天文观测的基础知识
物理学中的天文观测技术知识点

物理学中的天文观测技术知识点天文观测是物理学中的重要领域,它为我们揭示了宇宙的奥秘和物质运动的规律。
在物理学中,天文观测技术是实践和研究天文学的基础,掌握这些技术知识对于深入理解宇宙和发展物理学具有重要意义。
本文将介绍一些物理学中的天文观测技术知识点。
一、天文望远镜天文望远镜是进行天文观测的基本工具。
它可以放大远处天体的图像,使我们能够更清晰地观察星体的性质和特征。
天文望远镜根据其工作原理和观测范围的不同分为光学望远镜和射电望远镜两大类。
光学望远镜利用透镜或反射镜将光线聚焦,形成放大的图像。
光学望远镜通常用于观测可见光波段的天体,如恒星、行星、星系等。
其中,折射望远镜使用透镜,反射望远镜使用反射镜。
射电望远镜用于接收并放大天体发出的射电波,以研究宇宙中的高能物理现象和星体的电磁辐射。
射电望远镜利用抛物面或拼接筒状反射器接收射电波,并通过信号处理和数据分析得到相关的天文数据。
二、天文观测技术1. 视差测量视差是指地球在绕太阳公转时,观测同一个天体在不同时刻所看到的视觉位置的差异。
视差测量可以用于确定天体的距离。
通过观测天体在地球公转周期中的位置变化,计算出其视差,再结合地球和太阳的距离,即可得到天体的距离。
2. 天体测量天体测量是指对天体的位置、亮度和运动状态等进行精确测量和观测。
其中,位置测量可以通过确定天体在天球上的赤经和赤纬来实现。
亮度测量可以通过采集天体的光子数量来计算。
运动状态可以通过测量天体的径向速度和横向速度来确定。
3. 光谱分析光谱分析是指将星光或其他电磁波通过光栅或分光器进行分离和测量的过程。
通过对天体的光谱进行分析,可以获得有关星体成分、温度、速度等重要信息。
光谱分析被广泛应用于行星大气层研究、恒星结构分析和宇宙膨胀等课题中。
4. 天体成像天体成像是指对天体的图像进行拍摄和处理,以获得有关天体的详细信息。
天体成像技术广泛应用于研究星系结构、星体表面特征和行星环境等领域。
常用的天体成像技术包括长时间曝光摄影、干涉成像和阵列成像等。
天文观测的基础知识

天文观测的基础知识为了进行天文观测,就要学会认识星空,识别天体;因此,有关天体的坐标,天体的运动,天文观测所用的时间系统,星座与星图,以及星星的星等、颜色、光谱型等多方面的基础知识,都是我们开展天文观测活动时,必须首先了解的。
1.天球和天球坐标系进行天文观测首先要从找星、认星开始。
在茫茫的星空中,怎样去寻找我们想要观测的天体呢?这就必须知道天体在空中的“住址,”即它在天空的坐标。
这样的坐标是怎样建立起来的呢?这就要从天球说起。
(1)天球当我们仰望天空观察天体时,无论是太阳、月亮还是恒星、行星,它们好像都镶嵌在同一个半球的内壁上,而我们自己无论在地球上什么位置,都好像是处于这个半球的中心。
这是由于天体离我们太远了,我们在地球上无法觉察不同天体与我们之间距离的差异。
因此,为了研究天体的位置和运动,可以引入一个假想的以观测者为球心,以任意长为半径的球,称作天球。
由于地球在浩瀚的宇宙中可以看作是一个质点,地心也可以当作地球的中心,因此可以假想一个地心天球,它是以地心为中心、无穷远为半径的球。
有了天球,我们认识天体就方便了,因为不论天体离我们多么遥远,我们都可以把它们投影到天球上,并用它们在天球上的视位置来表示它们。
在天球上,两颗星之间的距离如同在球面上两点间的距离一样,用角度来表示,称为角距。
显然,角距与两颗星的真实距离是两回事:角距很小的两颗星实际距离可能十分遥远。
星体的角直径(简称角直上看去它所张的角来角直径也不是天体的如,月亮和太阳的视是1/2 度,但月亮的大简直可以忽略不计,离地球很近才看起来(2)天球坐标系大小一般用视径),即从地球表示。
同样,视真实大小。
例角直径大约都小与太阳相比只是由于月亮很大。
为了描述天体在天球上的视位置,就要在天球上建立起坐标系,称天球坐标系,就像我们为了描述地球上某一点的位置需要建立地球坐标系(如用地理纬度和地理经度表示)一样。
事实上,天球坐标系与地球坐标系的模式很相似。
【天文观测】天文学的基础知识(五).doc

天文学的基础知识(五)什么叫原子?最基木的物质形式叫做原子。
世界上有从水到特氟纶的数十亿种自然的和人造的物质,但是所有的这些都可以在化学实验室中分解成更简单的物质。
例如利用电流水可以分解成两种气体,即氢气和氧气,或者其它的,普通的食盐(氯化钠)可以分解成金属钠,和- 种有毒气体叫做氯气。
这四种物质中的每一个——氢气、氧气、纳和氯气——有这独一无二的性质O没有哪一种能够进一步分解而不丢失它们的性质,还是氢气、氧气、纳和氯气。
它们是最基本的物质因此被叫做元素。
依然保持这种元素性质的最小单元叫做原子。
尽管如此, 原了被认为是由更小的叫做质子、中子和电子的粒子组成的。
通常,上又一个整个的亚原子粒子家族, 除了极少例外,本书不会接触它质子和中子紧密结合在原子的中心,电子以一定距离绕核旋转。
实际们。
什么叫分子?当原子组合在一起,它们组成了分子。
两个或更多原子结合在一起,形成了分子。
例如,一个碳原子和一个氧原子组成一个一氧化碳分子。
一个碳原子和两个氧原子组成一个二氧化碳分子。
分子只含有很少几个原子的通常叫做简单分子,含有很多原子的分子叫做复杂分子。
究竟几个原子从简单变为复杂决定于你谈话的对象。
当射电天文学家在星际空间找到6到8个原子的分子吋,他们把它叫做复杂分子, 因为没有人会想到在险恶的宇宙空间可以找到这种东西。
但是生化学家可能会把这种分了称为很简单的分子。
什么叫元素?在整个宇宙,只有92种自然产生的元素。
唯一的决定这种特定的元素是这种元素而不是其它的元素的是在原子核里的质子数量。
例如,在宇宙中每个原子核里有一个质子的原子是氢,每个核里有两个质子的原子是氮而不会是其他。
碳原子有6个质子,氧原子有8个质子等等。
一直到核里有92个质子的铀。
原子核里有相同质子和电子数的元素具有相似的化学性质,为了简便,科学家们按照质子数目把元素进行了分组,这就是元素周期表。
世界上每个化学实验室里或课堂上通常会有这么一张。
这是世界的蓝本,因为就92个基本的元素构成了我们的世界。
天文学入门

天文学入门1. 简介天文学是研究地球以及宇宙中其他天体的科学领域。
它探索宇宙的起源、结构、发展以及其中存在的各种天文现象。
天文学的研究范围广泛,包括天体物理学、宇宙学、行星科学等。
本文将介绍天文学的基础知识和研究方法。
2. 天体观测了解天文学的第一步是进行天体观测。
天体观测可以通过肉眼观测、望远镜观测以及天文台等设备进行。
肉眼观测主要包括观测星星、行星、星团等。
望远镜观测可以获得更精细的图像,进一步研究天体的特征和性质。
天文台则是专门用于观测和研究天体的设施,常常配备有先进的观测设备和实验室。
3. 天体物理学天体物理学是研究天体物理现象和宇宙物理学规律的学科。
它主要从物理的角度分析和解释天体的光度、能谱、星系结构以及恒星、行星、星系的形成和演化过程。
通过天体物理学的研究,我们可以了解宇宙中的物质组成、引力、辐射、星体运动等基本特性。
4. 星系和宇宙学星系是由星体、星团以及星际物质组成的巨大系统。
宇宙学是研究宇宙整体以及其演化、结构的学科。
通过研究星系和宇宙学,我们可以了解宇宙的形成与演化,黑洞和暗物质的存在,探索宇宙间的宇宙背景辐射等重要问题。
5. 行星科学行星科学是研究行星、卫星以及其他天体的学科。
它包括行星的形成、内部结构、大气层以及其上存在的各种地质和气象现象的研究。
通过对行星科学的研究,我们可以了解地球以及其他行星的演化过程,也可以为太空探测和太空旅行提供重要的数据和信息。
6. 天文学的发展与应用天文学是人类探索宇宙的重要手段之一,它不仅推动了科学的发展,也对人类社会产生了广泛的应用价值。
天文学的发展不仅有助于扩大人类对宇宙的认识,还可以为航天技术、导航系统以及天气预报等领域提供重要的支持。
此外,天文学在文化、艺术等方面也具有重要作用,启发了许多文学作品和艺术创作。
7. 结语天文学是一门充满神秘和魅力的学科,它让我们了解到宇宙的浩瀚和多样性。
本文简单介绍了天文学的基础知识和研究领域,希望能够激发读者对天文学的兴趣,进一步深入研究和探索宇宙的奥秘。
第一章 天文观测基础知识

天文学
星座: 二、星座: 为了认星方便, 为了认星方便,人们用假想的线条将亮星连接 起来,构成各种各样的图形, 起来,构成各种各样的图形,或人为地把星空分 成若干区域,这些图形连同它们所在的天空区域, 成若干区域,这些图形连同它们所在的天空区域, 中国称之星官,西方叫做星座。 中国称之星官,西方叫做星座。
天文学
天文学
国际通行的星空区划—— 88个星座 88个星座 2、国际通行的星空区划
88个星座的确定: 88个星座的确定: 个星座的确定 1928年 国际天文联合会正式公布了88个星座, 88个星座 1928年,国际天文联合会正式公布了88个星座,并规 定以1875 1875年的春分点和赤道为基准的赤经线和赤纬线作为 定以1875年的春分点和赤道为基准的赤经线和赤纬线作为 划分星座范围的界限。(其中北天29 。(其中北天29个 黄道12 12个 划分星座范围的界限。(其中北天29个,黄道12个,南天 47个 47个。) 星座大小相差悬殊,所含星数也各不相同,同一星座的星 星座大小相差悬殊,所含星数也各不相同, 无任何物理联系。 无任何物理联系。
天文学
天文学
三、四季星空
天文学
天文学
斗柄指东 斗柄指南 斗柄指西 斗柄指北
天下皆春 天下皆夏 天下皆秋 天下皆冬
天文学
附:四季星空特点
1.春夜星空 1.春夜星空 春天的夜晚,最引人注目的是高悬于北方天空的北斗七星(即大熊座α 春天的夜晚,最引人注目的是高悬于北方天空的北斗七星(即大熊座α、β、 ),它斗柄指向东方 它斗柄指向东方, 星是3m 其它6颗均为2m 2m。 γ、δ、ε、ζ、η),它斗柄指向东方,除ε星是3m 外,其它6颗均为2m。 从北斗七星出发,连接北斗星斗口的β星和α星并延长到这两颗星距离5 从北斗七星出发,连接北斗星斗口的β星和α星并延长到这两颗星距离5倍 远的地方,可找到明亮的北极星(小熊座α 星等为2m);沿斗口的另外两 2m); 远的地方,可找到明亮的北极星(小熊座α,星等为2m);沿斗口的另外两 颗星δ星和γ星的联线向西南巡去,可找到一颗白色亮星——轩辕十四(狮 轩辕十四( 颗星δ星和γ星的联线向西南巡去,可找到一颗白色亮星 轩辕十四 子座α 星等为1m) 顺着斗柄的δ 1m); 子座α,星等为1m);顺着斗柄的δ星、ε星、ζ星、η星所形成的曲线延 伸出去,能找到一颗橙色的零等亮星——大角星(牧夫座α);继续南寻可 大角星( 伸出去,能找到一颗橙色的零等亮星 大角星 牧夫座α);继续南寻可 找到另一颗1m亮星——角宿一(室女座α);再继续向西南巡去可找到由4 1m亮星 角宿一( 再继续向西南巡去可找到由4 找到另一颗1m亮星 角宿一 室女座α);再继续向西南巡去可找到由 颗小星组成的四边形,这就是乌鸦座。这条始于斗柄、 颗小星组成的四边形,这就是乌鸦座。这条始于斗柄、止于乌鸦座的大弧线 称为春季大曲线;由大角、角宿一和狮子座β构成的三角形称为春季大三角。 春季大三角。 称为 ;由大角、角宿一和狮子座β构成的三角形称为春季大三角 牧夫座中有5颗由3m以下的暗星组成的五边形,加上大角星,很像一个风筝。 3m以下的暗星组成的五边形 牧夫座中有5颗由3m以下的暗星组成的五边形,加上大角星,很像一个风筝。大 角星就像挂在风筝下边的明灯。 角星就像挂在风筝下边的明灯。 紧靠牧夫座的东偏北有7 3m以下的暗星 它们像一个小小的半环形串珠, 以下的暗星, 紧靠牧夫座的东偏北有7颗3m以下的暗星,它们像一个小小的半环形串珠,开口 对着北方,这就是北冕座,古人把它想象成一顶王冠; 对着北方,这就是北冕座,古人把它想象成一顶王冠;其中最亮的是北冕座 3m)。 α星(3m)。 室女座呈“ 字形,角宿一位于土字下面一横的东段, 室女座呈“土”字形,角宿一位于土字下面一横的东段,土字的一竖同下面一 横的交点处是3m的室女座γ星,它几乎位于天赤道上,且离秋分点很近。 横的交点处是3m的室女座γ 它几乎位于天赤道上,且离秋分点很近。 3m的室女座 狮子座是春夜星空中很引人注目的角色,它像一个反写的问号; 狮子座是春夜星空中很引人注目的角色,它像一个反写的问号;东边的三颗星 构成一个小直角三角形,最东边角顶上是一颗黄色的2等星——狮子座β星。 狮子座β 构成一个小直角三角形,最东边角顶上是一颗黄色的2等星 狮子座 乌鸦座南面是长蛇座,它的星都很暗,最亮的长蛇座α 角宿一)是一颗2 乌鸦座南面是长蛇座,它的星都很暗,最亮的长蛇座α星(角宿一)是一颗2等 此外,春夜星空中还可看到巨蟹座、天龙座等。 星。此外,春夜星空中还可看到巨蟹座、天龙座等。
《天文观测基础知识》课件

目录
CONTENTS
• 天文观测的基本概念 • 天文观测的硬件设备 • 天体的观测与识别 • 天文观测的实践技巧 • 天文观测的未来发展
01
天文观测的基本概 念
天文学的定义与分类
总结词
天文学是一门研究宇宙中天体的科学,包括恒星、行星、星 云、星系等。根据研究对象的不同,天文学可分为多个分支 ,如恒星天文学、行星天文学、星云天文学等。
详细描述
天文学是研究宇宙中各种天体的科学,其研究对象包括恒星 、行星、星云、星系等。通过对这些天体的观测和研究,人 们可以了解宇宙的起源、演化、结构以及天体的形成、演化 和终极命运。
天文观测的历史与意义
总结词
天文观测是人类探索宇宙的重要手段, 其历史悠久,对人类文明的发展产生了 深远的影响。通过天文观测,人们可以 了解宇宙的奥秘,探索天体的形成和演 化机制,为人类未来的太空探索提供科 学依据。
。
化学与天文学
天文学中涉及的元素和化合物种 类繁多,通过研究这些物质的性 质和演化过程,有助于深入了解
化学反应和分子结构。
地球科学和天文学
地球科学和天文学在研究地球和 宇宙中的物质、能量和演化过程 方面有许多交叉点,通过跨学科 合作可以取得更多突破性成果。
天文观测的社会影响与教育意义
提高公众科学素养
感谢您的观看
望远镜的类型与选择
折射望远镜
使用透镜作为主镜,适合观测恒星、行星等天体,但需要定期调整。
反射望远镜
使用反射镜作为主镜,适合观测星云、星系等深空天体,但需要定期 清洁。
折反射望远镜
结合折射和反射的原理,适合观测多种天体,但价格较高。
望远镜选择
根据个人需求和预算选择适合自己的望远镜,初学者可选择便携、易 操作的望远镜,有经验的观测者可选择更高级的望远镜。
(完整版)第一章天文观测基础知识

北冕座等天区。
天文学
二十八宿:黄道附近的二十八个区域 四象:将二十八宿分成四组,每组七宿,
分别与四个地平方位、四种颜色相匹配。 东方苍龙,青色:角、亢、氐、房、心、尾、箕; 北方玄武,黑色:斗、牛、女、虚、危、室、壁; 西方白虎,白色:奎、娄、胃、昴、毕、觜、参; 南方朱雀,红色:井、鬼、柳、星、张、翼、轸; 二十八宿的范围有大有小,最大的为井宿,赤经跨度约为330,
第一章 天文观测基础知识
世界上有两件东西能够深深地震撼人们的心灵,一件是我 们心中崇高的道德准则,另一件是我们头顶上灿烂的星空.
---伊曼努尔·康德
天文学
§1.1 星座与四季星空
一、星名: 1.有的根据神话故事,如牛郎星、织女星、天狼星、 老人星等; 2.有的根据中国二十八星宿,如角宿一、心宿二、 娄宿三、参宿四和毕宿五等; 3.有的根据恒星颜色,如大火(心宿二); 4.还有的根据所在天区,如天关星、北河二、北河 三、南河三、天津四、五车二和南门二。
在地球赤道地 区看到所有天体 都垂直于平面做 圆运动
在中纬地区看到 的天体的周日视 动
天文学
三、永不上升与永不下 落天体
1、永不下落天体: 永不上升天体:
2、地理纬度越高,这类 天体越多:
极区:各半; 赤道:无
天文学
永不下落天体 永不上升天体
天文学
这是北天恒星周 日视运动的照片。 每条弧线都是一颗 恒星穿过夜空的轨 迹。图(a)的暴光 时间约为1小时,
图(b)约为5小时。
天文学
§1.3 天体的周年视运动
周年视运动 地球的公转
→天体的周年 视运动→太阳 自西向东在黄 道上每年运行 一周 →造成四 季星空的不同。
初级天文入门知识点总结

初级天文入门知识点总结1. 天文学的历史天文学的历史可以追溯到古代,人类早在数千年前就开始观测天空,并通过观测星象来预测天气和季节。
古代的天文学家们还通过观测天体的运动来制定了我们今天所使用的日历系统。
在古代,人们还发现了一些行星和恒星的运动规律,比如地球和其他行星的运动轨迹、太阳的日食月食等现象。
2. 天体的分类在天文学中,天体可以分为恒星、行星、卫星、彗星、星系、星云等多种类型。
恒星是宇宙中的主要光源,包括了太阳和其他的恒星;行星是绕着恒星运行的天体,比如地球、火星、金星等;卫星则是绕着行星运行的天体,比如月球等。
彗星是由冰、岩石和尘埃组成的天体,它们经常会呈现出明亮的尾巴。
星系是由恒星、星云、星际气体等组成的巨大天体系统,其中包括了银河系和仙女座星系等;而星云是由尘埃和气体组成的云状结构,它们通常是新恒星的诞生地。
3. 天文学的主要研究内容天文学的主要研究内容包括了天文观测、天体物理学、宇宙学等多个方面。
天文观测是天文学的基础,通过观测天体的运动和现象,可以了解天体的性质和特征;天体物理学则研究了天体内部的物质组成和相互作用规律,比如太阳内部的核聚变反应等;宇宙学则是研究了宇宙的起源、演化和最终命运,探讨了宇宙的整体结构和性质。
4. 天文学的研究方法天文学的研究方法包括了观测、实验和理论推导等多种手段。
观测是天文学研究的基础,通过使用望远镜、射电望远镜等仪器,天文学家们可以观测到天体的运动轨迹、光谱特征、射电辐射等现象;实验则是通过在实验室中模拟天体的物理过程,来验证理论和观测结果;理论推导则是通过数学和物理的方法来推导出天体的性质和规律,比如引力理论、相对论等。
5. 天文学的重要发现天文学家们通过观测和研究,取得了许多重要的发现。
比如,他们发现了地球是一个椭球体,太阳是恒星,月球是地球的卫星等;还发现了宇宙膨胀的现象,并提出了宇宙大爆炸模型,这些发现推动了天文学的发展。
同时,天文学家们还发现了一些引人注目的现象,比如黑洞、脉冲星、星云等,这些现象为我们认识宇宙提供了重要的线索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天文观测的基础知识为了进行天文观测,就要学会认识星空,识别天体;因此,有关天体的坐标,天体的运动,天文观测所用的时间系统,星座与星图,以及星星的星等、颜色、光谱型等多方面的基础知识,都是我们开展天文观测活动时,必须首先了解的。
1.天球和天球坐标系进行天文观测首先要从找星、认星开始。
在茫茫的星空中,怎样去寻找我们想要观测的天体呢?这就必须知道天体在空中的“住址”,即它在天空的坐标。
这样的坐标是怎样建立起来的呢?这就要从天球说起。
(1)天球当我们仰望天空观察天体时,无论是太阳、月亮还是恒星、行星,它们好像都镶嵌在同一个半球的内壁上,而我们自己无论在地球上什么位置,都好像是处于这个半球的中心。
这是由于天体离我们太远了,我们在地球上无法觉察不同天体与我们之间距离的差异。
因此,为了研究天体的位置和运动,可以引入一个假想的以观测者为球心,以任意长为半径的球,称作天球。
由于地球在浩瀚的宇宙中可以看作是一个质点,地心也可以当作地球的中心,因此可以假想一个地心天球,它是以地心为中心、无穷远为半径的球。
有了天球,我们认识天体就方便了,因为不论天体离我们多么遥远,我们都可以把它们投影到天球上,并用它们在天球上的视位置来表示它们。
在天球上,两颗星之间的距离如同在球面上两点间的距离一样,用角度来表示,称为角距。
显然,角距与两颗星的真实距离是两回事:角距很小的两颗星实际距离可能十分遥远。
星体的大小一般用视角直径(简称角直径),即从地球上看去它所张的角来表示。
同样,视角直径也不是天体的真实大小。
例如,月亮和太阳的视角直径大约都是1/2度,但月亮的大小与太阳相比简直可以忽略不计,只是由于月亮离地球很近才看起来很大。
(2)天球坐标系为了描述天体在天球上的视位置,就要在天球上建立起坐标系,称天球坐标系,就像我们为了描述地球上某一点的位置需要建立地球坐标系(如用地理纬度和地理经度表示)一样。
事实上,天球坐标系与地球坐标系的模式很相似。
例如,天球上的赤道坐标系(也称第二赤道坐标系)就可以看作是地球坐标系在天球上的延伸:把地轴(地球的自转轴)无限延长就是天轴;天轴与天球相交的两点就是北天极和南天极;地球赤道面的延伸与天球相交的大圆就是天赤道;与地球上的纬圈、经圈类似,天球上也有相应的赤纬圈和赤经圈,不过天球上经圈的起始点与地球不同。
这样,天体在天球上的位置就可用赤纬、赤经来表示。
除了赤道坐标系外,天文观测中常用的天球坐标系还有地平坐标系、时角坐标系(也称第一赤道坐标系)、黄道坐标系等,它们是以天球上不同的基本点、基本圈为基础建立起来的。
有关天球上各基本点、基本圈的定义,怎样以它们为基础建立起各种天球坐标系,不同坐标系的特点以及它们之间的相互关系,请参见附录。
不同天球坐标系各有其特点,因而也有不同的用途。
例如,在赤道坐标系中,赤经α的起算点是天球上的固定点——春分点,春分点与天体一同作周日视动,它与天体的相对位置不因天体的周日视动而改变;而赤纬δ的值也只由天体和天赤道决定;因此,一个天体的(α,δ)值是确定的,不受观测时间和观测地点的影响。
所以在星表中多用(α,δ)表示天体的位置。
再如,地平坐标系是以观测者为参照点建立起来的,具有“地方性”特点,即在不同时间、不同地点观星,星星的地平坐标(A,h)均不相同。
但由于它的参照物是地平圈,比较直观,只要知道某个天体在某一时刻的方位角A和地平高度h,就可以方便地在天球上找到它的位置,因此利用它非常便于观测。
在时角坐标系中引入时角t对于寻找天体也很方便。
由于天体的时角随周日视动变化,每小时变化15º,因此只要知道了某时某处天体的时角,就可以方便地把望远镜瞄向这个天体。
2.为了进行天文观测,就要学会认识星空,识别天体;因此,有关天体的坐标,天体的运动,天文观测所用的时间系统,星座与星图,以及星星的星等、颜色、光谱型等多方面的基础知识,都是我们开展天文观测活动时,必须首先了解的。
人们很早就注意到,在绚丽多彩的夜空,繁星三五成群,构成各种美丽的图案。
由此,人们把天上的恒星划分成许多不同的区域,称为星座。
根据不同星座中较亮的星所组成的图形,人们为它们起了名字,并编撰了许多美丽的故事。
例如,我国关于牛郎织女的传说,就缘于银河两侧的牛郎星和织女星;而希腊人则把牛郎星及其周围的星想象成一只矫健的天鹰,把织女星及其周围的星想象成一架巨大的天琴,天鹰座、天琴座由此得名。
中国古代把恒星天空划分成三垣二十八宿,“垣”是墙的意思,“宿”是住址的意思。
日月穿行在黄道附近,把黄道附近的星分成28个大小不等的星区,叫二十八宿,月亮在绕地运动过程中,每日从西往东经过一宿。
二十八宿以外的星区划分为三垣:紫微垣、太微垣和天市垣。
紫微垣包括北天极附近的星区,太微垣大致包括室女座、后发座和狮子座,天市垣包括蛇夫座、武仙座、巨蛇座和天鹰等星座。
1928年,国际天文学联合会决定,将全天划分为88个星座,其中沿黄道天区的有12个星座,太阳的视运动穿过这里。
星座中的每颗星也有自己的名称。
我们祖先早就给天上的亮星起了名,有根据神话故事命名的,如牛郎星、织女星、天狼星、老人星等;有依据中国二十八宿命名的,如角宿一、心宿二、娄宿三、参宿四和毕宿五等;也有根据恒星颜色命名的,如大火星(心宿二);还有依据恒星所在天区命名的,如天关星、北河二、北河三、南河三、天津四、五车二和南门二;等等。
1603年,德国业余天文学家拜尔建议“平等对待”这些恒星,不能只给亮星起名,他提出:每个星座中的恒星从亮到暗顺序排列,以该星座名称加一个希腊字母表示。
例如,猎户座中有猎户座α(参宿四)、猎户座β(参宿七)、猎户座γ(参宿五)、猎户座δ(参宿三)等。
如果某个星座的恒星超过了24个或者为了方便,就用星座的名称后加阿拉伯数字表示,如天鹅座61星、天鹅座32星、双子座65及兔座17等。
天文学家有时直呼它们的星表号,这也是一种星名,如猎户座α星也叫HD 39801或BD+7 1055等(HD和BD分别代表星表名)。
这美丽星空的88个星座不是每个地区的人们都能看到,如北京地区只能看到60多个星座。
由于地球的自转和公转,人们在不同地区、不同季节、不同时间看到的星空都不同。
3.天体的视运动我们白天看到太阳东升西落,夜晚见到斗转星移。
这是由于地球处于不断的自转与公转运动中,因此仿佛看见天体在运动,这就是天体的视运动。
(1)天体的周日视动地球自转是自西向东转,24小时一周,人在地球上觉察不到地球运动,却看到天体都从东方升起、西方落下,这就是天体的周日视动。
如果你对着北极星附近照相,采用长时间的曝光(如长于6小时),底片上就会看到所有天体围着北天极转的运动轨迹。
地球上不同纬度处天极的高度等于当地的地球纬度,站在不同纬度处的观测者,看到的天体的升落情况也不同。
站在两极观星。
在地球北极或南极,天极与天顶重合,天赤道与真地平重合,此时所看到的天体,其周日运动的轨迹平行于地平圈,即所看到的天体都是围绕观测者平行于地平打转转。
在北极只能看到北半天球的星,永远看不到南半天球的星;而在南极只能看到南半天球的星,永远看不到北半天球的星。
在北半球夜里可看到北极星在天顶,其他北天球的星全围绕着天极平行于地平转圈,没有升与落。
站在赤道观星。
在地球赤道地区看到的情景是,所有天体都在垂直于地平面的平面内运动,可看到全天球的星;中午时,太阳当头照,立杆不见影。
站在赤道观星站在两极和赤道之间观星站在两极和赤道之间观星。
在此范围内,天轴与地平的倾角等于当地的地球纬度 ,地球纬度越高,天极离地面越高,可看到的另外半天球的星就越少。
例如,在北京,北极星的高度约40º,在昆明看到北极星的高度只有25º;而在赤道以南地区,北极星则不能看到。
(2)太阳的周年视动由于地球公转,地球上的人们看到太阳在天球上相对其他恒星背景有视运动,这叫做太阳的周年视运动。
一年内太阳“穿行”于沿黄道带的12个星座,有人把这些星座叫黄道十二星座。
太阳在天球上的位置每个月移动一个星座。
例如,大约两千年前,春分前后太阳在白羊座,以后依次经过金牛座、双子座、巨蟹座、狮子座、室女座、天秤座、天蝎座、人马座、摩羯座、宝瓶座、双鱼座。
由于岁差的影响,现今春分日前后太阳的位置已移至双鱼座靠近宝瓶座的地方。
黄道与天赤道有两个交点,太阳在周年视运动过程中沿黄道由天赤道以南穿到天赤道以北的那个交点叫春分点,从天赤道以北穿到天赤道以南的那个交点叫秋分点;黄道上与春分点相距90º且在赤道以北的那一点叫夏至点,与夏至点相对的那一点叫冬至点。
太阳每年公历3月21日前后到达春分点,6月22日前后到达夏至日,9月23日前后到达秋分点,12月22日前后到达冬至点。
在地球不同纬度处,一年四季看到太阳的视运动是不一样的。
在北半球中纬地区,春分日和秋分日太阳正好位于天赤道上,早晨日出正东,傍晚落于正西,白天、黑夜等长。
春分过后,太阳北移,太阳从东北方升起,西北方落下,白昼渐长,黑夜渐短。
此后,正午时太阳高度逐渐增高,夏至日达到最高,白昼最长。
夏至过后,太阳正午高度逐渐降低,白昼也逐渐变短,至秋分日又昼夜平分。
秋分过后,太阳南移,正午高度继续降低,冬至日达到最低,白昼最短,太阳从东南方升起,西南方落下。
在赤道地区,春分日和秋分日中午太阳都位于头顶。
从春分到秋分,太阳在天顶北;从秋分到春分,太阳在天顶南。
一年中无论哪一天,太阳总沿着与地平圈垂直的路线直升直落,四季昼夜平分。
在北极,从春分到秋分,有半年不落的太阳;而另外那半年,则是连续的沉沉黑夜。
春分过后,太阳每天一圈沿地平线打转,十分艰难地慢慢爬升,到夏至爬到最高;往后又缓慢下落,到秋分时落下地平线,半年以后的下一个春分,才会再升起。
南极的情况与北极正好相反,从春分日到秋分日太阳永不上升,而从秋分日到春分日太阳永不下落。
在北极圈上,夏至日那天太阳不落,在半夜时它只和地平相切于北点;冬至日那天太阳不上升,只在中午时于南点附近光芒一现。
(3)星空的四季变化由于地球的自转与公转,我们看到天球上星座的位置也在不断变化,不仅每天有升有落,而且不同季节的同一时间看到的星空也不一样。
例如,就黄道带附近的天区而言,每年春季,夜晚人们主要看到的是狮子座、室女座等星座;每年秋季,夜晚看到的主要是宝瓶座、摩羯座等星座。
每过三个月,同一个星座就要提前6小时出现。
与太阳的周年视动一样,在地球的不同纬度处,一年四季看到的星座也是不同的。
4.天文观测的时间系统时间的计量对于天文观测是很重要的,这里我们仅介绍几个由地球自转周期确定的时间系统。
(1)平时与恒星时平时。
我们日常生活所用的时间系统称为平时,在这种时间系统中以地球自转一周的时间作为一日。
若地球的自转以真太阳(即太阳的视圆面中心)为标准,则地球自转一周的时间叫做一个真太阳日,相应的有真太阳时、分、秒等。