浮游植物的定量分析

合集下载

浮游植物定量

浮游植物定量

• 球形、园盘形、园锥形、带形等可按求体 积公式计算。 • 纤维形、多角形、新月形以及其他种种形 状可分割为几个部分计算。
• 由于在不同环境中生长的同一种藻类的细 胞体积差异很大,套用所谓的《标准生物 量表》提供的数值计算某一具体水体的生 物量有时会产生很大的误差。所以条件允 许应对优势种和亚优势种进行直接量算, 非优势种群查阅表格。
• 计数时优势种类尽可能鉴别到种,其余鉴 别到属。
• 计数中的浮游植物的数量, 最好用细胞数表 示。对不易用细胞数表示的种类可计算其 群体或丝状体数。
计数具体要求
• A、校正计数框容积, • B、定量用的盖玻片应以碱水或肥皂水洗净备用,用前可 浸于70%酒精中,用时取出以细绢拭干。 • C、滴取样品以后最好用液体石腊封好计数框四周,以防 计数过程中干燥。 • D、以目微尺测所用显微镜一定倍数下的视野直经。 • E、选好与计数框同样容积的吸管备用。 • F、定量时应将浓缩标本水样充分摇匀,快吸快滴。 • G、加上盖玻片后不应有气泡出现。 • H、计数后的定量样品应保存下来。
• (2)采水量及采样次数
卡盖式采水器
不锈钢采水器
有机玻璃采水器
• • • • •
采样次数可多可少, 有条件时可逐月采样一次, 一般情况可每季采样一次, 最低限度应在春季和夏末秋初各采样一次。 养殖池可随时进行采样。
• 每一采样点应采水1000毫升, • (1)系一般性调查,可将各层采水等量混 合,取1000毫升混合水样固定; • (2)分层采水,分别计数后取平均值。分 层采水可以了解每一采样点各层水中浮游 植物的数量和种类。 • 水样应立即加入15毫升碘液(即鲁哥氏液) 固定。
• 用内径为30毫米的橡皮乳胶管,接上 橡皮球,利用虹吸法将沉淀上层清液 缓慢吸出(切不可搅动底部,万一动 了应重新静置沉淀)。

浮游生物调查方法

浮游生物调查方法

七、数量计算: 1、定性 2、定量结果 浮游植物定量:
使用的工具有:带有0.1毫升刻度的小吸管,容量 使用的工具有:带有0.1毫升刻度的小吸管,容量 为0.1毫升的计数框(面积20ⅹ20毫米2)和具有移 0.1毫升的计数框(面积20ⅹ20毫米2 动台的显微镜。 经0.1毫升吸管吸水0.1毫升于方框内,盖上盖玻片, 0.1毫升吸管吸水0.1毫升于方框内,盖上盖玻片, 如果框内无气泡亦无水液溢出,即表示容量标准 适合,检查三次均适合,此半数框即可使用。每 次计数时用的盖玻片应用碱水或肥皂水洗净备用。 用前可浸入70%的酒精中,用时取出,用细绢拭 用前可浸入70%的酒精中,用时取出,用细绢拭 净,计数框用前以薄绸布拭净,用毕以水弄湿后 轻拭或用水冲净。
虹吸动作要十分仔细、小心。开始时虹吸管一端 放在沉淀器内约三分之二处,另一端套接在已经 用手挤压出空气的橡皮球上,然后轻轻松手并移 开橡皮球使清液流出,为了避免漂浮水面的一些 微小藻类进入虹吸管而被吸走,管吕应始终低于 水面。虹吸管内清液的活动不宜过快,可用手指 轻捏管壁以控制流量,当吸到原水样的3/5以上时, 轻捏管壁以控制流量,当吸到原水样的3/5以上时, 应使清淮一滴一滴地流下。吸出的清液要用一洁 净的器皿装盛,以便在浓缩过程在出故障时,可 重新倒入沉淀器中浓缩,不必新采水。
数横条,最少不少于5 数横条,最少不少于5条具体可自行掌握。 总之不论数视野还是数横条,每片计数到 的溪流植物总数应达到200个(低浓度时)的溪流植物总数应达到200个(低浓度时)500个(高浓度时)以上。 500个(高浓度时)以上。 同一样品的二片计数结果与其均数之差距 如果不大于其均数的10%,这两个相近的值 如果不大于其均数的10%,这两个相近的值 的均数即可视为计数结果。
浮游动物定量:

浮游植物采集与定性定量分析

浮游植物采集与定性定量分析
0.1毫升样品的数量就是将实际看到的每个视野 物种数量乘以2000倍。
第3行
第5行 第8行
总的物种数=
实际看到的物
种数×10/3
3. 水滴法
镜检:根据1毫升的水相当于20滴水,用移液管 取1滴水样,转移至计数框,全部计数。
总数量的计算:假如1升浮游植物水样定容至30 毫升,那么总数量=30÷(1÷20)×计算所得个数
样品采集:首先进行水平面设点和垂直分层,然后 用1升
采水器采集1升水样,加鲁格氏液15毫升,转移 至沉降器沉 淀 24~48小时,通过虹吸法获得浓缩的定 量样品,定容至
50毫升
样品固定:添加3~5毫升甲醛溶液
2. 定性分析 采集:用 25 号浮游生物网在水面以下呈 “∞” 来
回拖行,将所采集水样保存于小方瓶(50毫升)
浮游植物采集与定性定量分析 2019.03.18
蓝藻门 裸藻门 淡 水 种 类 绿藻门 隐藻门 硅藻门 黄藻门
甲藻门 轮藻门
金藻门
采集
分析
确定采样点
记录水体理化 指标
确定采样层次
(福尔马林/碘液)
样品固定
定性样品采集
(25#,64 μm)
定量样品采集
(1L+10L)
(定性、定量)
室内分析
1. 定量分析
固定:添加3-5毫升甲醛溶液保存。
定量计数方法 视野法 行格法 水滴法
0.1ml计数框
移液枪取样0.1毫升 均匀分布于计数框 对部分视野进行镜检 计数该部分框的面积是400 mm2,而显微镜的视野面 积是固定值。 显微镜视野面积的计算:某型号显微镜的视场 数 为 20 , 那 么 在 高 倍 镜 下 的 实 际 视 场 直 径 为 20/40=0.5mm , 高 倍 镜 下 的 视 野 面 积 为 3.14*0.25*0.25≈0.2 mm2。

浮游植物取样测定规范

浮游植物取样测定规范

水体浮游植物分析规范参考淡水生物资源调查技术规范DB43/T 432-2009➢水层设置水深小于3m时,只在中层采样,混合均匀水体,可以只采表层(0.5m)水样;水深3m~6m时,在表层、底层采样,其中表层水在离水面0.5m处,底层水在离泥面0.5m处;水深6m~10m时,在表层、中层、底层采样;水深大于10m时,在表层、5m、10m水深层采样,10m以下除特殊需要外一般不采样,对于深水湖泊,取样的水层可以将取样间隔加大,如0m,10m,20m,50m, 100m。

➢采样定量样品在定性采样之前用采水器采集,每个采样点取水样1L,贫营养型水体应酌情增加采水量。

泥沙多时需先在容器内沉淀后再取样。

分层采样时,取各层水样等量混匀后取水样1L。

大型浮游植物定性样品用25号浮游生物网在表层缓慢拖曳采集,注意网口与水面垂直,网口上端不要露出水面。

➢固定浮游植物样品立即用鲁哥氏液固定,用量为水样体积的1%~1.5%。

如样品需较长时间保存,则需加入37%~40%甲醛溶液,用量为水样体积的4%。

现行的一些规律性的方法为:取水样,500ml,加入5ml鲁格,虹吸到30-50ml,加入1ml甲醛。

➢水样的沉淀和浓缩固定后的浮游植物水样摇匀倒入固定在架子上的1L沉淀器中,2h后将沉淀器轻轻旋转,使沉淀器壁上尽量少附着浮游植物,再静置24h。

充分沉淀后,用虹吸管慢慢吸去上清液。

虹吸时管口要始终低于水面,流速、流量不能太大,沉淀和虹吸过程不可摇动,如搅动了底部应重新沉淀。

吸至澄清液的1/3时,应逐渐减缓流速,至留下含沉淀物的水样20mL~25(或30~40)mL,放入30(或50)mL的定量样品瓶中。

用吸出的少量上清液冲洗沉淀器2次~3次,一并放入样品瓶中,定容到30(或50)mL。

如样品的水量超过30(或50)mL,可静置24 h后,或到计数前再吸去超过定容刻度的余水量。

浓缩后的水量多少要视浮游植物浓度大小而定,正常情况下可用透明度作参考,依透明度确定水样浓缩体积见表3,浓缩标准以每个视野里有十几个藻类为宜。

浮游植物细胞质量分析报告

浮游植物细胞质量分析报告

浮游植物细胞质量分析报告浮游植物广泛分布于海洋、淡水等水体中,是水生生态系统中重要的初级生产者。

它们的细胞构造和生长方式对水质和生态环境有重要影响。

本报告将对浮游植物的细胞质量进行分析和总结。

一、浮游植物的细胞质量指标1.细胞大小:浮游植物的细胞大小多种多样,从微米到毫米不等。

通常,细胞大小与浮游植物的种类和生长环境有关。

2.细胞形态:浮游植物的细胞形态多样,包括球形、椭圆形、链状和丝状等。

细胞形态可以通过光学显微镜观察和测量。

3.细胞结构:浮游植物的细胞结构主要包括细胞壁、质膜、质网、叶绿体等。

细胞结构的研究可以通过电子显微镜和组织切片等方法进行。

4.细胞生长:浮游植物的细胞生长包括细胞分裂和细胞扩张两个过程。

细胞生长的速率和方式可以通过实验室培养和野外观察来研究。

二、浮游植物细胞质量的影响因素1.光照条件:光照是浮游植物的主要能量来源,光照不足会限制浮游植物的生长和细胞分裂。

2.营养物质:浮游植物需要充足的营养物质供给,如无机盐、有机物和微量元素等。

不同种类的浮游植物对营养物质的需求量和种类有所差异。

3.温度:温度对浮游植物的生长和代谢活动有重要影响。

过高或过低的温度都会影响浮游植物的细胞质量。

4.酸碱度:水体酸碱度的变化会影响浮游植物的生长和存活。

过高或过低的酸碱度都会对浮游植物产生不利影响。

三、浮游植物细胞质量的研究方法1.显微观察:利用显微镜对浮游植物的细胞形态、大小和结构进行观察和测量。

2.组织切片:将浮游植物样品制成组织切片,利用电子显微镜进行细胞结构的观察和分析。

3.流式细胞仪:利用流式细胞仪对浮游植物的细胞大小、细胞周期和叶绿素含量等进行定量分析。

4.实验室培养:通过在实验室中模拟不同环境条件对浮游植物进行培养和观察,研究不同因素对浮游植物细胞质量的影响。

四、浮游植物细胞质量的意义和应用1.环境指示器:浮游植物细胞质量的研究可作为水体生态环境质量的评估指标之一,通过分析浮游植物的种类和数量可以判断水质的优劣。

陈纯-四种浮游植物生物量计算方法的比较分析_定稿

陈纯-四种浮游植物生物量计算方法的比较分析_定稿

浮游植物是湖泊、水库和河流生态系统中重要的初级生产者,其现存量是指某一时间内单位体积
论文资助来源:广东省水利厅科技创新项目( 2009-22 )和国家自然科学基金重点项目( U0733007 ) 第一作者 . 陈纯 , 女 , 1988 年 12 月生 , 从事淡水生态学研究 ; Email: ciara_2012@. 通迅作者:韩博平 , Email: tbphan@.
1.2 浮游植物群落种类组成概况 8 次采样共鉴定出浮游植物 64 种,隶属于 6 门[15] 。其中种类最多的是绿藻(38 种) ,其次是硅藻 (13 种)和蓝藻(8 种) ,其余种类 5 种。主要优势种类是 Discostella sp. 和微小多甲藻(Peridinium pusillum) 。 1.3 浮游植物种群生物量的计算 任一浮游植物种类的种群定量分析样品分别选自上述 8 次不同采样时间的不同围隔,即各浮游植 物种群均有 8 个定量分析样品, 每个定量分析样品均取 3 次 0.1mL 的浓缩样品进行镜检。 采用标准法、 细分法、 粗分法和资料法 4 种不同方法对每一浮游植物种类的种群生物量进行计算, 以 Discostella sp.、 微小多甲藻(Peridinium pusillum) 、月形单针藻(Monoraphidium lunare)和尖针杆藻(Synedra acus) 为例。4 种方法的具体步骤如下: 标准法,分别对 Discostella sp.、微小多甲藻、月形单针藻和尖针杆藻中不同大小的藻细胞的各参 数进行测量,求得各参数的平均值后根据相关公式计算出体积,再算出生物量。各种群的测量参数图 示及体积公式 见表 1。 细分法,较详细记录各种群的藻细胞体积测量值(表 2) ,按各种群记录的藻细胞体积测量值进行 细胞计数,最后算出生物量。 粗分法,将各种群的藻细胞体积测量值划分为 3 个等级(表 2) ,按各种群各等级的藻细胞体积测 量值进行细胞计数,再算出生物量。 [2、4、6-7] 找到 Discostella sp. 、微小多甲藻、月形单 资料法,对各种群进行细胞计数,查阅文献资料 3 3 针藻、尖针杆藻的平均细胞体积分别为 684μm 、4208μm 、56μm3、2475μm3,再计算出生物量。 表 1 Discostella sp. 、微小多甲藻、月形单针藻和尖针杆藻的测量参数图示及体积公式 Tab.1 Measured parameters and volume formulas of Discostella sp., Peridinium pusillum, Monoraphidium lunare and Synedra acus Discostella sp. 微小多甲藻 月形单针藻 尖针杆藻

浮游植物的采集 计数与定量方法

浮游植物的采集 计数与定量方法

。如下面的不浓浓缩缩体积稀与释 水透明度(体现水的肥瘦)之间关系大致如下, 仅供参考。
瘦中 肥
透明度 >1m 老水 特老水
>50cm
>30cm
<30cm <20cm 浓2缩020/的3/27标准是以每个视野里有十几个藻类为宜。
三、计数方法
将浓缩沉淀后水样充分摇匀后,立即用0.1ml吸量管吸出0.1ml样品,注入
体积公式计算细胞体积。细胞体积的毫升数相当于细胞重量的克数。
这样体积值(μm-3)可直接换算为重量值(109μm-3)可直接换算
为重量值(109μm-3≈1毫克鲜藻重)。
下列体积公式,可供计算生物量时参考:
圆锥体:V=1/3лR2h
圆柱体:V=лR2h
球 体:V=4/3лR3
椭圆体:V=4/3ab2л(a为长轴半径,b为短轴半径)
0 . 1 ml 计 数 框 内 ( 计 数 框 的 表 面 积 最 好 是 2 0 × 2 0 ㎜ 2 ) , 小 心 盖 上 盖 玻 片 (
22×22㎜2),在盖盖玻片时,要求计数框内没有气泡,样品不溢出计数框。
然后在14×40或16×40倍显微镜下计数。即在400-600倍显微镜下计数。每
瓶标本计数两片取其平均值,每片大约计算50~100个视野,但视野数可按浮
入虹吸管内,管口应始终低于水面,虹吸时流速流量不可过大,吸至澄 清液1/3时,应控制流速,使其成滴缓慢留下为宜。
采水时,每瓶样品必须贴上标签,标签上药剂在采集的时间、地点、 采水体积等,其他详细内容应另行做好记录,以备查对,避免错误。
1000m浓l 缩30的ml 体5积0 m视l 浮100游ml 植物的多少而定。也可根据水的肥瘦确定浓缩体积

浮游植物采集与定性定量分析

浮游植物采集与定性定量分析

0.1毫升样品的数量就是将实际看到的每个视野 物种数量乘以2000倍。
第3行
第5行 第8行
总的物种数=
实际看到的物
种数×10/3
3. 水滴法
镜检:根据1毫升的水相当于20滴水,用移液管 取1滴水样,转移至计数框,全部计数。
总数量的计算:假如1升浮游植物水样定容至30 毫升,那么总数量=30÷(1÷20)×计算所得个数
样品采集:首先进行水平面设点和垂直分层,然后 用1升
采水器采集1升水样,加鲁格氏液15毫升,转移 至沉降器沉 淀 24~48小时,通过虹吸法获得浓缩的定 量样品,定容至
50毫升
样品固定:添加3~5毫升甲醛溶液
2. 定性分析 采集:用 25 号浮游生物网在水面以下呈 “∞” 来
回拖行,将所采集水样保存于小方瓶(50毫升)
浮游植物采集与定性定量分析 2019.03.18
蓝藻门 裸藻门 淡 水 种 类 绿藻门 隐藻门 硅藻门 黄藻门
甲藻门 轮藻门
金录水体理化 指标
确定采样层次
(福尔马林/碘液)
样品固定
定性样品采集
(25#,64 μm)
定量样品采集
(1L+10L)
(定性、定量)
室内分析
1. 定量分析
固定:添加3-5毫升甲醛溶液保存。
定量计数方法 视野法 行格法 水滴法
0.1ml计数框
移液枪取样0.1毫升 均匀分布于计数框 对部分视野进行镜检 计数该部分视野的数量
换算整个计数框的数量
计数框的面积是400 mm2,而显微镜的视野面 积是固定值。 显微镜视野面积的计算:某型号显微镜的视场 数 为 20 , 那 么 在 高 倍 镜 下 的 实 际 视 场 直 径 为 20/40=0.5mm , 高 倍 镜 下 的 视 野 面 积 为 3.14*0.25*0.25≈0.2 mm2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、注意事项: ①计算过程中常可碰到某些个体的一部分在 视野中,而另一部分在视野外,可规定出 在视野上半圈者计数,下半圈者不计数。 此外,数量最好用细胞数表示,对不易用 细胞数表示的群体或丝状体,可求出其平 均细胞数。 ②计算时优势种类尽可能鉴别到种,其余鉴 别到属。注意不要把微可用下列公式计算: N = (Cs × V ) / ( Fs × Fn ×U ) × Pn 式中:Cs——计数框的面积(mm2); Fs——显微镜的视野面积(mm2) Fn——计数的视野数 V——1升水样浓缩后的体积(ml) U——计数框的体积(ml) Pn——计数出的浮游植物个数 如果计数框、显微镜固定不变,Fs、V、U也固定 不变,公式(Cs × V ) / ( Fs × Fn ×U )用 常数K代替,上述公式可简化为:N = K × Pn。
2、生物量的换算
★生物量较数量更能反应水体中浮游植物的现 存量,不同水体的数据也更具可比性,所以 计算出的数值应按湿重换算成生物量。 ★湿重通常按体积计算,由于不同水体的个体 差异较大,所以最好每个样品都能实测其优 势种的体积,但此项工作量相当大。
3、计数具体要求;
①校正计数框容积。 ②定量用的盖玻片应以碱水或肥皂水洗净备用,用前 可浸于70﹪酒精中,用时取出拭干。 ③滴取样品以后最好用液体石蜡封好计数框四周,以 防计数过程中干燥。 ④用台微尺测显微镜一定倍数下的视野直径。 ⑤选好与计数框同样容积的定量吸管。 ⑥定量时应将浓缩标本水样充分摇匀,快吸快滴 。 ⑦加上盖玻片后不应有气泡出现 。 ⑧计数后的定量样品应保存下来。
浮游植物的定量分析
1、计数:
★ 将浓缩沉淀后的水样充分摇匀,吸出 0.1 mL置计数框内 (表面积最好 20 ×20 mm),在400—600倍显微镜下观 察计数。 ★每瓶标本计数2片取其平均值,每片大约计算50个视野, 如果平均每个视野有5—6个时浮游植物就要数100个视野, 如平均每个视野不超过1—2个时,要数200个视野以上, ★ 同一样品的2片计算结果和平均数之差如不大于其均数的 ±15%,其均数可视为有效结果,否则还必须测第 3片, 直至 3片平均数与相近两数之差不超过均数的15%为止, 这两相近值的均数,即可视为计算结果。
相关文档
最新文档