]1,3【解析】【分析】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.向量坐标化进行坐标运算,利用三角函数求出3x y +的取值范围.【详解】以O 为原点,,OA OB 分别为x ,y 轴正方向建立平面直角坐标系.则()11,0,22OA OB ⎛== ⎝⎭.不妨设()cos ,sin ,03OC πθθθ⎛⎫=≤≤ ⎪⎝⎭ .因为OC xOA yOB =+,所以1cos 2sin 2x y y θθ⎧=+⎪⎪⎨⎪=⎪⎩,解得:cos sin 33x y θθθ⎧=-⎪⎪⎨⎪=⎪⎩,所以s 3co 3in x y θθ-+=.因为cos y θ=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减,sin y θ=-在0,3πθ⎡⎤∈⎢⎣⎦上单调递减,所以s 3co 3in 3x y θθ-+=在0,3πθ⎡⎤∈⎢⎥⎣⎦上单调递减.所以当0θ=时33x y +=最大;当3πθ=时cos sin 1333332x y ππ===+最小.所以3x y +的取值范围是[]1,3.故答案为:[]1,3.【题型专练】1.在直角ABC 中,AB AC ⊥,2AB AC ==,以BC 为直径的半圆上有一点M (包括端点),若AM AB AC λμ=+ ,则λμ+的最大值为()A .4BC .2D【答案】C【解析】【分析】建立平面直角坐标系,利用坐标表示M ,结合三角函数最值的求法,求得λμ+的最大值.【详解】依题意在直角ABC 中,AB AC ⊥,2AB AC ==,以A 为原点建立如图所示平面直角坐标系,()()0,2,2,0C B ,设D 是BC 的中点,则()1,1D .。
高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念①向量:既有大小又有方向的量。
几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,规定0平行于任何向量。
(与0的区别) ③单位向量|a|=1。
④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b⑤相等向量记为b a=。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量叫做a 与b的和,记作a+b ,即 a+b AB BC AC =+=特殊情况:(1)BBabba +AABC C)2()3(向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”。
②向量减法: 同一个图中画出a b a b +-、要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点. (3)实数与向量的积3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ。
二.【典例解析】题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确(1)零向量没有方向 (2)ba ==则 (3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a =,c b =,则c a =;(7)若b a //,c b //,则c a// (8) b a =的充要条件是||||b a =且b a //;(9) 若四边形ABCD 是平行四边形,则DA BC CD B ==,A练习. (四川省成都市一诊)在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的 A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件题型二: 考查加法、减法运算及相关运算律 例2 化简)()(BD AC CD AB ---=练习1.下列命题中正确的是 A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.化简AC -BD +CD -AB 得 A .AB B .DA C . D .03.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则( )A.AD →+BE →+CF →=0B.BD →-CF →+DF →=0C.AD →+CE →-CF →=0D.BD →-BE →-FC →=0题型三: 结合图型考查向量加、减法例3在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4重心、垂心、外心性质练习: 1.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA →=3a ,CB → =2b ,求CD → ,CE → . 2已知a b a b+-=求证a b ⊥3若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( )A.等腰三角形B.正三角形C.直角三角形D.钝角三角形4.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C.23OA →-13OB → D .-13OA →+23OB → 5.已知平面上不共线的四点O ,A ,B ,C .若OA →-3OB →+2OC →=0,则|AB →||BC →|等于________.6.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上ABDE7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( ) A.23 B.13 C .-13 D .-23 题型四: 三点共线问题例 4 设21,e e 是不共线的向量,已知向量2121212,3,2e e e e e k e -=+=+=,若A,B,D 三点共线,求k 的值例5已知A 、B 、C 、P 为平面内四点, A 、B 、C 三点在一条直线上 PC → =mPA → +nPB →,求证: m+n=1.练习:1.已知:2121212 ,B),(3e e e +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线 C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线2.(原创题)设a ,b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________.第2讲 平面向量的基本定理与坐标表示 一.【要点精讲】1.平面向量的基本定理如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的_单位向量_ i 、j 作为基底a ,有且只有一对实数x 、y ,BC AOM D使得a xi yj =+…………○1,把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示与a 相等的向量的坐标也为,(y x 特别地,(1,0)i =,(0,1)j =,0(0,0)=特别提醒:设yj xi +=,则向量的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量的坐标在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示3.平面向量的坐标运算(1)若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y --(2) 若),(11y x A ,),(22y x B ,则AB = (3)若(,)a x y =和实数λ,则a λ=(,)x y λλ4.向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中b ≠aa ∥b (b≠)的充要条件是12210x y x y -=二.【典例解析】题型一. 利用一组基底表示平面内的任一向量[例1] 在△OAB 中,21,41==,AD 与BC 交于点M ,设OA =a ,OB =b ,用a ,b 表示OM .练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( ) A .1e 与—2e B .31e 与22e C .1e +2e 与1e —2e D .1e 与21e 2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.题型二: 向量加、减、数乘的坐标运算 例 3 已知A (—2,4)、B (3,—1)、C (—3,—4)且3=,2=,求点M 、N 的坐标及向量的坐标.练习:1. (2008年高考辽宁卷)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12) C .(3,2) D .(1,3)2.若M(3, -2) N(-5, -1) 且 12MP =MN , 求P 点的坐标;3.若M(3, -2) N(-5, -1),点P 在MN 的延长线上,且 12MP MN =,求P 点的坐标;4.(2009年广东卷文)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线5.在三角形ABC 中,已知A (2,3),B (8,-4),点G (2,-1)在中线AD 上,且AG →=2GD →, 则点C 的坐标是( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)6.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)7.已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于( ) A .2 B .1 C.45 D.53 题型三: 平行、共线问题例4已知向量(1sin ,1)θ=-a ,1(,1sin )2θ=+b ,若a ∥b ,则锐角θ等于( )A .30︒B . 45︒C .60︒D .75︒例5.(2009北京卷文)已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-, 如果//c d 那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向练习:1.若向量a=(-1,x)与b =(-x, 2)共线且方向相同,求x2.已知点O(0,0),A(1,2),B(4,5)及AB t OA OP +=,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学 第八章 平面向量第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念①向量:既有大小又有方向的量。
几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。
向量的模(长度),记作|AB |.即向量的大小,记作|a|。
向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,规定0平行于任何向量。
(与0的区别) ③单位向量|a|=1。
④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b⑤相等向量记为b a=。
大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b的和,记作a+b ,即 a+b AB BC AC =+=特殊情况:abab a+bbaa+b(1)平行四边形法则三角形法则CBDCBAabbba +ba +AAB)2()3(向量加法的三角形法则可推广至多个向量相加:AB BC CD PQ QR AR +++++=,但这时必须“首尾相连”。
②向量减法: 同一个图中画出a b a b +-、要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点. (3)实数与向量的积3.两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =a λ。
二.【典例解析】题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确(1)零向量没有方向 (2)b a ==则,(3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若b a =,c b =,则c a =;(7)若b a //,c b //,则c a // (8) b a =的充要条件是||||b a =且b a //;(9) 若四边形ABCD 是平行四边形,则==,A练习. (四川省成都市一诊)在四边形ABCD 中,“AB →=2DC →”是“四边形ABCD 为梯形”的 A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要条件题型二: 考查加法、减法运算及相关运算律 例2 化简)()(---=练习1.下列命题中正确的是 A .OA OB AB -= B .0AB BA +=C .00AB ⋅=D .AB BC CD AD ++=2.化简AC -BD +CD -AB 得 A .AB B . C . D .03.如图,D 、E 、F 分别是△ABC 的边AB 、BC 、CA 的中点,则( ) A.AD →+BE →+CF →=0 B.BD →-CF →+DF →=0 C.AD →+CE →-CF →=0 D.BD →-BE →-FC →=0题型三: 结合图型考查向量加、减法例3在ABC ∆所在的平面上有一点P ,满足PA PB PC AB ++=,则PBC ∆与ABC ∆的面积之比是( )A .13B .12C .23D .34例4重心、垂心、外心性质练习: 1.如图,在ΔABC 中,D 、E 为边AB 的两个三等分点,CA →=3a ,CB → =2b ,求CD → ,CE → . 2已知a b a b+-=求证a b ⊥3若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC ∆的形状为( )A.等腰三角形B.正三角形C.直角三角形D.钝角三角形4.已知O 、A 、B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( ) A .2OA →-OB → B .-OA →+2OB →C.23OA →-13OB → D .-13OA→+23OB →ABCDE5.已知平面上不共线的四点O ,A ,B ,C .若OA →-3OB →+2OC →=0,则|AB →||BC →|等于________.6.已知平面内有一点P 及一个△ABC ,若PA →+PB →+PC →=AB →,则( )A .点P 在△ABC 外部B .点P 在线段AB 上C .点P 在线段BC 上D .点P 在线段AC 上7.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 题型四: 三点共线问题例4 设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值例5已知A 、B 、C 、P 为平面内四点, A 、B 、C 三点在一条直线上 PC → =mPA → +nPB → ,求证: m+n=1.练习:1.已知:2121212CD ,B C),(3e e e e e e AB +=-=+=,则下列关系一定成立的是( )A 、A ,B ,C 三点共线 B 、A ,B ,D 三点共线 C 、C ,A ,D 三点共线 D 、B ,C ,D 三点共线2.(原创题)设a ,b 是两个不共线的向量,若AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,且A ,B ,D 三点共线,则实数k 的值等于________.第2讲 平面向量的基本定理与坐标表示 一.【要点精讲】1.平面向量的基本定理可编辑BC AOM D如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的_单位向量_ i 、j 作为基底任作一个向量a ,有且只有一对实数x 、y ,使得a xi yj =+…………○1,把),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =…………○2其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示与a 相等的向量的坐标也为),(y x 特别地,(1,0)i =,(0,1)j =,0(0,0)= 特别提醒:设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示3.平面向量的坐标运算(1)若11(,)a x y =,22(,)b x y =,则a b +=1212(,)x x y y ++,a b -= 1212(,)x x y y --(2) 若),(11y x A ,),(22y x B ,则AB = (3)若(,)a x y =和实数λ,则a λ=(,)x y λλ4.向量平行的充要条件的坐标表示:设a=(x 1, y 1) ,b =(x 2, y 2) 其中baa ∥b (b0)的充要条件是12210x y x y -=二.【典例解析】题型一. 利用一组基底表示平面内的任一向量[例1] 在△OAB 中,OB OD OA OC 21,41==,AD 与BC 交于点M ,设OA =a ,OB =b ,用a ,b 表示OM .练习:1.若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是 ( ) A .1e 与—2e B .31e 与22e C .1e +2e 与1e —2e D .1e 与21e 2.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.题型二: 向量加、减、数乘的坐标运算 例3 已知A (—2,4)、B (3,—1)、C (—3,—4)且CA CM 3=,CB CN 2=,求点M 、N 的坐标及向量MN 的坐标.练习:1. (2008年高考辽宁卷)已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( )A .(2,72)B .(2,-12) C .(3,2) D .(1,3)2.若M(3, -2) N(-5, -1) 且 12MP =, 求P 点的坐标;3.若M(3, -2) N(-5, -1),点P 在MN 的延长线上,且 12MP MN =,求P 点的坐标;4.(2009年广东卷文)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线5.在三角形ABC 中,已知A (2,3),B (8,-4),点G (2,-1)在中线AD 上,且AG →=2GD →, 则点C 的坐标是( )A .(-4,2)B .(-4,-2)C .(4,-2)D .(4,2)6.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a 、4b -2c 、2(a -c )、d 的有向线段首尾相接能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)7.已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于( )A .2B .1 C.45 D.53题型三: 平行、共线问题例4已知向量(1sin ,1)θ=-a ,1(,1sin )2θ=+b ,若a ∥b ,则锐角θ等于( )A .30︒B . 45︒C .60︒D .75︒例5.(2009北京卷文)已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-, 如果//c d 那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向练习:1.若向量a=(-1,x)与b =(-x, 2)共线且方向相同,求x2.已知点O(0,0),A(1,2),B(4,5)及AB t OA OP +=,求(1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限。