四川省高二上学期期中数学试题
四川省成都市简阳市成都市简阳实验学校(成都石室阳安学校)2024-2025学年高二上学期10月期中考

四川省成都市简阳市成都市简阳实验学校(成都石室阳安学校)2024-2025学年高二上学期10月期中考试数学试题一、单选题1.设点()2,3,4A -在xOy 平面上的射影为B ,则OB等于()AB .5C .D 2.将10个数据按照从小到大的顺序排列如下:11,15,17,,23,26,27,34,37,38a ,若该组数据的40%分位数为22,则a =()A .19B .20C .21D .223.设,R x y ∈,()1,1,1a = ,()1,,b y z = ,(),4,2c x =- 且,a c b ⊥ ∥c,则a b += ()A .B C .3D .44.对空中移动的目标连续射击两次,设{A =两次都击中目标},{B =两次都没击中目标),C ={恰有一次击中目标},{D =至少有一次击中目标},下列关系不正确的是()A .A D ⊆B .AC BD = C .A C D⋃=D .B D =∅5.将一枚质地均匀的骰子连续抛掷8次,得到的点数分别为1,2,3,,4,5,5,6x ,则这8个点数的中位数为4.5的概率为()A .23B .12C .16D .136.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误的数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A .270,75X s <>B .270,75X s ><C .270,75X s =<D .270,75X s =>7.平行六面体1111ABCD A B C D -的底面ABCD 是边长为2的正方形,且1160A AD A AB ∠=∠=︒,13AA =,M 为11A C ,11B D 的交点,则线段BM 的长为()A .3BCD .8.如图,在正方体1111ABCD A B C D -中,,M N 分别为1,AC A B 的中点,则下列说法错误的是()A .//MN 平面11ADD A B .异面直线MN 与1DD 所成角为60o C .直线MN 与平面ABCD 所成角为45 D .MN AB⊥二、多选题9.在我们发布的各类统计数据中,同比和环比都是反映增长速度的核心数据指标.如图是某专业机构统计的2022年1-12月中国校车销量走势图,则下列结论正确的是()A .8月校车销量的同比增长率与环比增长率都是全年最高B .1-12月校车销量的同比增长率的平均数小于环比增长率的平均数C .1-12月校车销量的环比增长率的极差大于同比增长率的极差D .1-12月校车销量的环比增长率的方差大于同比增长率的方差10.给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =11.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A .若A 与B 相互独立,则()12P A B = B .若()14P AB =,则事件A 与B 相互独立C .若A 与B 互斥,则()12P A B =D .若B 发生时A 一定发生,则()14P AB =三、填空题12.经过点()1,2,1A ,点()3,4,5B 的直线的一个方向向量是.13.某品牌新能源汽车2019-2022年这四年的销量逐年增长,2019年销量为5万辆,2022年销量为22万辆,且这四年销量的中位数与平均数相等,则这四年的总销量为万辆.14.已知12,e e 是空间单位向量,1212e e ⋅= .若空间向量b 满足1252,2b e b e ⋅=⋅= ,且对于任意,x y ∈R ,()()()120102001,b xe ye b x e y e x y -+≥-+=∈R,则0y =,b =.四、解答题15.柜子里有3双不同的鞋,分别用1a ,2a ;1b ,2b ;1c ,2c 表示6只鞋,其中1a ,1b ,1c 表示每双鞋的左脚,2a ,2b ,2c 表示每双鞋的右脚.如果从中随机地取出2只,那么(1)写出试验的样本空间;(2)求下列事件的概率:①取出的鞋都是一只脚的;②取出的鞋子是一只左脚一只右脚的,但不是一双鞋.(3)求取出的鞋不成双的概率.16.2023年是中国共产党建党102周年,为了使全体党员进一步坚定理想信念,传承红色基因,市教育局以“学党史、悟思想、办实事、开新局”为主题进行“党史”教育,并举办由全体党员参加的“学党史”知识竞赛.竞赛共设100个小题,每个小题1分,共100分.现随机抽取1000名党员的成绩进行统计,并将成绩分成以下七组:[72,76),[76,80),[80,84),[84,88),[88,92),[92,96),[96,100)并绘制成如图所示的频率分布直方图.(1)根据频率分布直方图,求这1000名党员成绩的众数,中位数;(2)用分层随机抽样的方法从低于80分的党员中抽取5人,若在这5人中任选2人进行问卷调查,求这2人中至少有1人成绩低于76分的概率.17.在四棱锥P ABCD -中.底面为矩形ABCD ,且3, 4.AD CD PD ==⊥平面,1ABCD PD =.M 为AB 中点.(1)求点P 到直线AC 的距离;(2)求异面直线,AC PM 所成角的余弦值.18.如图,在三棱柱111ABC A B C -中,底面是边长为2的等边三角形,12,,CC D E =分别是线段1,AC CC 的中点,1C 在平面ABC 内的射影为D .(1)求证:1A C ⊥平面BDE ;(2)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(3)若点F 为线段11B C 上的动点(不包括端点),求锐二面角F BD E --的余弦值的取值范围.19.在空间直角坐标系Oxyz 中,定义:过点()000,,A x y z ,且方向向量为()(),,0m a b c abc =≠的直线的点方向式方程为000x x y y z z a b c---==;过点()000,,A x y z ,且法向量为()()222,,0m a b c a b c =++≠的平面的点法向式方程为()()()0000a x x b y y c z z -+-+-=,将其整理为一般式方程为0ax by cz d ++-=,其中000d ax by cz =++.(1)求经过()()1,2,4,2,0,1A B -的直线的点方向式方程;(2)已知平面1:2310x y z α-+-=,平面1:240x y z β+-+=,平面()()()1:123250m x m y m z γ+-+++-=,若111,l l αβγ=⊄ ,证明:1l γ∥;(3)已知斜三棱柱111ABC A B C -中,侧面11ABB A 所在平面2α经过三点()4,0,0P -,()()3,1,1,1,5,2Q H ----,侧面11BCC B 所在平面2β的一般式方程为40y z ++=,侧面11ACC A 所在平面2γ的一般式方程为()22110x my m z -+++=,求平面11ABB A 与平面11ACC A 的夹角大小.。
四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题

四川省成都市树德中学2024-2025学年高二上学期11月期中考试数学试题一、单选题1.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1B M相等的向量是().A .1122a b c-++B .1122++a b cC .1122-+ a b cD .1122--+ a b c2.若直线经过(1,0),A B 两点,则直线AB 的倾斜角是()A .135︒B .120︒C .60︒D .45︒3.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A B C .5-D 4.某年1月25日至2月12日某旅游景区A 及其里面的特色景点a 累计参观人次的折线图如图所示,则下列判断正确的是()A .1月29日景区A 累计参观人次中特色景点a 占比超过了13.B .2月4日至2月10日特色景点a 累计参观人次增加了9800人次.C .2月4日至2月6日特色景点a 的累计参观人次的增长率和2月6日至2月8日特色景点a 累计参观人次的增长率相等.D .2月8日至2月10日景区A 累计参观人次的增长率小于2月6日至2月8日的增长率.5.如图,修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处,从A ,B 到直线(水库底面与水坝的交线)的距离AC 和B 分别为3m 和4m ,B 的长为2m ,则水库底面与水坝所成二面角的大小为().A .30︒B .60︒C .120︒D .150︒6.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”,四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵111ABC A B C -中AC BC ⊥.过A 点分别作1AE A B ⊥于点E ,1AF AC ⊥于点F .下列说法正确的是()A .四棱锥11C AB BA -为“阳马”B .四面体111A CC B 为“鳖臑”C .1EF AC ⊥D .1EF A B⊥7.阅读下面材料:在空间直角坐标系Oxyz 中,过点()000,,P x y z 且一个法向量为(),,m a b c =的平面α的方程为()()()0000a x x b y y c z z -+-+-=,过点()000,,P x y z 且方向向量为()()0n u v w uvw =≠ ,,的直线l 的方程为000.x x y y z z uvw---==根据上述材料,解决下面问题:直线l 是两个平面220x y -+=与210x z -+=的交线,则()是l 的一个方向向量.A .()2,1,4B .()1,3,5C .()1,2,0-D .()2,0,1-8.设直线系:cos sin 1m n M x y θθ+=(其中,,m n θ均为参数,{}02π,,1,2m n θ≤≤∈),则下列命题中是假命题...的是()A .当1m n ==时,存在一个点与直线系M 中所有直线的距离都相等.B .当2m n ==时,直线系M 中所有直线恒过定点,且不过第三象限.C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1.D .当2,1m n ==时,若0a ≤,则点(),0A a 到直线系M 中所有直线的距离不小于1.二、多选题9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组[)[)[)0,0.50.5,13,3.5 ,,,,制作了频率分布直方图,下列命题正确的有().A .设该市有60万居民,则全市居民中月均用水量不低于3吨的人数恰好有3万人.B .如果希望86%的居民每月的用水量不超出标准,则月均用水量a (吨)的最低标准的估计值为2.7.C .该市居民月均用水量的平均数的估计值为1.875吨.D .在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率为0.4.10.以下四个命题为真命题的是()A .过点(10,10)-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B .已知直线10kx y --=和以(3,1)M -,(3,2)N 为端点的线段相交,则实数k 的取值范围为213k -≤≤C .直线10x y +-=与直线2210x y ++=D .点P 在直线:10l x y --=上运动,(2,3),(2,0)A B ,则||||PA PB -11.在棱长为2的正方体1111ABCD A B C D -中,M 为棱CD 的中点,N 为线段BM 上的动点(含端点),则下列选项正确的有()A .若直线1A M 与直线AN 所成角为α,则cos α的最大值为23.B .若点N 到平面11ABCD 的距离为d ,则d CN +的最小值为5.C .若在该正方体内放入一个半径为12的小球,则小球在正方体内不能达到的空间体积是π22-.D .点T 从B 点出发匀速朝1D 移动,点S 从A 点出发匀速朝1A 移动.现,S T 同时出发,当S 到达1A 时,T 恰好在1BD 的中点处.则在此过程中,,S T .三、填空题12.一条光线经过点(2,3)A 射到直线10x y ++=上,被反射后经过点(1,1)B ,则入射光线所在直线的一般式方程为.13.已知三棱锥P ABC -,如图所示,G 为ABC V 重心,点M ,F 为PG ,PC 中点,点D ,E 分别在PA ,PB 上,PD mPA= ,()0PE nPB mn =≠ ,若M D E F ,,,四点共面,则11m n+=.14.甲、乙、丙、丁4名棋手进行象棋比赛,赛程如下,其中编号为i 的方框表示第i 场比赛,方框中是进行该场比赛的两名棋手,第i 场比赛的胜者称为“i 的胜者”,负者称为“i 的负者”,第6场为决赛,获胜的人是冠军,已知甲每场比赛获胜的概率均为34,而乙、丙、丁相互之间胜负的可能性相同.则乙进入决赛,且乙与其决赛对手是第二次相遇的概率为.四、解答题15.如图,已知平行六面体1111—ABCD A B C D 的底面ABCD 是菱形,1AB =,且11C CB C CD BCD ∠=∠=∠.(1)证明:1C C BD ⊥;(2)若1CA ⊥平面1C BD ,求1CC 的长.16.班级新年晚会设置抽奖环节.不透明纸箱中有大小、质地相同的红球3个,黄球2个.(1)如下两种方案,哪种方案获得奖品的可能性更大?并说明理由.方案一:依次无放回地抽取2个球,若颜色相同,则获得奖品;方案二:依次有放回地抽取2个球,若颜色相同,则获得奖品.(2)还剩最后一个奖品时,甲乙两位同学都想获得.于是他们约定:轮流从纸箱中有放回地抽取一球,谁先抽到黄球,谁获得奖品;如果3轮之后都两人都没有抽到黄球,则后抽的同学获得奖品.如果甲先抽,求甲获得奖品的概率.17.已知,如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且13AG GD =,BG GC ⊥,2GB GC ==,E 是BC 的中点,四面体P BCG -的体积为83.(1)求异面直线GE 与PC 所成角的余弦;(2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF GC ⊥,求PFFC的值.18.男子10米气步枪和女子10米气步枪在1984年被列为奥运会比赛项目.根据国际射联的要求,10米气步枪靶纸为总边长80毫米的正方形,直径最大的1环,直径为45.5mm ,而最高10.9环的靶心点,直径仅有0.5mm .为了了解某校射击选手甲的训练水平,甲按照比赛要求进行了15次射击训练,命中的环数如下:射击序号123456789101112131415命中环数9.49.510.29.19.28.910.19.39.49.69.39.310.19.5 5.0(1)如果命中10环及以上的环数,我们称之为“命中靶心”.①用以上数据估计甲每次射击“命中靶心”的概率;②现发现一架小型无人机悬停在训练区域的上空(训练区域禁止无人机飞行),甲准备将其击落.假设甲每次射击能击中该无人机的概率为①中所求其“命中靶心”的概率,每次射击互不影响.则甲至少需要进行几次射击,才能有90%以上的概率能击落该无人机(该无人机被击中一次即被击落)?(2)经计算得甲这次训练命中环数的平均数15119.2015i i x x ===∑,标准差1.18s =,其中i x 为第i 次射击命中的环数,1i =,2,L ,15.第15次射击时,由于甲受到了明显的干扰,导致结果偏差较大.为了数据分析更加客观准确,教练剔除了这次的成绩.求剔除数据后,甲命中环数的平均数和方差(精确到0.01).(参考数据lg20.3010=,lg30.4771=)19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点.(1)求证://NC 平面PAM ;(2)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(3)设P AM D --的大小为θ,若π(0,]2θ∈,求平面PAM 和平面PBC 夹角余弦值的最小值.。
四川省成都市2023-2024学年高二上学期期中数学试题含解析

2023-2024学年度上期高2025届半期考试高二数学试卷(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第4页.注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色墨迹签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试卷上作答无效.5.考试结束后,只将答题卡收回.第Ⅰ卷(选择题,共60分)一.单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()(),2,2,3,4,2a x b =-=-,若a b ⊥,则x 的值为()A.1B.4- C.4D.1-【答案】C 【解析】【分析】根据向量垂直的坐标运算即可求解.【详解】由()(),2,2,3,4,2a x b =-=- 得3840a b x ⋅=--= ,所以4x =,故选:C2.已知直线1:3410l x y --=与2:3430l x y -+=,则1l 与2l 之间的距离是()A.45B.35C.25 D.15【答案】A 【解析】【分析】直接由两平行线之间的距离公式计算即可.【详解】因为已知直线1:3410l x y --=与2:3430l x y -+=,而()()34430⨯---⨯=,所以12l l //,所以由两平行线之间的距离公式可得1l 与2l 之间的距离是45d ==.故选:A.3.已知圆()()221:219C x y -++=与圆()()222:134C x y ++-=,则圆1C 与圆2C 的位置关系为()A.相交B.外切C.内切D.内含【答案】B 【解析】【分析】根据两圆圆心距与半径的关系即可求解.【详解】()()221:219C x y -++=的圆心为()2,1,3r -=,()()222:134C x y ++-=的圆心为()1,3,2R -=,由于125C C ==,125C C r =+=R ,所以1C 与圆2C 外切,故选:B4.若直线()1:410l x a y +-+=与2:20l bx y +-=垂直,则a b +的值为()A.2 B.45C.23D.4【答案】D 【解析】【分析】根据直线垂直的条件求解.【详解】由题意40b a +-=,∴4a b +=.故选:D .5.已知事件,A B 相互独立,且()()0.3,0.7P A P B ==,则()P AB =()A.1 B.0.79C.0.7D.0.21【答案】D 【解析】【分析】由独立事件的概率乘法公式计算.【详解】由题意()()()0.30.70.21P AB P A P B ==⨯=,故选:D .6.如图,空间四边形OABC 中,,,OA a OB b OC c ===,点M 为BC 中点,点N 在侧棱OA 上,且2ON NA =,则MN =()A.121232a b c--+B.211322a b c-++C.211322a b c --D.111222a b c +-【答案】C 【解析】【分析】由图形中线段关系,应用向量加减、数乘的几何意义用,,OA a OB b OC c === 表示出MN.【详解】1221()2332MN MB BO ON CB OB OA OA OB OC OB=++=-+=+-- 211211322322OA OB OC a b c =--=--.故选:C7.已知椭圆方程为()222210x y a b a b +=>>,长轴为12A A ,过椭圆上一点M 向x 轴作垂线,垂足为P ,若212||13MP A P A P =⋅,则该椭圆的离心率为()A.3B.3C.13D.23【答案】B 【解析】【分析】根据题意,设()00,M xy ,表示出12,A P A P ,结合椭圆方程,代入计算,再由离心率公式,即可得到结果.【详解】设()00,M x y ,则2200221x y a b+=,()()()120,0,,0,,0A a A a P x -,则10A P x a =+,20A P x a =-,0MP y =所以222002201200||13a y y MP A P A x x a P x a+⋅=-==⋅-,且22x a <,所以22213y a x =-,即222003a x y -=,代入椭圆方程可得222002231a y y a b-+=,化简可得223a b =,则离心率为63e ===.故选:B8.现有一组数据不知道其具体个数,只知道该组数据平方后的数据的平均值是a ,该组数据扩大m 倍后的数据的平均值是b ,则原数据的方差、平方后的数据的方差、扩大m 倍后的数据的方差三个量中,能用,,a b m 表示的量的个数是()A.0 B.1C.2D.3【答案】C 【解析】【分析】设出原始数据,逐个计算求解即可.【详解】设该组数据为123,,n x x x x ⋅⋅⋅,则12nx x x x n++⋅⋅⋅+=.所以22212n x x x a n++⋅⋅⋅+=,12n mx mx mx mx b n ++⋅⋅⋅+==,所以b x m =.原数据的方差()()()()2222221212221212n n n x x x x x x x x x x x x x s xnn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+2222222b b a x x a x a a m m ⎛⎫=-+=-=-=- ⎪⎝⎭,可以用,,a b m 表示.扩大m 倍后的数据的方差:()()()()()()2222221212222n n mx mx mx mx mx mx x x x x x x s m nn ⎡⎤-+-+⋅⋅⋅+--+-+⋅⋅⋅+-==⎢⎥⎢⎥⎣⎦22222212b m s m a m a b m ⎛⎫==-=- ⎪⎝⎭,可以用,,a b m 表示.平方后的数据的方差:()()()()2222222224441212221232n n n x a x a x aa x x x x x x s a nn n-+-+⋅⋅⋅+-++⋅⋅⋅+++⋅⋅⋅+==-+44444422212122n n x x x x x x a a a n n++⋅⋅⋅+++⋅⋅⋅+=-+=-.不能用,,a b m 表示.故选:C.二.多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,全选对得5分,部分选对得2分,有错选得0分.9.我校举行党史知识竞赛,对全校参赛的1000名学生的得分情况进行了统计,把得分数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分成5组,绘制了如图所示的频率分布直方图.根据图中信息,下列说法正确的是()A.图中的x 值为0.020B.这组数据的极差为50C.得分在80分及以上的人数为400D.这组数据的众数的估计值为82【答案】AC 【解析】【分析】根据频率值和为1即可判断A ;根据由频率分布直方图无法求出这组数据得极差,即可判断B ;求出得分在80分及以上的频率,再乘以总人数,即可判断C ;根据频率分布直方图中众数即可判断D .【详解】解:()100.0050.0350.0300.0101x ⨯++++=,解得0.020x =,故A 正确;因为由频率分布直方图无法求出这组数据得极差,故B 错误;得分在80分及以上的频率为()100.0300.0100.4⨯+=,所以得分在80分及以上的人数为10000.4400⨯=,故C 正确;这组数据的众数的估计值为75,故D 错误.故选:AC .10.下列说法正确的是()A.对任意向量,a b ,都有a b b a⋅=⋅B.若a b a c ⋅=⋅且0a ≠,则b c=C.对任意向量,,a b c,都有()()a b c a b c⋅⋅=⋅⋅ D.对任意向量,,a b c ,都有()+⋅=⋅+⋅ a b c a c b c【答案】AD 【解析】【分析】可由数量积的定义及运算律可逐一判定选项.【详解】cos ,a b a b a b ⋅=,cos ,b a a b a b ⋅= ,可得a b b a ⋅=⋅,故选项A 正确;由a b a c ⋅=⋅ 可得()0a b c ⋅-=,又0a ≠ ,可得b c = 或()a cb ⊥- ,故选项B 错误;()()cos ,R a b c a b a b c c λλ⋅⋅==∈,()()cos ,R a b c c b c b a a μμ⋅⋅==∈所以()()a b c a b c ⋅⋅=⋅⋅ 不一定成立,故选项C 错误;由向量数量积运算的分配律可知选项D 正确;故选:AD.11.甲、乙两支田径队队员的体重(单位:kg)信息如下:甲队体重的平均数为60,方差为200,乙队体重的平均数为68,方差为300,又已知甲、乙两队的队员人数之比为1:3,则关于甲、乙两队全部队员的体重的平均数和方差的说法正确的是()A.平均数为67B.平均数为66C.方差为296D.方差为287【答案】BD 【解析】【分析】先利用比重计算全部队员体重的平均值,再利用平均值计算方差即可.【详解】依题意,甲的平均数160x =,乙的平均数268x =,而甲、乙两队的队员人数之比为1:3,所以甲队队员在所有队员中所占比重为14,乙队队员在所有队员中所占比重为34故甲、乙两队全部队员的体重的平均数为:1360686644x =⨯+⨯=;甲、乙两队全部队员的体重的方差为:()()22213200606630068665922828744s ⎡⎤⎡⎤=⨯+-+⨯+-=+=⎣⎦⎣⎦.故选:BD.12.已知四面体中三组对棱的中点间的距离都相等,则下列说法正确的是()A.该四面体相对的棱两两垂直B.该四面体四个顶点在对面三角形的射影是对面三角形的外心C.该四面体的四条高线交于同一点(四面体的高线即为过顶点作底面的垂线)D.该四面体三组对棱平方和相等【答案】ACD 【解析】【分析】设,,AB b AC c AD d ===,利用向量法AD 选项,用几何法判断BC 选项.【详解】选项A ,如图,四面体ABCD 中,,,,,,E F G H I J 是所在棱中点,EF GH IJ ==,设,,AB b AC c AD d === ,则111()()222EF AF AE AD AB AC d b c =-=-+=-- ,111()()222GH AH AG AC AD AB c d b =-=+-=+- ,EF GH =,即EF GH = ,所以11()()22d b c c d b --=+-,所以222222222222d b c b d c d b c d b c c d b d b c++-⋅-⋅+⋅=+++⋅-⋅-⋅c d b c ⋅=⋅ ,即()0c b d ⋅-= ,所以()c b d ⊥- ,即AC DB ⊥,所以AC BD ⊥,同理,AB CD AD BC ⊥⊥,A 正确;选项B ,设1AH ⊥平面BCD ,1H 是垂足,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,而1BH ⊂平面1ABH ,所以1CD BH ⊥,同理1BC DH ⊥,所以1H 是平面BCD 垂心,同理可得其它顶点在对面的射影是对面三角形的垂心,B 错;选项C ,如上图,1AH ⊥平面BCD ,2BH ⊥平面ACD ,3DH ⊥平面ABC ,123,,H H H 是垂足,先证明12,AH BH 相交,1AH ⊥平面BCD ,CD ⊂平面BCD ,所以1AH CD ⊥,又AB CD ⊥,11,,AB AH A AB AH =⊂ 平面1ABH ,所以CD ⊥平面1ABH ,同理CD ⊥平面2ABH ,所以平面1ABH 和平面2ABH 重合,即12,AH BH 共面,它们必相交,设12AH BH H ⋂=,下面证明DH ⊥平面ABC ,与证明CD ⊥平面1ABH 同理可证得BC ⊥平面1ADH ,又DH ⊂平面1ADH ,所以BC DH ⊥,同理由2BH ⊥平面ACD 可证得DH AC ⊥,而,AC BC 是平面ABC 内两相交直线,所以DH ⊥平面ABC ,因此DH 与3DH 重合,同理可证CH ⊥平面ABD ,C 正确;选项D ,由选项A 的讨论同理可得b c b d c d ⋅=⋅=⋅,222222222()2AB CD AB CD b d c b c d c d +=+=+-=++-⋅ ,222222222()2AC BD AC BD c d b b c d b d +=+=+-=++-⋅,所以2222AB CD AC BD +=+,同理222222AB CD AC BD AD BC +=+=+,D 正确.故选:ACD .第Ⅱ卷(非选择题,共90分)三.填空题:本大题共4小题,每小题5分,共20分.13.经过()()0,2,1,0A B -两点的直线的方向向量为()1,k ,则k =______.【答案】2【解析】【分析】方向向量与BA平行,由此可得.【详解】由已知(1,2)BA =,()1,k 是直线AB 的方向向量,则2k =,故答案为:2.14.在一次篮球比赛中,某支球队共进行了8场比赛,得分分别为25,29,30,32,37,38,40,42,那么这组数据的第65百分位数为______.【答案】38【解析】【分析】根据百分位数的定义即可求解.【详解】865% 5.2⨯=,故这组数据的第65百分位数为第6个数38,故答案为:3815.写出与圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=都相切的一条直线的方程__________.【答案】0x =##4y =-##430x y -=##34100x y ++=【解析】【分析】判断两个圆是相离的,得到应该有四条公切线,画出图形易得0x =或4y =-为公切线,设切线方程为y kx b =+,根据圆心到直线的距离等于半径列出关于,k b 方程组,求解.【详解】因为圆1C 的圆心为()11,3C --,半径11r =圆2C 的圆心为()23,1C -,半径23r =又因为124C C =所以圆1C 与圆2C 相离,所以有4条公切线.画图为:易得:0a x =或:4n y =-是圆221:(1)(3)1C x y +++=和222:(3)(1)9C x y -++=的公切线设另两条公切线方程为:y kx b =+圆1C 到直线y kxb =+的距离为1=圆2C 到直线y kxb =+3=所以3133k b b k ++=-+所以31339k b b k ++=-+或31339k b b k ++=-+-34k b =+或52b =-当52b =-1==所以34k =-,切线方程为34100x y ++=当34k b =+3==所以()()225249b b +=++所以240b b +=所以0b =或4b =-当0b =时43k =,切线方程为430x y -=当4b =-时0k =,切线方程为4y =-故答案为:0x =或4y =-或430x y -=或34100x y ++=16.已知P 为直线=2y -上一动点,过点P 作圆221x y +=的两条切线,切点分别为,B C ,则点()2,1A 到直线BC 的距离的最大值为______.【答案】52【解析】【分析】首先设点00(,)P x y ,求过点BC 的直线方程,并判断直线BC 过定点,再利用几何关系求最大值.【详解】设00(,)P x y ,过点P 引圆221x y +=的两条切线,切点分别为,B C ,则切点在以OP 为直径的圆上,圆心00,22x y ⎛⎫ ⎪⎝⎭,半径r =,则圆的方程是22220000224x y x y x y +⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,整理为:22000x y x x y y +--=,又点,B C 在圆221x y +=上,两圆方程相减得到001x x y y +=,即直线BC 的方程是001x x y y +=,因为02y =-,代入001x x y y +=得021x x y -=,则直线BC 恒过定点10,2N ⎛⎫- ⎪⎝⎭,所以点()2,1A 到直线BC 的距离52d AN ≤==,所以点()2,1A 到直线BC 的距离的最大值为52.故答案为:52.【点睛】思路点睛:首先本题求以OP 为直径的圆,利用两圆相减,求得过两圆交点的直线方程,关键是发现直线BC 过定点,这样通过几何关系就容易求定点与动直线距离的最大值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的周长为()()14,3,0,3,0B C -.(1)求点A 的轨迹方程;(2)若AB AC ⊥,求ABC 的面积.【答案】(1)()2210167x y y +=≠(2)7【解析】【分析】(1)结合椭圆定义可得A 的轨迹方程.(2)利用AB AC ⊥及椭圆定义可列出方程,求解AC AB ⋅,即可算出ABC 的面积.【小问1详解】ABC 的周长为14且6,86BC AC AB BC =∴+=>=,根据椭圆的定义可知,点A 的轨迹是以()()3,0,3,0B C -为焦点,以8为长轴长的椭圆,即4,3,a c b ===A 的轨迹方程为221167x y+=,又A 为三角形的顶点,故所求的轨迹方程为()2210167x y y +=≠.【小问2详解】222,||||36AB AC AB AC BC ⊥∴+== ①.A 点在椭圆()2210167x y y +=≠上,且()()3,0,3,0B C -为焦点,8AC AB ∴+=,故22||264AC AB AC AB ++⋅=②.由①②可得,14AC AB ⋅=,故172S AC AB =⋅⋅=.ABC ∴ 的面积为7.18.如图,四面体OABC 的所有棱长都为1,,D E 分别是,OA BC 的中点,连接DE .(1)求DE 的长;(2)求点D 到平面ABC 的距离.【答案】18.219.3【解析】【分析】(1)利用基底,,OA OB OC 表示出向量DE,再根据向量数量积求长度的方法即可求出;(2)由该几何体特征可知,点O 在平面ABC 的射影为ABC 的中心,即可求出.【小问1详解】因为四面体OABC 的所有棱长都是1,所以该四面体为正四面体,()1111122222DE DA AB BE OA OB OA OC OB OA OB OC =++=+-+-=-++,而且12OA OB OB OC OA OC ⋅=⋅=⋅= ,所以()()2211131442DE OA OB OC =--=-=,即2DE =,所以DE 的长为2.【小问2详解】因为四面体OABC 为正四面体,所以点O 在平面ABC 的射影O '为ABC 的中心,ABC 的外接圆半径为11sin6023︒⨯=,所以点O 到平面ABC 的距离为3d ==,由于D 点为线段OA 的中点,所以点D 到平面ABC 的距离为3.19.现从学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160,165,⋅⋅⋅,第八组[]190195,.右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率并估计该校的800名男生的身高的中位数;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记事件A 表示随机抽取的两名男生不.在同一组....,求()P A .【答案】(1)第七组的频率为0.06,中位数为174.5cm(2)815【解析】【分析】(1)根据频率为和1,可得第七组的频率为0.06,设学校的800名男生的身高中位数为m ,根据中位数的定义可得()0040080217000405...m ..+++-⨯=,求解即可;(2)用列举法写出基本事件的总数和两名男生不在同一组所包含的基本事件,即可得解.【小问1详解】(1)由直方图的性质,易知第七组的频率为415(0.008+0.016+0.04+0.04+0.06++0.008)=0.06505-⨯⨯.由于0.040.080.20.320.5,0.040.080.20.20.520.5++=<+++=>,设学校的800名男生的身高中位数为m ,则170175m <<,由()0040080217000405...m ..+++-⨯=,得1745m .=,所以学校的800名男生的身高的中位数为174.5cm .【小问2详解】解:第六组[)180185,的人数为4,设为a b c d ,,,,第八组[]190195,的人数为0.0085502⨯⨯=,设为,A B ,则从中随机抽取两名男生有,,,,,,,,,,,,,dB,ab ac ad bc bd cd aA aB bA bB cA cB dA AB 共15种情况.事件A 表示随机抽取的两名男生不在同一组,所以事件A 包含的基本事件为,,,aA aB bA bB ,,,,cA cB dA dB 共8种情况.所以()815P A =.20.已知圆C 经过点()0,2A ,()6,4B ,且圆心在直线340x y --=上.(1)求圆C 的方程;(2)若平面上有两个点()6,0P -,()6,0Q ,点M 是圆C 上的点且满足2MP MQ=,求点M 的坐标.【答案】(1)()22420x y -+=(2)10,33⎛⎫ ⎪ ⎪⎝⎭或10,33⎛⎫-⎪ ⎪⎝⎭【解析】【分析】(1)设出圆心,利用点到直线的距离公式即可求得圆的方程.(2)根据已知条件求得M 满足的方程联立即可求得M 的坐标.【小问1详解】∵圆心在直线340x y --=上,设圆心()34,C a a +,已知圆C 经过点()0,2A ,()6,4B ,则由CA CB =,=解得0a =,所以圆心C 为()4,0,半径r CA ===所以圆C 的方程为()22420x y -+=;【小问2详解】设(),M x y ,∵M 在圆C 上,∴()22420x y -+=,又()6,0P -,()6,0Q ,由2MPMQ=可得:()()2222646x y x y ⎡⎤++=-+⎣⎦,化简得()221064x y -+=,联立()()22224201064x y x y ⎧-+=⎪⎨-+=⎪⎩解得10411,33M ⎛⎫ ⎪ ⎪⎝⎭或10411,33⎛⎫- ⎪ ⎪⎝⎭.21.如图,在直三棱柱111ABC A B C -中,1π,2,3,2BAC AB AC AA M ∠====是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点,点Q 在线段1A N 上.(1)若//PQ 平面1A CM ,请确定点Q 的位置;(2)请在下列条件中任选一个,求11A QA N的值;①平面BPQ 与平面ABC的夹角余弦值为53;②直线AC 与平面BPQ所成角的正弦值为106.【答案】(1)Q 为1A N 靠近N 三等分点处(2)①1112A Q A N =;②1112A Q A N =【解析】【分析】(1)分别以1,,AC AB AA 所在直线为,,x y z 轴,建立空间直角坐标系,求出面1A CM 的法向量n,由//PQ 平面1A CM 得PQ n ⊥ ,即0PQ n ⋅= ,求解11A QA N即可;(2)设()1101A Q A Nλλ=<<,求出平面BPQ 的法向量为m,平面ABC 的法向量,若选择①,利用平面与平面的夹角的向量求法求解;若选择②,由直线与平面所成角的向量求法求解.【小问1详解】分别以1,,AC AB AA 所在直线为,,x y z轴,建立空间直角坐标系,()()()()()130,0,3,2,0,0,0,1,0,1,1,3,1,1,,,,32A C M N P Q a a ⎛⎫ ⎪⎝⎭,则()()1132,0,3,0,1,3,1,1,2A C A M PQ a a ⎛⎫=-=-=-- ⎪⎝⎭ .设面1A CM 的法向量(),,n x y z =r ,则110A C n A M n ⎧⋅=⎪⎨⋅=⎪⎩ ,即23030x z y z -=⎧⎨-=⎩.令2z =,得()3,6,2n =.因为//PQ 平面1A CM ,所以PQ n ⊥ ,即0PQ n ⋅=.所以()()316130a a -+-+=,得23a =,122,,033A Q ⎛⎫= ⎪⎝⎭,所以13A Q = .因为11123A Q A N A N ==,所以Q 为1A N 靠近N 三等分点处时,有//PQ 平面1A CM .【小问2详解】设()1101A QA Nλλ=<<,则()11,,0A Q A N λλλ== .所以1111331,1,,1,1,22PQ PA A Q PA A N PB λλλ⎛⎫⎛⎫=+=+=--=--⎪ ⎪⎝⎭⎝⎭.设平面BPQ 的法向量为()111,,m x y z =,则00PQ m PB m ⎧⋅=⎪⎨⋅=⎪⎩,即()()11111131102302x y z x y z λλ⎧-+-+=⎪⎪⎨⎪-+-=⎪⎩.令()141z λ=-,得()()()3,32,41m λλλ=--.注意到平面ABC 的法向量为()0,0,1,直线AC 的方向向量为()1,0,0,若选择①,平面BPQ 与平面ABC的夹角余弦值为53,则()10,0,1cos 53m mθ⋅==.即()2483001λλλ-+=<<,解得12λ=,即1112A Q A N =.若选择②,直线AC 与平面BPQ所成角的正弦值为106,则()21,0,0sin 106m mθ⋅==.即()2181713001λλλ+-=<<,解得12λ=,即1112A Q A N =.22.已知()()()2,3,2,0,2,0,A B C ABC -∠的内角平分线与y 轴相交于点E .(1)求ABC 的外接圆的方程;(2)求点E 的坐标;(3)若P 为ABC 的外接圆劣弧 BC 上一动点,ABC ∠的内角平分线与直线AP 相交于点D ,记直线CD 的斜率为1k ,直线CP 的斜率为2k ,当1275k k =-时,判断点E 与经过,,P D C 三点的圆的位置关系,并说明理由.【答案】(1)2232524x y ⎛⎫+-=⎪⎝⎭(2)20,3⎛⎫ ⎪⎝⎭(3)点E 在经过,,P D C 三点的圆上,理由见解析【解析】【分析】(1)根据直角三角形的性质即可求解圆心和半径,从而得解;(2)根据等面积法或者利用角平分线的性质可得AB AF BCCF=,即可求解长度得斜率,进而可求解直线方程,得解;(3)联立方程可得22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭,6743,3131k k D k k --⎛⎫ ⎪--⎝⎭,根据1275k k =-可得1k =,即可求解点的坐标,由点的坐标求解圆的方程,即可判定.【小问1详解】易知ABC 为C 为直角的直角三角形,故外接圆的圆心为斜边AB 边的中点30,2⎛⎫ ⎪⎝⎭,半径为52,所以外接圆的方程为2232524x y ⎛⎫+-= ⎪⎝⎭.【小问2详解】设ABC ∠的内角平分线交AC 于点F ,根据角平分线性质定理,可知AB AF BCCF=,(利用11sin 22211sin 222ABFBCFABC AB BF AF BC S ABC S BC BF FC BC ∠⋅⋅==∠⋅⋅ 可得AB AF BC CF =)由结合3AF CF +=,5AB ==,4,3BC AC ==所以4133BD CF CF k BC =⇒==所以,ABC ∠的内角平分线方程为()123y x =+,令0x =,即可得点E 坐标20,3⎛⎫⎪⎝⎭.【小问3详解】点E 在经过,,P D C 三点的圆上,理由如下:由题意可知直线AP 的斜率存在,故设直线AP 的直线方程为()32y k x -=-,联立直线与圆的方程()223232524y k x x y ⎧-=-⎪⎨⎛⎫+-=⎪ ⎪⎝⎭⎩,可得()()22221344640kx k k x kk ++-+--=注意到,A P 两点是直线与圆的交点,所以2246421P k k x k --⋅=+222321P k k x k --∴=+,故22223234,11k k k P k k ⎛⎫--- ⎪++⎝⎭.联立直线AP 与ABC ∠的内角平分线方程()321233y k x y x ⎧-=-⎪⎨=+⎪⎩,可得6731k x k -=-6743,3131k k D k k --⎛⎫∴ ⎪--⎝⎭.此时221222243433434003443313111,6753423253422313111k k k k k k k k k k k k k k k k k k k k k ----------++======------+----++,12343475,1435534k k k k k k k -+∴==-=-∴=-+.此时,点31,22P ⎛⎫-- ⎪⎝⎭,点11,.22D P ⎛⎫- ⎪⎝⎭点满足在劣弧 BC 上.设经过,,P D C 三点的圆的方程为()2222040x y mx ny t m n t ++++=+->,则4205320120m t m n t m n t ++=⎧⎪--+=⎨⎪-++=⎩,解得5617673m n t ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩.所以,经过,,P D C 三点的圆的方程为2251770663x y x y +-+-=.将点20,3E ⎛⎫ ⎪⎝⎭代入圆的方程成立,所以点E 在经过,,P D C 三点的圆上.。
四川省成都市蓉城名校联盟2023-2024学年高二上学期期中联考数学试题含解析

2023~2024学年度上期高中2022级期中联考数学(答案在最后)考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.袋中装有4个大小、质地完全相同的带有不同标号的小球,其中2个红球,2个绿球,甲摸一个后不放回,乙再摸一个,试验所有可能的结果数为()A.8B.9C.12D.16【答案】C【解析】【分析】根据不放回抽取的性质进行求解即可.⨯=.【详解】设4个小球分别为1A,2A,1B,2B,则试验结果为4312故选:C2.某大型联考有16000名学生参加,已知所有学生成绩的第60百分位数是515分,则成绩在515分以上的人数至少有()A.6000人B.6240人C.6300人D.6400人【答案】D【解析】【分析】根据第60百分位数的意义进行进行求解即可.⨯=,则成绩在515分以上人数为【详解】成绩在515分及以下人数为1600060%9600-=.1600096006400故选:D3.给出下列命题:①若空间向量a,b满足0a b ⋅<,则a与b的夹角为钝角;②空间任意两个单位向量必相等;③对于非零向量c,若a c b c ⋅=⋅,则a b =;④若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底.其中说法正确的个数为()A.0 B.1C.2D.3【答案】B 【解析】【分析】利用空间向量基本概念及数量积的定义及运算,对各个命题逐一分析判断即可得出结果.【详解】对于①,当a 与b 的夹角为π,满足0a b ⋅< ,所以①错误;对于②,因为向量既有大小又有方向,两向量相等要满足方向相同,长度相等,任意两个单位向量,只能确定长度相等,所以②错误;对于③,由a c b c ⋅=⋅ ,得到()0a b c -⋅= ,所以a b = 或a b - 与c 垂直,所以③错误;对于④,因为{},,a b c 为空间向量的一个基底,所以,,a b c 不共面,故,,a b b c c a +++ 也不共面,所以{},,a b b c c a +++构成空间的另一个基底,所以④正确.故选:B.4.某地高校有100人参加2023数学建模竞赛,成绩频数分布表如下,根据该表估计该校大学生数学建模竞赛成绩的平均分为成绩分组/分[45,55)[55,65)[65,75)[75,85)[85,95]人数/人42550156A.59B.59.4C.69D.69.4【答案】D 【解析】【分析】根据平均数公式计算可得.【详解】依题意平均数为42550156506070809069.4100100100100100⨯+⨯+⨯+⨯+⨯=.故选:D5.若1()3P A =,()14P B =,()56P A B ⋃=,则事件A 与B 的关系为()A.相互独立B.互为对立C.互斥D.无法判断【答案】A 【解析】【分析】根据条件,利用和事件概率公式()5()()()6P A B P A P B P AB ==+- ,求出5()6P AB =,从而得到()()()P AB P A P B =⋅,即可判断出结果.【详解】因为()5135()()()()6346P A B P A P B P AB P AB ==+-=+-= ,得1()4P AB =,所以131()()()344P AB P A P B =⨯==⋅,故选:A.6.的正方形ABCD 对角线BD 折起,使得平面ABD 与平面CBD 所成二面角的大小为120︒,则异面直线AD 与BC 所成角的余弦值为()A.14B.14-C.34-D.34【答案】D 【解析】【分析】建立空间直角坐标系,根据条件求出,,,A B C D 坐标,从而得到13(,1,)22AD =-- ,(1,1,0)BC =-,再利用线线角的向量法即可求出结果.【详解】取BD 中点O ,连接AO ,CO ,以OC ,OB 分别为x ,y 轴,垂直面BOC 的直线为z 轴,建立空间直角坐标系o xyz -,如图所示,因为ABCD 的正方形,所以1OA OB OC ===,则(0,1,0)B ,(1,0,0)C ,(0,1,0)D -,又易知,OA BD ⊥,OC BD ⊥,所以AOC ∠为二面角A BD C --的平面角,由题知,120AOC ∠=︒,所以030A Z ∠=︒,则13,0,22A ⎛⎫- ⎪ ⎪⎝⎭所以,1(,1,)22AD =-- ,(1,1,0)BC =- ,故131322cos ,24AD BC AD BC AD BC+⋅===⋅ ,所以,异面直线AD 与BC 所成角的余弦值为34.故选:D.7.某校2023年秋季入学考试,某班数学平均分为125分,方差为21s .成绩分析时发现有三名同学的成绩录入有误,A 同学实际成绩137分,被错录为118分;B 同学实际成绩115分,被错录为103分;C 同学实际成绩98分,被错录为129分,更正后重新统计,得到方差为22s ,则21s 与22s 的大小关系为()A.2212s s = B.2212s s > C.2212s s < D.不能确定【答案】C 【解析】【分析】分析前后的平均分,再根据方差公式判断即可.【详解】设班级人数为n ()0n >,因为11810312913711598++=++,所以更正前后平均分不变,且()()()()()()22222211812510312512912554913712511512598125973-+-+-=<-+-+-=,所以2212s s <.故选:C8.如图所示的多面体是由底面为ABCD 的长方体被截面1AEC F 所截得到的,其中3AB =,2BC =,14CC =,2BE =,则BC 中点G 到平面1AEC F 的距离为()A.211B.3211C.32222D.92222【答案】D 【解析】【分析】构建空间直角坐标系,应用向量法求点面距离即可.【详解】以D 为原点,以DA ,DC ,DF 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D xyz -,则(2,0,0)A ,(2,3,2)E ,1(0,3,4)C ,(1,3,0)G ,所以1(2,3,4)AC =- ,(0,3,2)AE =,(1,0,2)GE = ,设(,,)n x y z = 为平面1AEC F 的法向量,则100n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,所以3202340y z x y z +=⎧⎨-++=⎩,令1z =,所以21,,13n ⎛⎫=- ⎪⎝⎭ ,点C 到平面1AEC F 的距离为2222GE n d n ⋅==.故选:D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得5分,选对但不全的得2分,有选错的得0分.9.一组数据(1,2,3,,)i x i n = 的平均数为x ,方差为2s ,新数据(1,2,3,,)i ax c i n += 的平均值为x ',方差为2s '.下列结论正确的是()A.x ax '=B.222a a cs =+' C.x ax c'=+ D.222s s a '=【答案】CD【解析】【分析】根据平均数、方差的性质计算可得.【详解】若一组数据(1,2,3,,)i x i n = 的平均数为x ,方差为2s ,则新数据(1,2,3,,)i ax c i n += 的平均值为x ax c '=+,方差为222s s a '=.故选:CD10.下面结论正确的是()A.若事件M 与N 相互独立,则M 与N 也相互独立B.若事件M 与N 是互斥事件,则M 与N 也是互斥事件C.若()0.4P M =,()0.3P N =,M 与N 相互独立,则()0.58P M N =D.若()0.6P M =,()0.4P N =,则M 与N 互为对立事件【答案】AC 【解析】【分析】由相互独立和互斥事件的定义可判断A 、B ;由相互独立的乘法公式和对立事件的定义可判断C ,D.【详解】对于A :若事件M 与N 相互独立,因为M N M MN =-,所以()()()()P M N P M MN P M P MN=-=-又()()()()()()()()1P M N P M P N P M P N P M P M P N ==-=-⎡⎤⎣⎦,所以()()()P MN P M P N =,所以事件M 与N 相互独立,所以()()()()P M N P N NM P N P NM=-=-()()()()()()()1P N P N P M P N P M P N P M =-=-=⎡⎤⎣⎦,所以M 与N 是相互独立事件,故A 正确;对于B :若事件M 与N 是互斥事件,如掷一枚骰子出现1、2、3点记为事件M ,出现1、2、3、4点记为事件N ,则N 为出现5、6点,满足事件M 与N 是互斥事件,显然M 与N 不互斥事件,故B 错误;对于C ,若()0.4P M =,()0.3P N =,M 与N 相互独立,则()()()()()()0.40.3P M N P M P N P MN N M P P =+-=+- 0.70.40.30.58=-⨯=,故C 正确;对于D :如从110 共10个整数中随机抽取一个数,记抽到1、2、3、4、5、6为事件M ,则()0.6P M =,记抽到1、2、3、4为事件N ,则()0.4P N =,显然M 与N 不为对立事件,故D 错误;故选:AC11.某单位健康体测,男性平均体重为64千克,方差为151;女性平均体重为56千克,方差为159,男女人数之比为5:3,该单位全体工作人员平均体重x 和方差2s 分别为()A.61x =B.60x = C.2155s = D.2169s =【答案】AD 【解析】【分析】根据平均数、方差公式计算可得.【详解】依题意,设男性人数为5a (0a >),女性人数为3a ,该单位全体人员体重的平均数为:536456615353a ax a a a a=⨯+⨯=++,所以该单位全体人员体重的方差为:2253151(6461)159(5661)16988⎡⎤⎡⎤⨯+-+⨯+-=⎣⎦⎣⎦.故选:AD12.如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,点O 是AC 中点,点M 是棱SD 的上动点(M 与端点不重合).下列说法正确的是()A.从A 、O 、C 、S 、M 、D 六个点中任取三点恰能确定一个平面的概率为910B.从A 、O 、C 、S 、M 、D 六个点中任取四点恰能构成三棱锥的概率为35C.存在点M ,使直线OM 与AB 所成的角为60︒D.不存在点M ,使//OM 平面SBC 【答案】ABC 【解析】【分析】根据共面的性质,结合空间向量夹角公式逐一判断即可.【详解】任取3点,有20个样本点,除开A 、O 、C 和S 、M 、D 分别共线,其余18种均不共线,故概率为2912010-=;任取4点,共有15个样本点;每条直线上任取2个点,则共有9个样本点,故概率为93155=.故A 、B 正确.以A 为空间原点建立空间直角坐标系,()()()()()()0,0,0,0,2,0,2,2,0,0,0,2,2,0,0,1,1,0A D C S B O ,设DM DS λ=,(0,1)λ∈,设(),,M x y z ,则有()()(),2,0,2,20,22,2x y z M λλλ-=-⇒-,则(1,12,2)OM λλ=-- ,(2,0,0)AB =-,1cos ,2AB OM AB OM AB OM ⋅==⋅,解得24210λλ--=,()22160∆=-+>,方程有解,故C 正确.设平面SBC 的法向量(,,)n a b c =,()()0,2,0,2,0,2BC SB ==-,则有()201,0,1220n BC b n n SB a c ⎧⋅==⎪⇒=⎨⋅=-=⎪⎩,由0OM n ⋅= ,可得1212λλ=⇒=,故D 错误.故选:ABC【点睛】关键点睛:利用空间向量夹角公式、空间向量数量积运算性质是解题的关键.三、填空题:本题共4小题,每小题5分,共20分.13.某射击运动员每次击中靶心的概率均为0.6.现采用随机模拟的方法估计该运动员射击4次至少击中2次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3表示没有击中靶心,4,5,6,7,8,9表示击中靶心;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:8636029371409857572703474373964746983312 6710037162332616959780456011366142817424据此估计,该射击运动员射击4次至少击中2次靶心的概率为__________.【答案】34##0.75【解析】【分析】根据对立事件的概率公式,结合古典概型计算公式进行求解即可.【详解】恰好0次击中包含3321一个样本点,恰好1次击中包含6233,0293,0371,6011四个样本点,故至多击中一次包含五个样本点,对立事件至少2次击中则包含15个样本点,故概率为153 204=.故答案为:3 414.某区从11000名小学生、10000名初中生和4000名高中生中采用分层抽样方法抽取n名学生进行视力测试,若初中生比高中生多抽取60人,则n=__________.【答案】250【解析】【分析】根据分层抽样等比例抽取的性质,列出等式计算即可.【详解】设小学生抽取的人数为1n,高中生抽取的人数为3n,则初中生抽取的人数为360n+,所以331601100**********n n n +==,解得340n =,1110n =从而13306025n n n n +==++.故答案为:25015.某高中的独孤与无极两支排球队在校运会中采用五局三胜制(有球队先胜三局则比赛结束).第一局独孤队获胜概率为0.4,独孤队发挥受情绪影响较大,若前一局获胜,下一局获胜概率增加0.1,反之降低0.1.则独孤队不超过四局获胜的概率为__________.【答案】0.236【解析】【分析】根据相互独立事件与互斥事件的概率公式计算可得.【详解】设i A ()1,2,3,4i =为独孤队第i 局取胜,由题意,独孤队取胜的可能结果为四个互斥事件:123A A A ,1234A A A A ,1234A A A ,1234A A A A ,所以独孤队取胜的概率()()()()123123412341234P P A A A P A A A A P A A A A P A A A A =+++0.40.50.60.40.50.40.50.40.50.40.50.60.30.40.50.236=⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=.故答案为:0.23616.已知空间向量a ,b ,c 两两之间的夹角均为60︒,且2= a ,6b = ,2c = ,若向量x ,y分别满足()0y y a b ⋅+-= 与12x c ⋅=,则y x - 的最小值为__________.【答案】5-5【解析】【分析】由题意可得2b a y --= ,令2b ap -=,可得y p -= 且2p c ⋅= ,利用数量积的性质得出5x p -≥,最后由模的三角不等式()()()()y x y p x p x p y p -=---≥--- 可得结论.【详解】依题意26cos606a b ⋅=⨯⨯︒=,22cos 602a c ⋅=⨯⨯︒=,62cos606b c ⋅=⨯⨯︒=,因为()0y y a b ⋅+-= ,所以()222022b a b a y b a y y ⎛⎫⎛⎫---⋅-=--= ⎪ ⎪⎝⎭⎝⎭ ,所以2222724b a b a b a y ⎛⎫--⋅+-== ⎪⎝⎭,所以2b ay --= ,令2b a p -= ,则y p -= ,且222b a bc a cp c c -⋅-⋅⋅=⋅==,由12x c ⋅= ,得()122x c p c x p c x p c -=⋅-⋅=-⋅≤-⋅,所以1052x p -≥=,所以()()()()5y x y p x p x p y p -=---≥---≥当且仅当x p - ,y p -u r u r共线同向且x p - ,c 共线时等号成立.故答案为:5-【点睛】关键点睛:解题关键是把已知条件由()0y y a b ⋅+-= 结合已知变形得出2b ay --=,引入向量2b ap -=,可得y p -= ,从而得到x p - 的最小值,从而由向量模的三角不等式得出结论.四、解答题:本题共6小题,共70分。
2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题(解析版)

2022-2023学年四川省泸州市叙永第一中学校高二上学期期中考试数学(理)试题一、单选题1.已知直线10x ay ++=和直线210x y -+=互相平行,则a 的值为( ) A .2 B .2-C .12D .12-【答案】D【分析】直接利用两条直线平行的充要条件进行求解即可. 【详解】解:因为直线10x ay ++=和直线210x y -+=互相平行,所以1(1)201(1)10a a ⨯--=⎧⎨⨯--⨯≠⎩,解得12a =-.故选:D .2.若a b >,则下列结论正确的是( ) A .22a b > B .11a b> C .22a b > D .ln ln a b >【答案】C【分析】利用特殊值1a =-,4b =-判断选项A ,利用作差法判断选项B ,利用指数函数的单调性判断选项C ,利用对数的定义判断选项D ,【详解】解:因为a b >,若1a =-,4b =-,则22a b <,故选项A 错误; 因为11b a a b ab--=,当0ab >时,11a b <,故选项B 错误;因为2x y =在R 上为增函数,若a b >,则22a b >,故选项C 正确; 若0a b >>,则lna 和lnb 无意义,故选项D 错误. 故选:C .3.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高二学生中抽取的人数应为( ) A .10 B .9C .8D .7【答案】B【分析】由分层抽样的概念求解,【详解】设从高二学生中抽取的人数为x ,则7=210270x ,得9x =, 故选:B4.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中()1,2,3,i i y x c i n =+=,c 为非零常数,则这两组样本数据( )A .平均数相同B .中位数相同C .标准差不相同D .极差相同【答案】D【分析】由各个统计量的概念判断, 【详解】对于A ,设12,,,n x x x 的平均数为x ,则12,,,n y y y 的平均数为x c +,对于B ,设12,,,n x x x 的中位数为m ,则12,,,n y y y 的中位数为m c +,对于C ,由方差与标准差的计算公式,可得12σσ=, 对于D ,max min max min x x y y -=-,两组样本数据极差相同 故选:D5.现有以下两项调查:①从100台刚出厂的电视机中抽取3台进行质量检查;②某社区有1000户家庭,其中高收入家庭100户,中等收入家庭820户,低收入家庭80户,为了调查家庭每年生活费的开支情况,计划抽取一个容量为50的样本,则完成这两项调查最适宜采用的抽样方法分别是( ) A .①②都采用简单随机抽样 B .①②都采用分层随机抽样C .①采用简单随机抽样,②采用分层随机抽样D .①采用分层随机抽样,②采用简单随机抽样 【答案】C【分析】根据简单随机抽样和分层抽样的特点,判断选项. 【详解】①的总体中的个体数较少,宜采用简单随机抽样,②中1000户家庭中收入存在较大差异,层次比较明显,宜采用分层抽样. 故选:C6.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖膳(biē nào ).如图,网格纸上小正方形的边长1,粗实线画出的是某鳖臑的三视图,则该鳖臑表面积为A .6B .21C .27D .54【答案】C【分析】结合三视图,还原直观图,计算表面积,即可. 【详解】结合三视图,还原直观图为已知3,4,3AB BC CD ===,则该四面体1111272222S AB BC AC CD AB BD BC CD =⋅+⋅+⋅+⋅=,故选C. 【点睛】本道题考查了三视图还原直观图,难度中等.7.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .23【答案】D【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==.故选:D.8.设,m n 是两条不同的直线,,αβ是两个不同的平面,由下列四个命题,其中正确的是( ) A .若,m m n α⊥⊥,则//n α B .若//,//m n αα,则//m n C .若//,m αβα⊂,则//m β. D .若//m β,m α⊂,则//αβ.【答案】C【解析】A 选项可能n ⊂α,B 选项两条直线位置关系不能确定,C 选项正确,D 选项两个平面相交也能满足//m β,m α⊂.【详解】A 选项,当,m m n α⊥⊥可能n ⊂α,所以该选项不正确;B 选项,平行于同一平面的两条直线可能平行,可能相交,可能异面,所以该选项不正确;C 选项,根据面面平行的性质,说法正确;D 选项,当两个平面相交,m α⊂且平行于交线,也满足//m β,m α⊂,所以不能推出面面平行. 故选:C【点睛】此题考查空间点线面位置关系的辨析,根据已知条件判断线面平行,线线平行和面面平行,关键在于熟练掌握相关定理公理.9.在一个实验中,某种豚鼠被感染A 病毒的概率均为40%,现采用随机模拟方法估计三只豚鼠中被感染的概率:先由计算机产生出[0,9]之间整数值的随机数,指定1,2,3,4表示被感染,5,6,7,8,9,0表示没有被感染.经随机模拟产生了如下20组随机数: 192 907 966 925 271 932 812 458 569 683 257 393 127 556 488 730 113 537 989 431 据此估计三只豚鼠都没被感染的概率为( ) A .0.25 B .0.4 C .0.6 D .0.75【答案】A【分析】求得三只豚鼠都没有被感染的数量,结合题意,求解即可.【详解】20组数据中,都不含1,2,3,4的数据有5个,分别是:907,966,569,556,989; 故三只豚鼠都没被感染的概率为:50.2520=. 故选:A .10.若正数x ,y 满足32x y xy +=,则34x y +的最小值是( ) A .245B .25C .5D .252【答案】D【分析】由基本不等式求解, 【详解】由题意得3132x y xy y x+=+=,则 31123()131323625(34)2222y xx y x y x y +++++=≥=,当且仅当123y x x y =即55,24x y ==时等号成立, 故选:D11.在如图的直角梯形ABCD 中,利用“两个全等的直角三角形和一个等腰直角三角形的面积之和等于直角梯形面积”.可以简洁明了地推证出勾股定理,把这一证明方法称为“总统证法”.设15BEC ∠=︒,在梯形ABCD 中随机取一点,则此点取自等腰直角CDE 中(阴影部分)的概率是( )A .23B .34C 3D 2【答案】A【分析】根据()()()=ΩS A P A S 计算即可. 【详解】解:记此点取自等腰直角CDE 中(阴影部分)为事件A , 此点取自梯形ABCD 为事件Ω, 在Rt CEB △中,·sin b c CEB =∠,·cos a c CEB =∠,()22222232?sin cos ?sin 302a b c c CEB CEB c c c ∴+=+∠⋅∠=+︒=, 212△=⋅DCE S c ,()221324梯形=⋅+=ABCD S a b c ,()()()22122334∴===Ωc S A P A S c .故选:A .12.若,x y 满足221+-=x y xy ,则( )A .1x y +≥B .2x y +≥C .221x y +≤D .222x y +≤【答案】D【分析】由基本不等式求解,【详解】由题意得222x y xy ≤+,即222221x x y y -++≤,得222x y +≤,当且仅当1x y ==±时等号成立,故C 错误,而0,1x y ==-时满足题意,故A ,B 错误, 故选:D二、填空题13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.从甲、乙等5名同学中随机选3名组成校庆志愿小分队,则甲、乙都不入选的概率为 ________. 【答案】110##0.1 【分析】由组合数与古典概型求解,【详解】由题意得甲、乙都不入选的概率为3511C 10p ==, 故答案为:11015.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表:若x 与y 之间是线性关系,且根据上表可得回归直线方程ˆ68y x =+,现发现表中有一个数据模糊看不清,该数据是___________. 【答案】31【分析】根据回归方程过样本中心点可得答案. 【详解】设表中模糊不清数据为m ,由表知6345109: 4.5,44m x y ++++===, 代人回归方程ˆ68yx =+中,得1096 4.584m+=⨯+,解得31.m = 故答案为:31.16.在三棱锥ABCD -中,平面ABC ⊥平面BCD ,ABC 与BCD △都是边长为6的正三角形,则该三棱锥的外接球的体积为________. 【答案】【分析】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,可证明AM DM ⊥,通过几何关系可得到外接球的半径为OB =【详解】取BC 的中点为,,M E F 分别是正三角形ABC 和正三角形BCD 的重心,O 是该三棱锥外接球的球心,连接,,,,,AM DM OF OE OM OB ,则,E F 分别在,AM DM 上,OF ⊥平面BCD ,OE ⊥平面ABC ,AM BC ⊥,DM BC ⊥, 因为平面ABC ⊥平面BCD ,AM BC ⊥,平面ABC ⋂平面BCD BC =,AM ⊂平面,ABC 所以AM ⊥平面BCD ,所以//AM OF ,同理可得//DM OE ,所以四边形OEMF 是平行四边形, 因为AM BC ⊥,DM BC ⊥,AMDM M =,,AM DM ⊂平面ADM ,所以BC ⊥平面ADM ,又OM ⊂平面ADM ,所以OM BC ⊥, 因为AM ⊥平面BCD ,DM ⊂平面BCD , 所以AM DM ⊥, ∵3633AM DM === ∴133EM FM AM ==∴四边形OEMF 为正方形,∴6OM = 在直角三角形OMB 中,球半径()22226315OB OM BM =++∴外接球体积为341520153ππ⨯=,故答案为:2015π三、解答题17.求下列不等式的解集: (1)2450x x -++<; (2)5131x x +<+. 【答案】(1){|1x x <-或5}x > (2){|11}x x -<<【分析】(1)由一元二次不等式的解法求解, (2)移项,通分后化简求解,【详解】(1)由2450x x -++<,得2450x x --> 解得1x <-或5x >.所以不等式的解集为{|1x x <-或5}x >; (2)由5131x x +<+,可得2201x x -<+, 等价于(1)(1)0x x -+<,解得11x -<<, 所以不等式的解集为{|11}x x -<<.18.某收费APP (手机应用程序)自上架以来,凭借简洁的界面设计、方便的操作方式和强大的实用功能深得用户的喜爱.该APP 所在的公司统计了用户一个月月租减免的费用x (单位:元)及该月对应的用户数量y (单位:万人),得到如下数据表格:已知x 与y 线性相关.(1)求y 关于x 的线性回归方程55211135,41.7i i i i i x x y ==⎛⎫== ⎪⎝⎭∑∑;(2)据此预测,当月租减免费用为10元时,该月用户数量为多少?参考公式:对于一组具有线性相关关系的数据(),(1,2,,)i i x y i n =,其回归直线y bx a =+的斜率和截距的最小二乘估计公式分别为()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx====---==--∑∑∑∑,a y bx =- 【答案】(1)0.320.06y x =- (2)3.14万人【分析】(1)根据已知数据,先求得,x y ,然后利用公式计算回归方程中的系数,得到回归方程; (2)利用回归方程估计.【详解】(1)解:由()13456755x =⨯++++=()11 1.1 1.5 1.9 2.2 1.54.5y =⨯++++=有241.755 1.54ˆ0.32, 1.540.3250.0613555ba -⨯⨯===-⨯=--⨯, 故y 关于x 的线性回归方程为0.320.06y x =-;(2)解:由(1)知回归方程为0.320.06y x =-,当10x =时,0.32100.06 3.14y =⨯-=, 所以预测该月的用户数量为3.14万人.19.已知某保险公司的某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的400名续保人在一年内的出险情况,得到下表:该保险公司这种保险的赔付规定如下:将所抽样本的频率视为概率.(1)求本年度续保人保费的平均值的估计值;(2)按保险合同规定,若续保人在本年度内出险3次,则可获得赔付()2.5 1.5a a a ++元;若续保人在本年度内出险6次,则可获得赔付()2.5 1.50.5a a a a +++元;依此类推,求本年度续保人所获赔付金额的平均值的估计值.【答案】(1)1.035a ;(2)0.945a .【分析】(1)得出保费0.9a ,a ,1.5a ,2.5a ,4a 对应的概率,即可得出本年度续保人保费的平均值的估计值;(2)先计算出每个赔偿金额对应的概率,然后按照平均值的计算公式得出本年度续保人所获赔付金额的平均值的估计值;【详解】(1)由题意可得保费(元)0.9a a 1.5a 2.5a4a概率0.7 0.2 0.06 0.03 0.01本年度续保人保费的平均值的估计值为0.90.70.2 1.50.06 2.50.0340.01 1.035⨯+⨯+⨯+⨯+⨯=a a a a a a(2)由题意可得赔偿金额(元)0 2.5a4a5a 5.5a概率0.7 0.2 0.06 0.03 0.01本年度续保人所获赔付金额的平均值的估计值⨯+⨯+⨯+⨯+⨯=a a a a a00.7 2.50.240.0650.03 5.50.010.94520.某学校为了了解高二年级学生数学运算能力,对高二年级的200名学生进行了一次测试.已知参x i=全部介于45分到95分之间,该校将所有分数分成5组:加此次测试的学生的分数(1,2,3,,200)i[45,55),[55,65),⋯,[85,95],整理得到如下频率分布直方图(同组数据以这组数据的中间值作为代表).(1)求m的值,并估计此次校内测试分数的平均值x;x i=的方差2s,并判断此次得分为52分和94分的两名(2)试估计这200名学生的分数(1,2,3,,200)i同学的成绩是否进入到了[2,2]x s x s -+范围内?(参考公式:2211()n i i i s f x x n ==-∑,其中i f 为各组频数;参考数据:12911.4)≈【答案】(1)m 0.024=,75(2)129,进入【分析】(1)由各组的频率和为1,可求出m 的值,再根据平均数的定义可求出x ;(2)利用方差公式求出方差2s ,然后计算出[2,2]x s x s -+,再判断即可.【详解】(1)(0.0060.014++m 0.0360.020)101++⨯=.∴m 0.024=.∴该次校内考试测试分数的平均数的估计值为:500.06600.14700.24800.36900.275⨯+⨯+⨯+⨯+⨯=分.(2)2211()n i i i s f x x n ==-∑ 222220.06(5075)0.14(6075)0.24(7075)0.36(8075)0.2(9075)=⨯-+⨯-+⨯-+⨯-+⨯-129=.∴s 12911.4=≈,∴252.2,297.8x s x s -=+=.∴得分为52分的同学的成绩没有进入到[52.2,97.8]内,得分为94分的同学的成绩进入到了[52.2,97.8]内.21.如图,四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是正方形,2PD AB ==,E 为PC 中点.(1)求证:DE ⊥平面PCB ;(2)求二面角E BD P --的余弦值.【答案】(1)证明见解析6【分析】(1)根据条件先证BC ⊥平面PCD ,得到BC ⊥DE ,再由DE ⊥PC ,即可证明DE ⊥平面PCB .(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立空间直角坐标系,分别求出平面BDE ,平面PDB 的法向量,即可求得二面角的余弦值.【详解】(1)证明:PD ⊥平面ABCD ,∴PD ⊥BC ,又∵正方形ABCD 中,CD ⊥BC ,PD CD =D ,∴BC ⊥平面PCD ,又∵DE ⊂平面PCD ,∴BC ⊥DE ,∵PD =CD ,E 是PC 的中点,DE ⊥PC ,PC BC =C ,且PC ⊂面PCB ,BC ⊂面PCB∴DE ⊥平面PCB(2)以点D 为坐标原点,分别以直线DA ,DC ,DP 为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,由题意知:()()()()0,0,0,0,0,2,2,2,0,0,1,1,D P B E则()()2,2,0,0,1,1DB DE ==,设平面BDE 的法向量为(),,n x y z =,则220000x y n DB y z n DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩, 令1z =,得到1,1y x =-=,()1,1,1n ∴=-又()()0,2,0,2,0,0C A ,则()2,2,0AC =-,且AC ⊥平面PDB ,∴平面PDB 的一个法向量为()1,1,0m =-,设二面角E BD P --的平面角为α,则1cos cos ,m n α+=<>== 所以二面角E BD P -- 22.已知函数()2()22f x ax a x =-++,a R ∈(1)求关于x 的不等式()0f x ≥的解集;(2)若存在0m >使关于x 的方程(21)xf -11m m=++有四个不同的实根,求实数a 的取值范围. 【答案】(1)答案见解析 (2)(,4-∞--【分析】(1)对a 进行讨论,分别求出其解集即可;(2)先令11t m m =++ 由0m >,则可得3t ≥,再将关于x 的方程1(||)1f x m m=++有四个不同的实根,转化为2(2)20ax a x t -++-= 有两个不同正根,结合根与系数的关系,即可求解.【详解】(1)当a<0时,不等式的解集为或2{|1}x x a≤≤; 当0a =时,不等式的解集为 {|1}x x ≤;当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a ≤或1}x ≥; (2)当 0m > 时,令 1113s m m =++≥=,当且仅当1m =时取等号,设 |21|x t -=,则原方程可化为2()(2)20g t at a t s =-++-=.由题意知()0g t =在(0,1)有两个不等的实根.因为(0)20g s =-<,(1)0g s =-<,固有()()224200201a a s a aa ⎧⎪∆=+-->⎪<⎨⎪+⎪<<⎩解得4a <--故实数a的取值范围是(,4-∞--.。
四川省成都市郫都区2024-2025学年高二上学期11月期中考试数学试题

四川省成都市郫都区2024-2025学年高二上学期11月期中考试数学试题一、单选题1.下列调查中,适合用普查的是()A .了解我省初中学生的家庭作业时间B .了解“嫦娥四号”卫星零部件的质量C .了解一批电池的使用寿命D .了解某市居民对废电池的处理情况2.若随机事件A ,B 满足()23P A =,()12P B =,()56P A B +=,则()P AB =()A .16B .13C .12D .233.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如图,则()A .盛李豪的平均射击环数超过10.6B .黄雨婷射击环数的第80百分位数为10.65C .盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D .黄雨婷射击环数的极差小于盛李豪射击环数的极差4.下列命题中正确的是()A .点()3,2,1M 关于平面yOz 对称的点的坐标是()3,2,1--B .若直线l 的方向向量为()1,1,2e =- ,平面α的法向量为()6,4,1m =-,则l α⊥C .若直线l 的方向向量与平面α的法向量的夹角为120 ,则直线l 与平面α所成的角为30oD .已知O 为空间任意一点,A ,B ,C ,P 四点共面,且任意三点不共线,若12OP mOA OB OC =-+ ,则12m =-5.平行六面体1111ABCD A B C D -的底面ABCD 是边长为2的正方形,且1160A AD A AB ∠=∠=︒,13AA =,M 为11A C ,11B D 的交点,则线段BM 的长为()A .3BC D .6.如图,一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个正八面体,观察它与地面接触的面上的数字,得到样本空间为{1,2,3,4,5,6,7,8}Ω=,记事件A =“得到的点数为奇数”,记事件B =“得到的点数不大于4”,记事件C =“得到的点数为质数”,则下列说法正确的是()A .事件B 与C 互斥B .()58P A B ⋃=C .()()()()P ABC P A P B P C =D .,,A B C 两两相互独立7.钟鼓楼是中国传统建筑之一,属于钟楼和鼓楼的合称,是主要用于报时的建筑.中国古代一般建于城市的中心地带,在现代城市中,也可以常常看见附有钟楼的建筑.如图,在某市一建筑物楼顶有一顶部逐级收拢的四面钟楼,四个大钟对称分布在四棱柱的四个侧面(四棱柱看成正四棱柱,钟面圆心在棱柱侧面中心上),在整点时刻(在0点至12点中取整数点,含0点,不含12点),已知在3点时和9点时,相邻两钟面上的时针所在的两条直线相互垂直,则在2点时和8点时,相邻两钟面上的时针所在的两条直线所成的角的余弦值为()A .6B .14C D .48.如图,在长方体1111ABCD A B C D -中,已知12,1===AB AD AA .动点P 从1A 出发,在棱11A B 上匀速运动;动点Q 同时从B 出发,在棱BC 上匀速运动,P 的运动速度是Q 的两倍,各自运动到另一端点停止.它们在运动过程中,设直线PQ 与平面ABCD 所成的角为θ,则tan θ的取值范围是()A .1,12⎡⎤⎢⎥⎣⎦B .12⎡⎢⎣C .⎤⎥⎦D .1,22⎡⎢⎣⎦二、多选题9.某中学三个年级学生共2000人,且各年级人数比例如以下扇形图.现因举办校庆活动,以按比例分配的分层抽样方法,从中随机选出志愿服务小组,已知选出的志愿服务小组中高一学生有32人,则下列说法正确的有()A .该学校高一学生共800人B .志愿服务小组共有学生96人C .志愿服务小组中高三学生共有20人D .某高三学生被选入志愿服务小组的概率为22510.下列对随机事件,A B 概率的说法正确的有()A .若,AB 相互独立,则(()()P AB P A P B =B .若,A B 互斥,则()()()P AB P A P B =C .()()()P A P AB P AB =+D .()1()P A B P AB +=-11.若一个平面α与棱长为2的正方体的六个面都相交,且它们相交所成的二面角分别为(16)i i θ≤≤,则下列说法正确的是()A .621sin 2i i θ==∑B .621sin 4i i θ==∑C .若正方体的每条棱与平面α所成角都相等,则平面α截此正方体所得截面面积的最大值为D .若正方体的每个面与平面α所成角都相等,则平面α截此正方体所得截面面积的最大值为三、填空题12.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.6,乙中靶的概率为0.7,且两人是否中靶相互独立,若甲、乙各射击一次,则恰有一人中靶的概率为.13.已知一组数据12,,,n x x x ⋯的平均数为10,方差为2,若这组数据1221,21,x x --⋯,21n x -的平均数为a ,方差为b ,则a =b =.14.两条异面直线a ,b 所成的角为60︒,在直线a 上取点A ,E ,在直线b 上取点B ,F ,使AB a ⊥,且AB b ⊥.已知6,8,14AE BF EF ===,则线段AB 的长为.四、解答题15.已知盒中有大小、质地相同的红球、黄球、蓝球共4个,从中任取一球,得到红球或黄球的概率是34,得到黄球或蓝球的概率是12.(1)求盒中红球、黄球、蓝球的个数;(2)设置游戏规则如下:从盒中有放回的取球两次,每次任取一球记下颜色.若取到两个球颜色相同则甲胜,否则乙胜,从概率的角度判断这个游戏是否公平,请说明理由.16.文明城市是反映城市整体文明水平的综合性荣誉称号,作为普通市民,既是文明城市的最大受益者,更是文明城市的主要创造者.某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),L ,[90,100]得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值及样本成绩的第75百分位数;(2)求样本成绩的众数,中位数和平均数;(3)已知落在[50,60)的平均成绩是54,方差是7,落在[60,70)的平均成绩为66,方差是4,求两组成绩合并后的平均数z 和方差2s .17.如图,在四棱锥,P ABCD PA -⊥平面,//ABCD AB CD ,且2,1,CD AB BC ===,1,,PA AB BC N =⊥为PD 的中点.(1)求证://AN 平面PBC ;(2)求点N 到平面PBC 的距离;(3)在线段PD 上是否存在一点M ,使得直线CM 与平面PBC 所成角的正弦值是26,若存在,求出DMDP的值,若不存在,请说明理由.18.某班同学利用春节进行社会实践,对本地[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图.序号分组(岁)本组中“低碳族”人数“低碳族”人数在本组所占的比例1[25,30)1200.62[30,35)195p 3[35,40)1000.54[40,45)a 0.45[45,50)300.36[55,60)150.3(一)人数统计表(二)各年龄段人数频率分布直方图(1)在答题卡给定的坐标系中补全频率分布直方图,并求出n 、p 、a 的值;(2)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动.若将这6个人通过抽签分成甲、乙两组,每组的人数相同,求[45,50)岁中被抽取的人恰好又分在同一组的概率.19.已知两个非零向量,a b ,在空间任取一点O ,作,OA a OB b == ,则AOB ∠叫做向量,a b的夹角,记作,a b ,.定义a 与b 的“外积”为a b ⨯ ,且a b ⨯是一个向量,它与向量,a b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,ABCD 4,DP DA ==E 为线段A 上一点,||AD BP ⨯=(1)求AB 的长;(2)若E 为A 的中点,求平面PEB 与平面ABCD 夹角的余弦值;(3)若M 为线段PB 上一点,且满足AD BP EM λ⨯=,求||λ.。
四川省眉山市仁寿县2023-2024学年高二上学期期中数学试题含解析

高2022级上学期数学期中考试题(答案在最后)2023.11.13一、单选题:本题共8小题,每小题5分,共40分.1.直线x =)A.90︒B.120︒C.60︒D.不存在【答案】A 【解析】【分析】直线的斜率不存在,即得倾斜角【详解】∵直线x =x 轴垂直,∴其倾斜角为90︒,故选:A2.如图,在平行六面体1111ABCD A B C D -中,M 是11A C 与11B D 的交点,若1AA a = ,AB b = ,AD c =,且=++AM xa yb zc ,则x y z ++=()A.2B.12-C.0D.1-【答案】A 【解析】【分析】以,,a b c 为基底表示出向量AM,即可求出对应的,,x y z 的值,即可得结果.【详解】根据题意易知()()1111111111112222AM AA A AA A A A M B D A A A a b c B D =+=++=++=++ ,即可知111,,22x y z ===,所以可得2x y z ++=.故选:A3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙、丙是唐朝的三位投壶游戏参与者,且甲、乙、丙每次投壶时,投中与不投中是等可能的.若甲、乙、丙各投壶1次,则这3人中至多有1人投中的概率为()A.13B.38C.12D.58【答案】C 【解析】【分析】根据题意,列出所有可能,结合古典概率,即可求解.【详解】甲、乙、丙3人投中与否的所有情况为:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8种,其中至多有1人投中的有4种,故所求概率为4182=.故选:C.4.已知直线()1:320l x a y +-+=,()2:310l a x ay -+-=,则“1a =-”是“12l l ⊥”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据直线垂直可得1a =-或3a =,然后根据充分条件,必要条件的定义即得.【详解】若12l l ⊥,则()330a a a -+-=,解得1a =-或3a =,故“1a =-”是12l l ⊥的充分不必要条件.故选:A .5.若椭圆2221x y +=的离心率为e ,则e 的值为()A.12B.2C.2D.【答案】C 【解析】【分析】由椭圆的离心率公式直接求解.【详解】由题意得椭圆长半轴1a =,短半轴22b =,所以半焦距2c ==,所以离心率2212c e a ===,故选:C.6.在平面直角坐标系中,设点()()1,1,2,2-A B ,点M 在单位圆上,则使得ABM 为直角三角形的点M 的个数是()A.1B.2C.3D.4【答案】D 【解析】【分析】对ABM 的直角位置进行分类讨论,结合垂直关系以及圆与圆之间的位置关系即可求得不同情况下满足题意的点M 的个数,综合可得共有4个.【详解】根据题意,若ABM 为直角三角形,分以下3种情况进行讨论:①若90MAB ∠= ,则点M 在过点A 与AB 垂直的直线上,如下图所示:设直线为1l ,又()()1,1,2,2-A B 可得21321AB k +==-,所以直线1l 的斜率为113k =-,即直线方程为()1113y x +=--,即320x y ++=,此时圆心O 到直线1l 的距离为15d ==<,即直线1l 与单位圆相交,此时有两个公共点,即2个符合题意的点M ;②若90MBA ∠= ,则点M 在过点B 与AB 垂直的直线上,如下图所示:设直线为2l ,显然直线2l 的斜率为213k =-,即直线方程为()1223y x -=--,即380x y +-=,此时圆心O 到直线2l 的距离为15d ==>,即直线2l 与单位圆相离,此时无公共点;③若90AMB ∠= ,则点M 在以AB 直径的圆上,如下图所示:易知AB 的中点为31,22⎛⎫⎪⎝⎭,且AB ==即以AB 直径的圆的方程为22315222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,2=,显然5310571122222-=<<+=,即两圆相交,此时有两个符合题意的点M .综上可知,符合题意的点M 共有4个.故选:D7.若直线:30l kx y k -+=与曲线1C y =-有两个不同的交点,则实数k 的取值范围是()A.13,24⎛⎤⎥⎝⎦B.13,24⎡⎫⎪⎢⎣⎭C.30,4⎛⎫ ⎪⎝⎭D.30,4⎛⎤ ⎥⎝⎦【答案】B 【解析】【分析】根据直线所过的定点,结合直线与圆的切线性质,利用数形结合思想进行求解即可.【详解】直线:30l kx y k -+=即()30k x y +-=,恒过定点(3,0)-,曲线1C y =-即()()22111x y y +-=≥表示以点(0,1)为圆心,半径为1,且位于直线1y =上方的半圆(包括点(1,1)-,(1,1)),当直线l 经过点(1,1)-时,l 与曲线C 有两个不同的交点,此时101132k -==-+,直线记为1l ;当l1=,得34k =,切线记为2l ,分析可知当1324k ≤<时,l 与曲线C 有两个不同的交点,即实数k 的取值范围是13,24⎡⎫⎪⎢⎣⎭.故选:B.8.如图,正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .记1A F 与平面11BCC B 所成角为α,1A F 与1AD 所成角为β,则()A.3παβ<< B.3παβ<< C.3παβ>>D.3παβ<<【答案】D 【解析】【分析】利用作图,构造出α和β,分别求tan α和tan β,比较后,即可判断选项.【详解】如图,取1CC ,1BB ,11B C 的中点G ,M ,N ,连接EG ,1D G ,MN ,1A M ,1A N ,1B F ,设棱长为2,//MN EG ,MN ⊄平面1AEGD ,EG ⊂平面1AEGD ,所以//MN 平面1AEGD ,1//A N AE ,同理1//A N 平面1AEGD ,,且1A N MN N = ,所以平面1//A MN 平面1AEGD ,所以点F 在线段MN 上,因为11A B ⊥平面11BCC B ,所以11A FB α∠=,因为1//AD MN ,所以1A FM ∠或1A FN ∠为β,111tan A B B Fα=,当点F 在MN 的中点时,1B F 最小,此时tan α最大,最大值是,当点F 与点M ,N 重合时,1B F 最大,此时tan α最小,最小值是2,当点F 在MN 的中点时,2πβ=,当点F 与点M ,N 重合时,β最小,1A M =,2MF =,12A F ==,tan 3β=,所以2tan α≤≤,tan 3β≥,tan 3π=所以3παβ<<.故选:D二、多选题:本题共4小题,每小题5分,共20分.9.掷一枚均匀的硬币两次,记事件A =“第一次出现正面”,B =“第二次出现反面”,则有()A.A 与B 相互独立B.()()()⋃=+P A B P A P BC.A 与B 互斥D.1()4P AB =【答案】AD 【解析】【分析】由相互独立事件的定义可判断A ;由概率加法公式的使用条件可判断B ;由互斥事件的定义可判断C ;由独立事件的概率乘法公式可判断D.【详解】A 选项,由题意得事件A 的发生与否对事件B 的发生没有影响,∴A 与B 相互独立,对,B 选项、C 选项,由于事件A 与B 可以同时发生,∴事件A 与B 不互斥,错,D 选项,由于A 与B 相互独立,∴1()()()4P AB P A P B =⨯=,对,故选:AD10.下列说法正确的是()A .直线()()213750m x m y m ++-+-=必过定点()1,3B.过点(2,1)P 作圆225=x y +的切线,切线方程为250x y +-=C.经过点()1,1P ,倾斜角为θ的直线方程为()1tan 1y x θ-=-D.直线210x y --=的方向向量()2,1m =-【分析】直线方程化为(25)2370m x y x y +-+-+=,即可求定点判断A ;确定(2,1)P 在圆225=x y +上,并求切线斜率,应用点斜式写出切线方程判断B ;注意倾斜角θ为直角的情况判断C ;由直线方程写出一个方向向量,判断是否与()2,1m =-共线即可判断D.【详解】A :由()()213750m x m y m ++-+-=,即(25)2370m x y x y +-+-+=,令2502370x y x y +-=⎧⎨-+=⎩,可得13x y =⎧⎨=⎩,故必过定点()1,3,对;B :由22215+=,即(2,1)P 在圆225=x y +上,圆心(0,0)O ,所以12OP k =,故切线斜率2k =-,则切线方程为12(2)y x -=--,所以切线方程为250x y +-=,对;C :当倾斜角θ为直角时,直线方程不能用()1tan 1y x θ-=-表示,错;D :直线210x y --=的一个方向向量为(2,1),显然与()2,1m =- 不共线,故()2,1m =-不是方向向量,错.故选:AB11.如图,已知正方体1111ABCD A B C D -的棱长为2,M 、N 分别是11C D 、1B B 的中点,平面1A MN 与棱1CC 的交点为E ,点F 为线段1D D 上的动点,则下列说法正确的是()A.1CE EC =B.三棱锥11B A MN -体积为23C.若112=D F 则BF 平面1A MN D.若11D F =,则直线BF 与1A N 所成角的正弦值为23【分析】对于A,根据面面平行的性质可知1//A N ME ,进而可知E 的位置.对于B,根据等体积法,转化成求三棱锥11N A MB -的体积即可.对于C,根据面面平行证明线面平行即可求解.对于D,根据异面直线所成角的求法:平移找角,然后求角即可.【详解】由题可知:点E 满足1//ME A N ,故1114C E C C =,所以A 错误.111111111221333MB B A MN N A B M A V V S B N --==⨯⋅=⨯⨯= ,故B 正确.在边1CC 上取一点H ,使114CH CC =.故1//,//FH A N BH NE ⇒平面1//A MN 平面FBH ,BF ⊂ 平面FBH ,所以BF 平面1A MN ,故C 正确.(如图一)取1AA 的中点P ,1//,BP A N PBF ∴∠ 为直线BF 与1A N 所成角,(如图二)22,3,sin 3FP FP BF PBF BF ====∴∠==,故D 正确.故选:BCD12.已知平面内到两个定点A ,B 的距离之比为定值λ(1)λ≠的点P 的轨迹是圆.在平面直角坐标系xOy 中,已知(2,0),(4,0)A B -,若12λ=,则下列关于动点P 的结论正确的是()A.点P 的轨迹所包围的图形的面积等于16πB.当P 、A 、B 不共线时,△PAB 面积的最大值是6C.当A 、B 、P 三点不共线时,射线PO 是∠APB 的平分线D.若点(3,1)Q -,则2PA PQ +的最小值为【答案】ACD【解析】【分析】应用两点式求P 的轨迹方程为()22416++=x y ,即可判断A ,再由圆的性质求定弦与圆上点所成三角形的最大值判断B ,根据||||||||PA OA PB OB =,结合角平分线的性质判断C ,由已知有2PA PQ PB PQ +=+,利用三点共线求最小值判断D.【详解】设(,)P x y ,因为PA PB=12=,整理得2280x x y ++=,即()22416++=x y .A :点P 的轨迹是以(4,0)-为圆心,4为半径的圆,所求图形的面积为16π,正确;B :圆的半径为4且6AB =,当△PAB 的底边AB 上的高最大时,面积最大,所以△PAB 面积的最大值是164122⨯⨯=,错误;C :当A ,B ,P 不共线时,由12PAPB =,OA =2,4OB =,即12OA OB =,故||||||||PA OA PB OB =.由角平分线定理的逆定理知:射线PO 是∠APB 的平分线,正确;D :因为12=PA PB,即2|PA =PB |,则2PA PQ PB PQ +=+,又P 在圆()22416++=x y 上,如图所示,所以当P ,Q ,B三点共线时,2PA PQ +取最小值,此时min (2||||)||PA PQ BQ +===,正确.故选:ACD .【点睛】关键点点睛:利用两点距离公式及比例关系求动点轨迹,再利用圆的性质求面积,应用等比转化求线段和最值.三、填空题:本题共4小题,每小题5分,共20分.13.点()2,1关于0x y -=的对称点为_______________【答案】()1,2【解析】【分析】设出对称点坐标,由垂直关系和中点坐标解方程组即可求得结果.【详解】设对称点坐标为(),a b ,根据题意可得111221022b a a b -⎧⨯=-⎪⎪-⎨++⎪-=⎪⎩,解得1,2a b ==;所以对称点坐标为()1,2.故答案为:()1,214.在三棱锥O ABC -中,60AOB AOC ∠=∠=︒,OA OB OC ==,BC =,则异面直线OB 与AC所成的角是_________【答案】60︒【解析】【分析】设1OA =,则1OB OC ==,BC =90BOC ∠=︒,将,,OA OB OC 作为空间向量的一组基底,表示出AC ,然后利用向量的夹角公式求解即可.【详解】设1OA =,则1OB OC ==,BC =所以222OB OC BC +=,所以OBC △为直角三角形,即90BOC ∠=︒,所以0OB OC ⋅= ,因为60AOB AOC ∠=∠=︒,所以111122OA OB OA OC ⋅=⋅=⨯⨯= ,因为AC OC OA =- ,所以1AC = ,12OB AC OB OC OB OA ⋅=⋅-⋅=- ,设异面直线OB 与AC 所成的角为θ(090θ︒<≤︒),则112cos cos ,12OB AC OB AC OB AC θ⋅====⋅ ,因为090θ︒<≤︒,所以60θ=︒,即异面直线OB 与AC 所成的角为60︒,故答案为:60︒..15.数据1,2,7,3,4,5,3,6的p 分位数是5,则p 的取值范围是__________【答案】53,84⎛⎫ ⎪⎝⎭【解析】【分析】根据百分位数的知识求得p 的取值范围.【详解】数据从小到大排序为:1,2,3,3,4,5,6,7,5在第6位,所以53586,,84p p ⎛⎫<<∈ ⎪⎝⎭.故答案为:53,84⎛⎫ ⎪⎝⎭16.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为________.采用三次传输方案,若发送1,则译码为1的概率为________.【答案】①.()()211αβ--②.()()23311βββ-+-【解析】【分析】利用相互独立事件得概率公式计算即可求解.【详解】采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的事件是发送1接收1,发送0接收0,发送1接收1的3个事件的积.3次发送和接收相互独立,所以所求概率为()()()()()211111βαβαβ---=--.采用三次传输方案,若发送1,则译码为1的事件是依次收到1,1,0;1,0,1;0,1,1;1,1,1这四个事件的和.所以所求概率为()()()()232323C 11311ββββββ-+-=-+-.故答案为:()()211αβ--;()()23311βββ-+-.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或步骤.17.已知直线l 经过点()1,2P -.(1)若直线l 与直线230x y --=平行,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)250x y -+=(2)20x y +=或10x y +-=【解析】【分析】(1)利用两直线平行设出直线l 的方程,代入点P 坐标即可求得直线方程;(2)分情况对截距是否为0进行分类讨论,利用直线方程的截距式即可求得结果.【小问1详解】根据题意可设直线l 的方程为20x y C -+=,将点()1,2P -代入计算可得5C =,可得直线l 的方程为250x y -+=.【小问2详解】若在两坐标轴上的截距为0,则可得直线方程为2y x =-,即20x y +=;若在两坐标轴上的截距不为0,设为a ,则直线l 的方程为1x y a a+=,代入点()1,2P -可得1a =,可得直线l 的方程为10x y +-=;综上可知,直线l 的方程为20x y +=或10x y +-=18.已知椭圆E :22221(0)x y a b a b+=>>,其中一个焦点坐标是),长轴长是短轴长的2倍.(1)求E 的方程;(2)设直线l :2y kx =+与E 交于A ,B 两点,若2OA OB ⋅=uu r uu u r,求k 的值.【答案】(1)2214x y +=;(2)426k =±.【解析】【分析】(1)由题可得c =2a b =,即可解出,a b 得出椭圆方程;(2)设A ,B 的坐标为()11,x y ,()22,x y ,联立直线与椭圆,由韦达定理结合2OA OB ⋅=uu r uu u r 建立方程,即可求出k 值.【详解】(1)解:由题意得,c =2a b =,222a b c =+ 解得2a =,1b =,所以椭圆E 的标准方程为2214x y +=.(2)解:设A ,B 的坐标为()11,x y ,()22,x y ,依题意得,联立方程组22142x y y kx ⎧+=⎪⎨⎪=+⎩消去y ,得()221416120k x kx +++=.()22(16)48140k k ∆=-+>,234k >,1221614k x x k -+=+,1221214x x k =+,()()()()212121212121222124OA OB x x y y x x kx kx k x x k x x ⋅=+=+++=++++uu r uu u r ()22222121612201244141414k k k k k k k --=+⋅+⋅+=+++,∵2OA OB ⋅=uu r uu u r ,∴2212204214k k-+=+,27364k =>,所以,6k =±.【点睛】本题考查椭圆方程的求法,考查利用韦达定理求参数,属于中档题.19.如图,在正四棱柱1111ABCD A B C D -中,12AAAB =,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:1B E //平面11A C F ;(2)求直线1AC 与平面11A C F 所成角的正弦值.【答案】(1)证明见解析(2)33【解析】【分析】(1)法一:连接11B D 与11A C 交于点O ,利用中位线及正四棱柱性质证明四边形1B EFO 为平行四边形,结合平行四边形性质利用线面平行的判定定理证明;法二:利用正四棱柱性质得11A B EG 为平行四边形,结合平行四边形性质利用线面平行的判定定理证明;法三:利用面面平行的判定定理证明平面1//B ME 平面11A C F ,然后利用面面平行的性质定理证明即可;(2)建立空间直角坐标系,利用空间向量求解线面角的正弦值.【小问1详解】法一:如图1,连接11B D 与11A C 交于点O ,连接,OF EF ,因为E 为棱BC 的中点,F 为棱CD 的中点,所以EF BD ∥,且12EF BD =,由1111ABCD A B C D -为正四棱柱,可知11//B D BD ,且11B D BD =,所以11EF B D ∥且11112EF B D B O ==,故四边形1B EFO 为平行四边形,所以1B E OF ∥,又因为OF ⊂平面111,A C F B E ⊄平面11A C F ,所以1//B E 平面11A C F .法二:如图2,取AD 中点为G ,连接1,,A G GF EG ,由于,G F 分别为,AD CD 的中点,则11GF AC A C ∥∥,则11,,,A G F C 四点共面;因为,E G 分别为,BC AD 中点,则有EG AB ∥且EG AB =,而11//A B AB 且11A B AB =,故11//EG A B 且11EG A B =,故11A B EG 为平行四边形,所以11B E A G ∥,又因为1A G ⊂平面111,A C F B E ⊄平面11A C F ,所以1//B E 平面11A C F .法三:如图:取AB 中点M ,连接MF 、AC 、ME 、1B M ,则11ME AC A C ∥∥,又ME ⊄平面11A C F ,11AC ⊂平面11AC F ,所以ME 平面11A C F .11MF B C ∥,11MF B C =,故11B C FM 为平行四边形,所以11B M C F ∥,又1B M ⊄平面11A C F ,1C F ⊂平面11A C F ,所以1B M 平面11A C F .又1B M ME M ⋂=,1B M ⊂平面1B ME ,ME ⊂平面1B ME ,所以平面1B ME 平面11A C F .又1B E ⊂平面1B ME ,所以1//B E 平面11A C F .【小问2详解】设正四棱柱底面边长为2,则侧棱长为4,分别以1,,AB AD AA 为,,x y z 轴正方向建立空间直角坐标系,则()()()()()110,0,0,0,0,4,2,2,0,2,2,4,1,2,0A A C C F ,则()()()11112,2,4,2,2,0,1,2,4A C A C A F =-==- ,设平面11A C F 的一个法向量为(),,n x y z =r,则有11100n A C n A F ⎧⋅=⎪⎨⋅=⎪⎩ ,0240x y x y z +=⎧⎨+-=⎩,取()1,4,4,1z n ==- ,设直线1AC 与平面11A C F 所成角为α,则1sin cos ,33A C n α== .20.在一场娱乐晚会上,有5位民间歌手(1到5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求“2X ≥”的事件概率.【答案】(1)415;(2)1725.【解析】【分析】(1)根据古典概型分别求出甲、乙选中3号歌手的概率;利用()()()P AB P A P B =⋅求得结果;(2)根据()()()223P X P X P X ≥==+=,分别求解出两人选择3号歌手和三人选择3号歌手的概率,加和得到结果.【详解】(1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”则()122323C P A C ==,()243535C P B C == 事件A 与B 相互独立,A 与B 相互独立则AB 表示事件“甲选中3号歌手,且乙没选中3号歌手”()()()()()22413515P AB P A P B P A P B ∴=⋅=⋅-=⨯=⎡⎤⎣⎦即观众甲选中3号歌手且观众乙未选中3号歌手的概率是415(2)设C 表示事件“观众丙选中3号歌手”,则()243535C P C C ==依题意,A ,B ,C 相互独立,A ,B ,C 相互独立,且ABC ,ABC ,ABC ,ABC 彼此互斥()()()()23222313333235535535575P X P ABC P ABC P ABC ∴==++=⨯⨯+⨯⨯+⨯⨯=()()23318335575P X P ABC ===⨯⨯=()()()331817223757525P X P X P X ∴≥==+==+=故“2X ≥”的事件的概率为1725【点睛】本题考查独立事件概率的求解问题,关键是能够利用古典概型分别求解出符合题意情况的概率,属于基础题.21.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥侧面11ABB A ,且12AA AB ==.(1)求证:AB BC ⊥;(2)若2BC =,请问在线段1AC 上是否存在点E ,使得二面角A BE C --的大小为2π3,若存在请求出E 的位置,不存在请说明理由.【答案】(1)证明见解析(2)存在,点E 为线段1AC 中点【解析】【分析】(1)利用线面垂直的判定定理证明BC ⊥侧面11A ABB ,进而可得AB BC ⊥;(2)以点A 为原点,建立空间直角坐标系,设()1101λλ=≤≤ A E A C ,利用空间向量法结合二面角A BE C --的大小为2π3可表示出关于λ的关系式,求解即可.【小问1详解】证明:连接1AB 交1AB 于点D ,因1AA AB =,D 为1A B 中点,则1AD A B⊥由平面1A BC ⊥侧面11A ABB ,且平面1A BC ⋂平面111A ABB A B =,AD ⊂平面11A ABB ,得AD ⊥平面1A BC ,又BC ⊂平面1A BC ,所以AD BC ⊥.三棱柱111ABC A B C -是直三棱柱,则1AA ⊥底面ABC ,BC ⊂平面ABC ,所以1AA BC ⊥.又1AA AD A ⋂=,1,AA AD ⊂侧面11A ABB ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥.【小问2详解】假设在线段1AC 上存在一点E ,使得二面角A BE C --的大小为2π3,由111ABC A B C -是直三棱柱,所以以点A 为原点,以AC 、1AA 所在直线分别为y ,z 轴,以过A 点和AC 垂直的直线为x 轴,建立空间直角坐标系A xyz -,如图所示,则()10,0,2A ,()()10,22,0,(220),2,2,2,,C B B 且设()1101λλ=≤≤ A E A C ,1(0,2,2)A C =- ,得(),22E λ-所以()0,,22AE λ=-,0)= AB 设平面EAB 的一个法向量()1,,n x y z = ,由1AE n ⊥ ,1AB n ⊥得:(22)00y z λ⎧+-=⎪+=,取11,1,1n λ⎛⎫=-- ⎪ ⎪-⎝⎭ ,由(1)知1AB ⊥平面1A BC ,所以平面CEB的一个法向量)12AB =,所以11112π1cos 32AB n AB n ⋅== ,解得12λ=,∴点E 为线段1AC 中点时,二面角A BE C --的大小为2π3.22.如图,已知圆22:430M x x y -++=,()1,P t -为直线:1l x =-上一动点,O 为坐标原点,过点P 作圆M 的两条切线,切点分别为A ,B.(1)证明直线AB 过定点,并求出定点的坐标;(2)求线段AB 中点的轨迹方程;(3)若两条切线PA ,PB 与y 轴分别交于点S ,T ,求ST 的最小值.【答案】(1)证明见解析,定点5,03⎛⎫⎪⎝⎭;(2)()221112636x y x ⎛⎫-+=≠ ⎪⎝⎭(3)2【解析】【分析】(1)求出以P 为圆心,PA 为半径的圆P 的方程,再根据线段AB 为圆P 和圆M 的公共弦,将两圆的方程相减可得直线AB 的方程,令直线方程中参数项的自变量为0得解;(2)设AB 的中点为点F ,直线AB 过的定点为点H ,根据几何性质可得HF 始终垂直于FM ,进而求得方程即可;(3)设切线方程为()1y t k x -=+,根据直线与圆相切化简可得228610k kt t ++-=,设PA ,PB 的斜率分别为1k ,2k ,则1k ,2k ,为228610k kt t ++-=的两根,表达出()1212ST k t k t k k =+-+=-,再代入韦达定理,结合函数的范围求解即可.【小问1详解】由题,圆M 的圆心坐标()2,0,半径为1,所以PM =,1AM =,22228=-=+PA PM AM t ,故以P 为圆心,PA 为半径的圆P 的方程为()()22218x y t t ++-=+,显然线段AB 为圆P 和圆M 的公共弦,则直线AB 的方程为()()()222221281x x y t y t +--+--=+-,即350x ty --=,所以()350x ty --=,所以直线AB 过定点5,03⎛⎫ ⎪⎝⎭;【小问2详解】由(1)知,直线AB 过定点5,03⎛⎫ ⎪⎝⎭,AB 的中点为直线AB 与直线MP 的交点,设AB 的中点为F ,直线AB 过的定点为H ,易知HF 始终垂直于FM ,所以F 点的轨迹是以HM 为直径的圆,5,03H ⎛⎫ ⎪⎝⎭,()2,0M ,∴点F 的轨迹方程为()221112636x y x ⎛⎫-+=≠ ⎪⎝⎭;【小问3详解】设过点P 的圆M 的切线方程为()1y t k x -=+,即0kx y k t -++=,故()2,0M 到直线0kx y k t -++=的距离1d ==,即228610k kt t ++-=,设PA ,PB 的斜率分别为1k ,2k ,则1234t k k +=-,21218t k k -=,把0x =代入0kx y k t -++=,得y k t =+,则()12124ST k t k t k k =+-+=-=,故当0=t时,ST 取得最小值为2.。
四川省德阳市2023-2024学年高二平实班上学期期中数学试题含解析

四川省什邡高2022级平实班第三学期期中考试数学试题卷(答案在最后)一、单选题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知()1i 5iz +=+,则z 在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A 【解析】【分析】由复数的四则运算、共轭复数及复数的几何意义即可得解.【详解】由()1i 5i z +=+,得()()()()5i 1i 5i 64i32i 1i 1i 1i 2z +-+-====-++-,则32i z =+,故z 在复平面内对应的点为()3,2,在第一象限.故选:A .2.在△ABC 中,1AB =,BC =,5cos 6A =,则AC =()A.2B.73 C.3D.52【答案】C 【解析】【分析】根据题意利用余弦定理直接求解即可.【详解】因为△ABC 中,1AB =,BC =,5cos 6A =,所以由余弦定理知,222cos 2AB AC BC A AB AC +-=⋅,即251562AC AC+-=,化简整理得235120AC AC --=,解得3AC =或43AC =-(舍去).故选:C3.已知点(1,1)A -和点(1,3)B -,则以线段AB 为直径的圆的标准方程为()A.22(2)(4)5x y ++-= B.22(2)(4)20x y ++-=C.22(1)5x y +-=D.22(1)20x y +-=【答案】C 【解析】【分析】求圆心与半径可得标准方程.【详解】因为点(1,1)A -和点(1,3)B -为直径端点,所以AB 中点1113,22M --+⎛⎫⎪⎝⎭,即(0,1)M 为圆心,由AB =,则圆的半径2AB r ==故圆的标准方程为22(1)5x y +-=.故选:C.4.国家射击运动员甲在某次训练中10次射击成绩(单位:环)7:,6,9,7,4,8,9,10,7,5,则这组数据第70百分位数为()A.7 B.8C.8.5D.9【答案】C 【解析】【分析】由百分位数的概念和计算公式可直接求解.【详解】将10次射击成绩按照从小到大顺序排序为:4,5,6,7,7,7,8,9,9,10,因为1070%7⨯=,所以第70百分位数为898.52+=,故选:C .5.若0a >,0b >,直线()2110x a y +-+=与直线30bx y +-=互相垂直,则ab 的最大值为()A.116B.19C.18D.16【答案】C 【解析】【分析】先根据两直线垂直得到a 和b 之间的关系:21a b +=;再利用基本不等式即可求出ab 的最大值.【详解】由直线()2110x a y +-+=与直线30bx y +-=互相垂直,所以()12110b a ⨯+-⨯=,即21a b +=.又0a >,0b >,所以2112122228a b ab a b +⎛⎫=⨯⋅≤⨯= ⎪⎝⎭,当且仅当2a b =,即14a =,12b =时等号成立,所以ab 的最大值为18.故选:C .6.过原点的直线与双曲线()222210,0x y a b a b-=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若△ABF 的面积为24a ,则双曲线的渐近线方程为()A.33y x =± B.12y x =±C.y x =±D.2y x=±【答案】D 【解析】【分析】根据题设条件可得四边形1AF BF 为矩形,设AF m =,BF n =,根据双曲线定义和△ABF 的面积可得2224164c a a -=,故可求ba的值.【详解】如图,因为以AB 为直径的圆恰好经过双曲线的右焦点F ,所以AB 为直径的圆的方程为222x y c +=,圆也过左焦点1F ,所以AB 与1F F 相等且平分,所以四边形1AF BF 为矩形,所以1AF BF =.设AF m =,BF n =,则12AF BF BF BF m n a -=-=-=,所以22224m n mn a +-=.因为AF BF ⊥,所以22224m n AB c +==.因为△ABF 的面积为24a ,所以2142mn a =,得28mn a =,所以2224164c a a -=,得225c a =,所以2225a b a +=,所以224b a =,得2b a =,所以双曲线的渐近线方程为2by x x a=±=±.故选:D .7.已知O 为坐标原点,P 是椭圆E :()222210x y a b a b+=>>上位于x 轴上方的点,F 为右焦点.延长PO ,PF 交椭圆E 于Q ,R 两点,QF FR ⊥,3QF FR =,则椭圆E 的离心率为()A.33B.22C.53D.104【答案】B 【解析】【分析】由椭圆的对称性,及QF FR ⊥,得四边形1PFQF 为矩形,设PF m =,利用椭圆的定义,及条件所给出的长度关系,可表示出23a m FR -=,143a m F R +=,223a mPR +=,利用勾股定理,求出m ,推断出点P 的位置,求出离心率.【详解】如图,设左焦点为1F ,连接1PF ,1QF ,1RF ,由题,P ,Q 关于原点对称,所以四边形1PFQF 为平行四边形,又因为QF FR ⊥,所以四边形1PFQF 为矩形.设PF m =,则12QF PF a m ==-,又因为3QF FR =,则23a m FR -=,143a m F R +=,223a m PR +=,在1Rt F PR △中,22211PF PR F R +=,即()222224233a m a m a m ++⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得m a =或2m a =(舍去),故点P 为椭圆的上顶点.由1F P PF ⊥,所以()2222a a c +=,即222a c =,所以离心率22e ==.故选:B.【点睛】解题时注意数形结合,抓住椭圆的对称性,将图形关系用含a ,b ,c 的代数式表示出来,即可求解离心率.8.在矩形ABCD 中,3,4AB AD ==,将ABD △沿对角线BD 翻折至A BD ' 的位置,使得平面A BD '⊥平面BCD ,则在三棱锥A BCD -'的外接球中,以A C '为直径的截面到球心的距离为()A.10B.5C.10D.10【答案】B 【解析】【分析】如图,取BD 的中点为O ,连接,A O CO ',过A '作A H BD ⊥',垂足为H ,连接CH ,可证O 为三棱锥A BCD -'的外接球的球心,利用解直角三角形可求233725A C '=,据此可求球心到以A C '为直径的截面的距离.【详解】如图,取BD 的中点为O ,连接,A O CO ',过A '作A H BD ⊥',垂足为H ,连接CH .因为三角形A DB '为直角三角形,故A O OD OB '==,同理CO OD OB ==,故CO OD OB OA '===,所以O 为三棱锥A BCD -'的外接球的球心,而5BD ==,因为A H BD ⊥',A H '⊂平面A BD ',平面A BD '⊥平面CBD ,平面A BD ' 平面CBD BD =,故A H '⊥平面CBD ,而CH ⊂平面CBD ,故A H CH '⊥.在直角三角形A BD '中,3,4A B A D ''==,故125A H '==,故95BH ==,在直角三角形CBD 中,4cos 5CBD ∠=,故281941931624255525CH =+-⨯⨯⨯=,故2144193337252525A C '=+=.设球心到以A C '为直径的截面的距离为d ,则10105d =====,故选:B.【点睛】思路点睛:三棱锥外接球的球心,可根据球心的定义来判断(即球心到各顶点的距离相等),而球面截面圆的半径、球心到截面的距离、球的半径可构成直角三角形.二、多选题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB 的长为22D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+【答案】ABD 【解析】【分析】两圆方程作差后可得公共弦方程,从而可判断A ;求出垂直平分线的方程判断B ;利用垂径定理计算弦长判断C ;求出圆1O 到直线的距离的最大值判断D .【详解】圆2121)1:(x O y -+=的圆心1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=的圆心2(1,2)O -,半径2r =,显然122121||(,)O O r r r r =-+,即圆1O 与圆2O 相交,对于A ,将方程2220x y x +-=与22240x y x y ++-=相减,得公共弦AB 所在直线的方程为440x y -=,即0x y -=,A 正确;对于B ,由选项A 知,直线AB 的斜率1AB k =,则线段AB 中垂线的斜率为1-,而线段AB 中垂线过点1(1,0)O ,于是线段AB 中垂线方程为()011y x -=-⨯-,即10x y +-=,B 正确;对于C ,点1(1,0)O 到直线0x y -=的距离为22d ==,因此AB ==,C 错误;对于D ,P 为圆1O 上一动点,圆心1(1,0)O 到直线0x y-=的距离为2d =,因此点P 到直线AB 距离的最大值为112d r +=+,D 正确.故选:ABD10.已知函数()()πsin 02||0f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示,下列说法正确的是()A.π3ϕ=B.函数()f x 的图象关于1,06⎛⎫⎪⎝⎭对称C.函数()f x 在12,63⎡⎤⎢⎥⎣⎦的值域为[-D.要得到函数()()cos g x A x ωϕ=+的图象,只需将函数()f x 的图象向左平移14个单位【答案】ACD 【解析】【分析】先由图象信息求出()f x 表达式,从而即可判断A ;注意到()0,0x 是()π2sin 2π3f x x ⎛⎫=+⎪⎝⎭的对称中心当且仅当()00π2sin 2π03f x x ⎛⎫=+= ⎪⎝⎭,由此即可判断B ;直接由换元法结合函数单调性求值域对比即可判断C ;直接按题述方式平移函数图象,求出新的函数解析式,对比即可判断.【详解】如图所示:由图可知1112,43124T A ==-=,又2πT ω=,所以1,2πT ω==,所以()()2sin 2πf x x ϕ=+,又函数图象最高点为1,212⎛⎫⎪⎝⎭,所以1π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,即πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 62k k ϕ+=+∈,解得ππ,Z k k ϕ=+∈23,由题意π||2ϕ<,所以只能π0,3k ϕ==,故A 选项正确;由A 选项分析可知()π2sin 2π3f x x ⎛⎫=+⎪⎝⎭,而()0,0x 是()π2sin 2π3f x x ⎛⎫=+ ⎪⎝⎭的对称中心当且仅当()00π2sin 2π03f x x ⎛⎫=+= ⎪⎝⎭,但1ππ2sin 0633f ⎛⎫⎛⎫=+=≠ ⎪⎪⎝⎭⎝⎭,从而函数()f x 的图象不关于1,06⎛⎫⎪⎝⎭对称,故B 选项错误;当12,63x ⎡⎤∈⎢⎥⎣⎦时,π4π2π,33x ⎡⎤∈⎢⎥⎣⎦,π2π5π2π,333t x ⎡⎤=+∈⎢⎥⎣⎦,而函数2sin y t =在2π3π,32⎡⎤⎢⎣⎦上单调递减,在3π5π,32⎡⎤⎢⎥⎣⎦上单调递增,所以当12,63x ⎡⎤∈⎢⎥⎣⎦时,()()22122f x -=⨯-≤≤⨯=,所以函数()f x 在12,63⎡⎤⎢⎥⎣⎦的值域为[-,故C 选项正确;若将函数()π2sin 2π3f x x ⎛⎫=+ ⎪⎝⎭的图象向左平移14个单位,则得到的新的函数解析式为()()1ππππ2sin 2π2sin 2π2cos 2π43323h x x x x g x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++=++=+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,故D 选项正确.故选:ACD.11.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 是平行四边形,E 为PC 的中点,2,90PD AD BD ADB ===∠=︒,则()A.//PA 平面BDEB.平面PCB ⊥平面PDBC.三棱锥P BDE -的体积为43D.异面直线PA 和BE 所成的角的余弦值为3【答案】ABD 【解析】【分析】A 项,通过证明线线平行即可得出结论;B 项,通过证明BC ⊥平面PDB ,即可得出结论;C 项,通过等积法即可求出三棱锥的体积;D 项,将异面直线PA 和BE 所成的角转化为同一个平面上两条直线的夹角,即可求出异面直线PA 和BE 所成的角的余弦值.【详解】由题意,在四棱锥P ABCD -中,连接AC 交BD 于点O ,连接OE ,过点E 作EFCD ⊥于点F ,在ABCD Y 中,12AO CO AC ==,点O 为AC 中点,在ACP △中,E 为PC 的中点,∴1,2OE AP OE =∥AP ,∴异面直线PA 和BE 所成的角即为BEO ∠(或其补角),∵AP ⊄面BDE ,OE ⊂平面BDE ,∴//PA 平面BDE ,A 正确;在四棱锥P ABCD -中,PD ⊥平面ABCD ,又90ADB ∠=︒,∴,,BC BD PD BC ⊥⊥,∵BD ⊂平面PDB ,PD ⊂平面PDB ,BD PD D = ,∴BC ⊥平面PDB ,∵BC ⊂平面PCB ,∴平面PCB ⊥平面PDB ,B 正确;在ABCD Y 中,12AO CO AC ==,2,90PD AD BD ADB ===∠=︒,∴AD ∥BC ,90ADB CBD ∠=∠=︒2AD BD BC ===,112EF PD ==∴,ABD BCD 是等腰直角三角形,22AB CD ==,∵PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD ,∵平面PCD 平面ABCD CD =,,EF CD EF ⊥⊂平面PCD ,∴EF ⊥平面ABCD .∵E 为PC 的中点,∴三棱锥P BDE -的体积为:1111222222323P BDE P BCD V V --==⨯⨯⨯⨯⨯=,C 错误;在Rt PAD 中,AP ===,∴12OE AP ==在Rt PCD 中,PC ==在Rt BCP 中,E 为PC 的中点,∴12BE PC ==,在Rt BOE △中,cos3OEBEO BE∠==,D 正确.故选:ABD.12.已知双曲线22:184x y C -=的左、右顶点分别为A ,B ,P 是C 上任意一点,则下列说法正确的是()A.C 的渐近线方程为2y x =±B.若直线y kx =与双曲线C 有交点,则2k ≥C.点P 到C 的两条渐近线的距离之积为83D.当点P 与A ,B 两点不重合时,直线PA ,PB 的斜率之积为2【答案】AC 【解析】【分析】由双曲线的渐近线方程可判断A ,通过对比直线与双曲线的渐近线斜率之间的关系可求解B ,结合点到直线的距离公式可求C ,PA ,PB 的斜率相乘后,结合双曲线方程化简可得定值,则D 可判断.【详解】双曲线22:184x y C -=,则2a b ==,对于A ,C 的渐近线方程为22b y x x a =±=±,A 正确;对于B ,由双曲线的渐近线方程为2y x =±可知,若直线y kx =与双曲线C 有交点,则2k <,B 错误;对于C ,设点(),P x y ,则222212884x yx y -=⇒-=,点P 到C222833x y -==,C 正确;对于D,易得()A -,()B ,设(),P x y,则(22418x y x ⎛⎫=-≠± ⎪⎝⎭,所以直线PA ,PB的斜率之积为22224181882x y x x ⎛⎫- ⎪⎝⎭===--,D 错误.故选:AC.三、填空题(本大题共4小题,每小题5分,共20分)13.已知()tan π1α+=-,则2sin cos cos sin αααα+=-__________.【答案】12-##0.5-【解析】【分析】首先求tan α的值,再用tan α表示齐次分式,即可求解.【详解】()tan πtan 1αα+==-,()2sin cos 2tan 1211cos sin 1tan 112αααααα++-+===-----.故答案为:12-14.已知()1,2M ,()4,3N ,直线l 过点()2,1P -且与线段MN 相交,那么直线l 的斜率k 的取值范围是__________________【答案】(][),32,-∞-+∞ 【解析】【分析】画出图形,由题意得所求直线l 的斜率k 满足PN k k 或PM k k ,用直线的斜率公式求出PN k 和PM k 的值,解不等式求出直线l 的斜率k 的取值范围.【详解】如图所示:由题意得,所求直线l 的斜率k 满足PN k k 或PM k k ,即31242k +=-,或21312k +=-- ,2k ∴ 或3k - ,故答案为:(][),32,-∞-+∞ .15.已知命题p :[]04x ∃∈,,使得220x x a --<,若p 是真命题,则a 的取值范围是___________.【答案】1,8⎛⎫-+∞ ⎪⎝⎭【解析】【分析】分离变量可得22a x x >-,结合能成立的思想和二次函数最值的求法可求得结果.【详解】由220x x a --<得:22a x x >-;[]0,4x ∃∈ ,使得220x x a --<,()2min 2a x x ∴>-;22y x x =- 为开口方向向上,对称轴为14x =的抛物线,∴当[]0,4x ∈时,()22min11122448x x⎛⎫-=⨯-=- ⎪⎝⎭,a ∴的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故答案为:1,8⎛⎫-+∞ ⎪⎝⎭.16.已知,a b为单位向量,若()()0,221a b c a c b ⋅=+⋅+=- ,则()()c a c b -⋅- 的取值范围为__________.【答案】[532,532]-+【解析】【分析】由题设以,a b为x 、y 轴构建平面直角坐标系,(1,0),(0,1)a b == ,令(,)c x y = 结合已知有22(1)(1)1x y +++=,又()()22111(()222c a c b x y -⋅-=-+--,将问题转化为求点11(,22到22(1)(1)1x y +++=上点距离d 的范围,即可得结果.【详解】由,a b 为单位向量,且0a b ⋅= ,故a b ⊥ ,以,a b为x 、y 轴构建平面直角坐标系,如下图示,则(1,0),(0,1)a b == ,令(,)c x y = ,则2(2,),2(,2)c a x y c b x y +=++=+,又()()221c a c b +⋅+=- ,所以22221x x y y +++=-,即22(1)(1)1x y +++=,故c的终点在圆心为(1,1)--,半径为1的圆上,而(1,),(,1)c a x y c b x y -=--=- ,故()()2222111((222c a c b x x y y x y -⋅-=-+-=-+-- ,所以,只需确定点11(,)22到22(1)(1)1x y +++=上点距离d 的范围即可,而11(,22到(1,1)--的距离为2,故[1,1]22d ∈-+,则()()21[52c a c b d -⋅-=-∈-+ .故答案为:[5-+【点睛】关键点点睛:构建平面直角坐标系,将问题化为求定点到圆上点距离的范围,进而求目标式的范围.四、解答题(共70分,解答应写出文字说明、证明过程或演算步骤)17.已知向量a 与b的夹角为60°,||a =1,)b = .(1)求||b 及a b ⋅;(2)求|2|a b -.【答案】(1)||b = 2,a b ⋅=1;(2)|2|a b -=【解析】【分析】(1)利用模长坐标公式求||b ,再由数量积的定义求a b ⋅;(2)应用向量数量积的运算律求|2|a b -即可.【小问1详解】由题设2b ==,则cos 12cos60 1.a b a b θ⋅=⋅=⨯︒=【小问2详解】由()2222|2|244a b a ba ab b -=-=-⋅+221412cos604213=-⨯⨯⨯︒+⨯=,所以2a b -=18.夜幕降临,华灯初上,丰富多元的夜间经济,通过夜间商业和市场,更好满足了民众个性化、多元化、便利化的消费需求,丰富了购物体验和休闲业态.打造夜间经济,也是打造城市品牌、促进产业融合、推动消费升级的新引擎.为不断创优夜间经济发展环境,近朋,某市商务局对某热门夜市开展“服务满意度大调查”,随机邀请了100名游客填写调查问卷,对夜市服务评分,并绘制如下频率分布直方图,其中[)40,50为非常不满意,[)50,60为不满意,[)60,70为一般,[)70,80为基本满意,[)80,90为非常满意,[]90,100为完美.(1)求a 的值及估计80%分位数:(2)调查人员为了解游客对夜市服务的具体意见,对评分不足60分的调查问卷抽取2份进行细致分析,求恰好为非常不满意和不满意各一份的概率.【答案】18.0.025a =;80%分位数为92.19.815【解析】【分析】(1)根据频率之和为1,求出a ;判断出80%分位数所在区间,再设出80%分位数,列出方程即可求解;(2)列举出基本事件的所有样本点即所求事件样本点,按古典概型即可求解.【小问1详解】由(0.0020.0040.0140.0200.035)101a +++++⨯=,解得0.025a =;由低于90分的频率为10.025100.75-⨯=,则80%分位数在[]90,100内,设样板数据的80%分位数约为n 分,则900.80.75100900.25n --=-,解得92n =,即80%分位数为92.【小问2详解】非常不满意的游客有1000.002102⨯⨯=人,设编号为,A B ,不满意的游客有1000.004104⨯⨯=人,设编号为a b c d ,,,,则基本事件的总数有:,,,,,,,,,ab,ac,ad,bc,bd,cd AB Aa Ab Ac Ad Ba Bb Bc Bd 工15种,事件M “恰好为非常不满意和不满意各一份”有:,,,,,,,Aa Ab Ac Ad Ba Bb Bc Bd 工8种,故8()15P M =.19.已知圆C :()()2224x a y -+-=,直线l :30x y -+=,l 与圆C 相交于A ,B 两点,||AB =.(1)求实数a 的值;(2)当0a >时,求过点()1,6-并与圆C 相切的直线方程.【答案】(1)1a =或3a =-(2)=1x -或34210x y +-=【解析】【分析】(1)根据圆的半径以及直线与圆相交所得的弦长求解出圆心到直线的距离,由此列出关于a 的方程即可求解出结果;(2)分别考虑直线的斜率存在与不存在两种情况,直线斜率不存在时直接求解,直线斜率存在时利用圆心到直线的距离等于半径进行求解.【小问1详解】因为圆的半径2r =,||AB =所以圆心到直线的距离d ==,所以d ==,所以12a +=,所以1a =或3a =-.【小问2详解】因为0a >,所以()()22:124C x y -+-=,当直线的斜率不存在时,直线方程为=1x -,圆心到=1x -的距离为()112r --==,所以=1x -与圆相切;当直线的斜率存在时,设直线方程为()61y k x -=+,即60kx y k -++=,2=,所以34k =-,所以直线方程为34210x y +-=,所以过点()1,6-并与圆C 相切的直线方程为=1x -或34210x y +-=.20.已知向量2,1,cos ,cos 222x xx m n ⎫⎛⎫==⎪ ⎪⎭⎝⎭.(1)若1m n ⋅=,求5cos 23x π⎛⎫- ⎪⎝⎭的值;(2)记()f x m n =⋅,在ABC 中,角A ,B ,C 的对边分别是a ,b ,c .且满足(2)cos cos a c B b C -=,求函数(A)f 的取值范围.【答案】(1)12;(2)31,2⎛⎤⎥⎝⎦.【解析】【分析】(1)通过向量的数量积以及两角和与差的三角函数化简函数的解析式,结合二倍角公式转化求解即可;(2)利用正弦定理,结合三角形的内角和通过A 的范围,转化求解函数值的范围即可.【详解】解:(1)m n⋅2cos cos 222x x x=+cos 1sin 222x x =++1sin ,162x m n π⎛⎫=++⋅= ⎪⎝⎭ 1sin 162x π⎛⎫∴++= ⎪⎝⎭1sin 62x π⎛⎫∴+=⎪⎝⎭所以251cos 2cos 212sin 3362x x x πππ⎛⎫⎛⎫⎛⎫-=+=-+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)(2)cos cos a c B b C -= ,由正弦定理得(2sin sin )cos sin cos A C B B C -=,2sin cos sin cos sin cos A B C B B C ∴-=,2sin cos sin()A B B C ∴=+.A B C π++= ,sin()sin 0B C A ∴+=≠.1cos 2B ∴=,0B π<<,3B π∴=,203A π∴<<.51,sin ,166662A A ππππ⎛⎫⎛⎤∴<+<+∈ ⎪ ⎥⎝⎭⎝⎦.又1()sin 62f x x π⎛⎫=++ ⎪⎝⎭ ,1()sin 62f A A π⎛⎫∴=++ ⎪⎝⎭.故函数(A)f 的取值范围是31,2⎛⎤ ⎥⎝⎦.21.如图,⊥AE 平面,//,//ABCD CF AE AD BC ,,1,2AD AB AB AD AE BC ⊥====.(1)求证://DE 平面BCF ;(2)若二面角E BD F --的余弦值为13,求直线FB 与平面ABCD 所成角的正切值.【答案】(1)证明见解析;(2)47.【解析】【分析】(1)两种方法,一是通过题意,得到平面BCF 的法向量AB,然后结合DE,通过计算可得0DE AB ⋅=,从而得到//DE 平面BCF ;二是通过证明//CF AE 、//BC AD ,得到平面BCF //平面ADE ,进而推出//DE 平面BCF ;(2)通过建立空间直角坐标系,设出平面EBD 和平面BDF 的法向量,并结合题意条件,求解出CF 的长,然后根据CF ⊥平面ABCD ,求解出tan FBC ∠,即可.【小问1详解】依题意,可以建立以A 为原点,分别以AB AD AE,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设()0CF h h =>,则()1,2,F h .(1)法一:证明:依题意,AE ^Q 平面ABCD ,//CF AE ,CF ∴⊥平面ABCD ,CF AB ∴⊥,又AB BC ∴⊥,BC CF C = ,AB ∴⊥平面BCF ,(1,0,0)AB ∴= 是平面BCF 的法向量,又(0,1,2)DE =-,可得0DE AB ⋅=,又因为直线DE ⊄平面BCF ,所以//DE 平面BCF .法二: //CF AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,//CF ∴平面ADE .同理//BC 平面ADE ,CF BC C = ,∴平面BCF //平面ADE ,又DE ⊂平面ADE ,所以//DE 平面BCF.【小问2详解】设(),,m x y z = 为平面BDF 的法向量,则00BD m BF m ⎧⋅=⎨⋅=⎩即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,m h ⎛⎫=- ⎪⎝⎭ .同理可得平面BDE 的一个法向量为(2,2,1)n =由题意,有||1cos ,3||||m n m n m n ⋅〈〉===,解得87h =.87CF ∴=.CF ⊥ 平面ABCD ,FBC ∴∠为直线FB 与平面ABCD 所成角,4tan 7CF FBC BC ∴∠==.22.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为()()12,0,,0F c F c -,离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)过点()3,0D -的直线l 与椭圆C 相交于A ,B 两点,记1ABF 的面积为S ,求S 的最大值.【答案】(1)22143x y +=(2)3【解析】【分析】(1)根据题意,列出关于a ,b ,c 的方程即可求解;(2)设直线方程(有两种方法,一种设3x my =-;另一种设()3y k x =+),与椭圆方程联立,结合韦达定理及基本不等式即可求出面积的最大值.【小问1详解】因为12c a =,所以2a c =,则223b c =,所以C 的标准方程为2222143x y c c+=,因为点31,2⎛⎫ ⎪⎝⎭在C 上,所以221911443c c+⨯=,解得1c =,从而2a =,b =.所以C 的标准方程为22143x y +=.【小问2详解】易知点()3,0D -在C 的外部,则直线l 的斜率存在且不为0,设:3l x my =-,()11,A x y ,()22,B x y ,联立方程组223143x my x y =-⎧⎪⎨+=⎪⎩消去x 得()223418150m y my +-+=,由Δ0>得3m >,由根与系数的关系知1212221815,.3434m y y y y m m +==++所以AB ==,化简得234AB m =+.设点()11,0F -到直线l 的距离为d,则d ==所以1ABF的面积22143135433523434S m m ==++(0)t t =>,得2235m t =+,所以299S t t t==++,因为96t t +≥=,所以63S ≤=,当且仅当3t =,即3m =时,等号成立.因为423m =满足Δ0>,所以S 的最大值为233.评分细则:第二问另解:(2)设():3l y k x =+,()11,A x y ,()22,B x y ,联立方程组()223143y k x x y ⎧=+⎪⎨+=⎪⎩,消去y 得()2222432436120k x k x k +++-=.由Δ0>得5k <,由根与系数的关系知22121222243612,4343k k x x x x k k -+=-=++.所以AB ==化简得24313543AB k =+.设点()11,0F -到直线:30l kx y k -+=的距离为d,则d ==,所以1ABF的面积22124343S k k ==++.令243(3)k t t +=>,得234t k -=,所以4S t ==因为224281174581279t t t ⎛⎫-+-=--+ ⎪⎝⎭,所以233S ≤=,当且仅当277t =,即14k =时,等号成立.因为14k =满足Δ0>,所以S 的最大值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省高二上学期期中数学试题
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2019高一下·双鸭山期中) 若,则下列不等式不可能成立的是()
A .
B .
C .
D .
2. (2分)在中,,则此三角形解的情况是()
A . 一解
B . 两解
C . 一解或两解
D . 无解
3. (2分)已知数列的各项均不等于0和1,此数列前项的和为,且满足
,则满足条件的数列共有()
A . 2个
B . 6个
C . 8个
D . 16个
4. (2分) (2020高二下·济南月考) 已知,且,则的最小值为()
A . 8
B . 12
D . 20
5. (2分)(2018·汉中模拟) 已知等比数列满足,,则()
A . 7
B . 14
C . 21
D . 26
6. (2分) (2019高二上·林芝期中) 在△ABC中,A=45°,b=4,c=,那么=()
A .
B . -
C .
D . -
7. (2分) (2020高一下·隆化期中) 在中,角A,B,C所对的边分别是a,b,c,若,,则面积的最大值为()
A . 4
B .
C . 8
D .
8. (2分) (2018高二上·益阳期中) 已知数列中,,且,则
B .
C . 6
D .
9. (2分)已知中,,则A= ()
A . 或
B . 或
C .
D .
10. (2分)已知x,y满足条件则2x+4y的最小值为()
A . 6
B . 12
C . -6
D . -12
11. (2分)已知为等差数列的前项的和,,则的值为()
A .
B .
C .
D .
12. (2分)已知,且为幂函数,则ab的最大值为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2020高三上·潍坊期中) 若一直角三角形的面积为50,则该直角三角形的斜边的最小值为
________.
14. (1分)(2020·福州模拟) 设x,y满足约束条件则z=x-3y的最小值为________
15. (1分) (2019高一下·慈利期中) 等比数列中,是关于的方程两个实根,则
________.
16. (1分) (2016高一下·龙岩期中) 已知α,β∈(0,),且cosα= ,sin(α﹣β)= ,则sinβ=________.
三、解答题 (共6题;共60分)
17. (10分) (2020高一下·大庆期末) 在等差数列中,为其前n项和,且
(1)求数列的通项公式;
(2)设,求数列的前n项和
(3)设,求数列的前n项和
18. (10分)(2018·河南模拟) 的内角,,的对边分别为,,,面积为,已知 .
(1)求角;
(2)若,,求角 .
19. (5分)已知函数f(x)= ,x∈[2,6]
(1)求证:函数f(x)是区间[2,6]上的减函数;
(2)求函数f(x)在区间[2,6]内的最大值与最小值.
20. (10分) (2016高一上·银川期中) 已知函数y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函数的最值;
(2)若函数在定义域内是单调函数,求a取值的范围.
21. (10分)已知圆x2+(y﹣2)2=4,点A在直线x﹣y﹣2=0上,过A引圆的两条切线,切点为T1 , T2 ,(Ⅰ)若A点为(1,﹣1),求直线T1T2的方程;
(Ⅱ)求|AT1|的最小值.
22. (15分) (2019高一下·通榆月考) 在等差数列{an}中,Sn为其前n项和(n∈N*),且a2=3,S4=16. (1)求数列{an}的通项公式;
(2)设bn=,求数列{bn}的前n项和Tn.
参考答案一、单选题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、
考点:
解析:
二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共6题;共60分)答案:17-1、
答案:17-2、
答案:17-3、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、
答案:19-2、考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。