2020河南中考数学复习专题专题类比探究题
2024年河南省中考数学二轮复习微专题+半角模型探究系列+课件

[答案] 如图(1).
图(1)
证明:连接 .
∵ = , ∠ = ∠ = ∘ , = ,
∴△ ≌△ , ∴ = , ∠ = ∠ ,
半角模型探究系列
以题串模型
例1 一题多问 如图(1),四边形 ABCD 是正方形, ∠MAN = 45∘ ,射线
AM 分别与直线 BC 、直线 BD 交于点 E , G ,射线 AN 分别与直线 CD 、直
线 BD 交于点 F , H .
图(1)
图(2)
图(3)
图(4)
图(5)
(1)当点 E 在线段 BC 上时.
BC 于点 E ,射线 AN 交线段 CD 于点 F .
(1)判断 BE , DF , EF 之间的数量关系,并加以证明.
[答案] = + .
证明:将 △ 绕点 逆时针旋转 ∘ ,得到 △ ,
如图,
则 = , = , ∠ = ∠ ,
∴ − = − = = .
(2)若 AB = 4 , BE =
[答案]
1
BC ,直接写出 EF 的长.
2
的长为 或10.
以题串模型
例2 如图,在四边形 ABCD 中, ∠ABC = ∠ADC = 90∘ ,
∠BAD = 120∘ , AB = AD. ∠MAN = 60∘ ,射线 AM 交线段
点,将射线 AE 绕点 A 逆时针旋转 45∘ 交
直线 CD 于点 F ,连接 EF .
(1)如图,点 E 在 BC 的延长线上,点 F
2020河南省历年中考数学考试试卷及答案解析 共四套 精选 P109

;
②BF、CE、EF 三条线段之间的数量关系为
.
(3)类比探究
如图 3,在四边形 ABCD 中,AB=AD,AC 与 BD 交于点 O,点 E、F 在射线 AC 上,且
∠BCF=∠DEF=∠BAD.
①判断 BC、DE、CE 三条线段之间的数量关系,并说明理由;
②若 OD=3OB,△AED 的面积为 2,直接写出四边形 ABCD 的面积.
(1)求证:对于任意实数 m,方程总有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2,当 m=﹣2 时,求 x1+x2+5 的值. 18.(9 分)某校在七、八年级学生中开展了一次“讲文明,树新风”文明礼仪知识竞赛, 根据比赛成绩(满分 100 分,参赛学生成绩均高于 80 分)绘制了如下尚不完整的统计图 表. 比赛成绩频数分布表
“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.(3 分)一个几何体由一些大小相同的小正方体组成,如图写出是它的主视图和左视图,
那么组成该几何体所需小正方体的个数最多为( )
A.7
B.8
C.9
D.10
【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层
为:75,85,91,85,95,85.这 6 名同学成绩的众数是( )
A.91
B.88
C.86
D.85
【分析】利用众数的定义求解即可.
【解答】解:数据 85 出现了 3 次,最多,
所以众数为 85,
故选:D.
【点评】本题考查了众数的定义,解题的关键是知道数据中出现次数最多的数是众数.
4.(3 分)不等式组
A.60°
2020年河南中招数学考试试题分析

2020年河南中招数学考试试题分析2020年河南中招数学考试试题分析本次中招考试由于疫情原因,题目难度系数适中。
考查学生得联系实际生活能力和应用知识能力。
下边就本次数学试题做以下具体详尽得分析。
基础题:相反数;三视图:给出立体图形判断出左视图和主视图不相同的;普查、抽样调查的区分;普查:新华字典中的错别字、安全隐患、全国人口、范围小要求精准度的调查等;抽样调查:有破坏性,调查的不太精准。
三线八角;带单位极大数的科学计数法;反比例函数图形的性质,数形结合比较大小;新运算结合一元二次方程判断根的情况;列一元二次方程,增长率问题;一次函数与平移问题;中垂线结合直角三角形勾股定理或特殊三角函数值计算线段长度进而计算四边形的面积;估算,写出满足题意的无理数;结合数周用字母表示出不等式的解集;转盘计算概率;求线段长度—中位线+勾股定理;与扇形有关的阴影部分面积;化简求值:(三步:①通分;②因式分解;③把除变为乘;带入求值有两种情况:①直接给出未知数的值;②给出范围去选择,要先排除使分式无意义的所有值,再看是否让选择一个合适的值或喜欢的值,若没有说,满足题意的所有值都要写。
)概率与统计;求出中位数、不合格率;给出表格里边结合两组数据的平均数、中位数、方差、不合格率去选择优异的小组,并说明理由。
三角函数;给出一实物,通过测量的数据计算出高度,减小误差的方法之一是多次实验求平均值。
应用题;一次函数+方案选择;一次函数需要注意的是k、b的几何意义;根据题目描述的意思,补充条件并给予证明;注意格式:已知……,求证……重难题抛物线:线段长度和图象相结合求抛物线解析式、顶点坐标;利用点坐标求线段长度图象的探究题图形旋转本次考试打破了以往15题比较难(翻折、旋转类题型)此次考试15题是阴影部分面积,14题是几何图形利用中位线、勾股定理计算线段长度;圆的题也与以往考试题型不太相同,通过自己写已知、求证这种自己写条件自己证明的形式去考察,不难,但是遇到不熟悉的题型学生容易心理上有压力。
2020年河南省中考数学压轴题专题12击破类比、探究类综合题利器之全等知识

专题12 击破类比、探究类综合题利器之全等知识模型一、A字形(手拉手)及其旋转A BCDEA BC DEA BCDE模型二、K字型及其旋转AD CEBD CEB AA DCEB【例1】(2019·济源一模)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)探索发现如图1,当点E在菱形ABCD内部或边上时,连接CE.填空:BP与CE的数量关系是,CE与AD的位置关系是.(2)归纳证明当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由.(选择图2,图3中的一种情况予以证明或说理)(3)拓展应用如图4,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,请直接写出四边形ADPE 的面积.图1 图2图3 图4 【答案】(1)BP=CE,CE⊥AD;(2)(3)见解析.【解析】解:(1)连接AC,延长CE至AD,∵四边形ABCD是菱形,∠ABC=60°,∴∠BAD=120°,∴∠BAC=60°,∠CAD=60°,∴△ABC是等边三角形,∴AB=AC,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△BAP≌△CAE,∴BP=CE,∵∠ABC=60°,∴∠ABP=30°,∵△BAP≌△CAE,∴∠ABP=∠ACE=30°,∵∠CAD=60°,∴∠ACE+∠CAD=90°,即CD⊥AD.(2)结论仍然成立,理由如下:(以图2为例)连接AC,设CE与AD交于点H,∵四边形ABCD是菱形,∠ABC=60°,∴△ABC和△ACD是等边三角形,∠ABD=∠CBD=30°,∴AB=AC,∠BAC=60°,∵△APE是等边三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE,∴△BAP≌△CAE,∴BP=CE,∠ACE=∠ABP=30°,∵∠CAH=60°,∴∠AHC=90°,即CE⊥AD;(3)连接AC交BD于O,连接CE,由(2)知,CE⊥BC,∵AB=23BE=19在Rt△BCF中,由勾股定理得:CE=8,由△BAP≌△CAE,得:BP=CE,BD=6,∴DP=BP-BD=2,AO,在Rt△AOP中,由勾股定理得:AP=∴S=S△ADP+S△APE=(2122⨯【变式1-1】(2019·周口二模)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是_____________,数量关系是______________;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=_________时,BP的最大值为__________.图1CBMNBC图2图3CBA MNP图1 图2 图3【答案】(1)BN⊥AM,BN=AM;(2)见解析,(3)2, 1.【解析】解:(1)由AC=BC,∠ACM=∠BCN,CM=CN,可证△ACM≌△BCN,∴BN=AM,∠A=∠CBN=45°,∴∠ABN=90°,即BN⊥AM.(2)BN ⊥AM ,BN =AM ;理由如下:A∵△ABC 是等腰直角三角形,∴AC =BC ,∠A =∠ABC =45°,∠ACB =90°, 同理,∠NCM =90°,NC =MC , ∴∠ACM =∠BCN , ∴△ACM ≌△BCN ,∴BN =AM ,∠A =∠CBN =45°, ∴∠ABN =90°,即BN ⊥AM .(3)过C 作CG ⊥BC 交BA 的延长线于G ,过C 作CH ⊥AB 于H ,如图所示,G易证△GCM ≌△BCN , 由(2)知,BN ⊥AB , ∴△CHM ∽△MBP ,∴CH HMBM BP =, 即44BM BM BP-=, 设BM =x , 则BP =()21214x -+, ∴当BM =2时,BP 取最小值,最小值为1.【例2】(2018·洛阳三模)在正方形ABCD中,动点E、F分别从D、C两点出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边CD上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.【答案】见解析.【解析】解:(1)AE=DF,AE⊥DF,理由如下:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,由题意知:DE=CF,∴△ADE≌△DCF,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°﹣90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,CE:CD2或2,理由如下:①如图,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=2a,则CE:CD=2a:a=2;②如图,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE=2a,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;故,CE:CD=2或2;(3)∵点P在运动中∠APD=90°,∴点P的路径是以AD为直径的圆,如图,设AD的中点为Q,连接CQ并延长交圆Q于点P,此时CP的长度最大,在Rt△QDC中,由勾股定理得:QC=5,∴CP=QC+QP=5+1,即线段CP的最大值是5+1.【变式2-1】(2019·西华县一模)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图1 图2 图3【答案】(1)FG=CE,FG∥CE;(2)(3)见解析.【解析】解:(1)FG=CE,FG∥CE;∵BF=CE,BC=CD,∠FBC=∠DCE=90°,∴△BCF≌△CDE,∴∠DEC=∠CFB,∵∠CFB+∠FCB=90°,∴∠DEC+∠FCB=90°,即CF⊥DE,∵DE⊥EG,∴EG∥CF,∴EG=DE=CF,∴四边形FCEG是平行四边形,∴FG=CE,FG∥CE;(2)∵BF=CE,BC=CD,∠FBC=∠DCE=90°,∴△BCF≌△CDE,∴∠DEC=∠CFB,CF=DE,∵∠CFB+∠FCB=90°,∴∠DEC+∠FCB=90°,即CF⊥DE,∵DE⊥EG,∴EG∥CF,∴EG=DE=CF,∴四边形FCEG是平行四边形,∴FG=CE,FG∥CE;(3)成立.由上可证:△CBF≌△DCE,得:∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.1.(2019·河南南阳一模)我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB’,把AC绕点A逆时针旋转β得到AC’,连接B’C’,当α+β=180°时,我们称△AB’C’是△ABC的“旋补三角形”,△AB’C’边B’C’上的中线AD是△ABC的旋补中线,点A叫旋补中心.特例感知:(1)在图2,图3中,△AB’C’是△ABC的“旋补三角形”,△AB’C’边B’C’上的中线AD是△ABC 的旋补中线,①如图2,当△ABC是等边三角形时,AD与BC的数量关系是②如图3,当∠BAC=90°,BC=8时,则AD的长为猜想论证:(2)如图1,当△ABC是任意三角形时,猜想AD与BC的数量关系,并给予证明.【分析】(1)①由△ABC是等边三角形,得AB=BC=AC=AB’=AC’,∠BAC=60°,∠BAC+∠B’AC’=180°,得∠B’=∠C’=30°,即BC=2AD;②可利用“直角三角形中,斜边的中线等于斜边的一半”,证得:BC=2AD,AD=4;(2)BC=2AD,利用倍长中线构造全等三角形,延长AD至M使DM=AD,连接B’M,C’M,证得△ABC≌△B’AM,得BC=AM,BC=2AD.【解析】解:(1)①∵△ABC是等边三角形,∴AB=BC=AC=AB’=AC’,∠BAC=60°,∵DB’=DC’,∴AD⊥B’C’,∵BAC+∠B’AC’=180°,∴∠B’AC’=120°,∴∠B’=∠C’=30°,∴BC=2AD,即:答案为BC=2AD.②∵∠BAC=90°,BAC+∠B’AC’=180°,∴∠B’AC’=∠BAC=90°∵AB=AB’,AC=AC’,∴△BAC≌△B’AC’,∴BC=B’C’,∵B’D=DC’,∴BC=2AD,∵BC=8,∴AD=4;(2)结论:BC=2AD,理由如下:如图,延长长AD至M使DM=AD,连接B’M,C’M,∵AD=DM,B’D=DC’,∴四边形AC’MB’是平行四边形,∴AC’=B’M=AC,∵∠BAC+∠B’AC’=180°,∠AB’M+∠B’AC’=180°,∴∠BAC=∠AB’M,∵AB=AB’,∴△BAC≌△AB’M,∴BC=AM,即BC=2AD.2.(2019·郑州外国语测试)已知如图1所示,在△ABC中,∠ACB=90°,AC=BC,点D在AB上,DE⊥AB 交BC于E,点F是AE的中点,(1)写出线段FD与线段FC的关系并证明;(2)如图2所示,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC 的关系是否变化,写出结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=22,直接写出线段BF的范围.【答案】见解析.【解析】解:(1)FD=FC,FD⊥FC,理由如下:由题意知:∠ADE=∠ACE=90°,AF=EF,∴DF=AF=EF=CF,∴∠FAD=∠FDA,∠FAC=∠FCA,∴∠DFE=∠FDA+∠FAD=2∠FAD,∠EFC=2∠FAC,∵CA=CB,∠ACB=90°,∴∠BAC=∠B=45°,∴∠DFC=∠EFD+∠EFC=2(∠FAD+∠FAC)=90°,∴FD=FC,FD⊥FC.(2)结论不变,理由如下:延长AC至M使得CM=AC,延长ED至N,使DN=DE,连接BN、BM、EM、AN,延长ME交AN于H,交AB于O,如图所示,∵BC⊥AM,AC=CM,∴AB=BM,同理得:BE=BN,∵∠ABM=∠EBN,∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=12EM,CF∥EM,同理,FD=12AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,即AN⊥MH,∴FD⊥FC.(3)由题意知,当点E落在线段AB上时,BF的长最大,如图所示,此时BF=32,当点E落在AB的延长线上时,BF的长最小,如图所示,此时,BF2,2≤BF2.3.(2019·偃师一模)特殊:(1)如图 1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB 交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为;②线段BC,DE的位置关系为.一般:(2)如图 2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC 外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图 3,在等边三角形 ABC 中,作 BM 平分∠ABC 交 AC 于点 M ,点 D 为射线 BM 上一点,以点 B 为旋转中心将线段 BD 逆时针旋转 60°得到线段 BE ,连接 DE 交射线 BA 于点 F ,连接 AD ,AE .若 AB =4,当△ADM 与△AFD 全等时,请直接写出 DE 的值.图1 图2图3【答案】(1)BD =BE ,BC ⊥DE ;(2)(3)见解析.【解析】解:(1)由题意知:∠ACM =∠BCM =45°,由旋转知,∠DCE =90°,CD =CE ,∴∠ECB =∠DCB =45°,∵BC =BC ,∴△BCD ≌△BCE ,∴BD =BE ,∵CD =CE ,∴BC 是线段DE 的垂直平分线,∴BC ⊥DE ,(2)成立,理由如下,∵CM 平分∠ACB ,∠ACB =α,∴∠ACM =∠BCM =2α,由旋转知,∠DCE =α,CD =CE ,∴∠BCD =∠BCE =2α又∵BC =BC ,∴△BCD ≌△BCE ,∴BD =BE ,∴BC 是线段DE 的垂直平分线,∴BC ⊥DE .(3)①如图3,可证得:∠ABE =∠ABD =30°,AB ⊥DE ,由△ADM ≌△ADF ,得:∠FAD =∠MAD =30°,∴AF =BF =2,∴DE =2DF ,在Rt △ADF 中,DF =AF ·tan ∠DAF即DE=3. ②如下图所示,BD同理,得∠FBD=30°,AB =AD =4,∠ADF =∠ADM=30°,∴DE =2DF综上所述,DE 的长为:3,4.(2019·省实验一模)观察猜想(1)如图①,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是 ,BE +BF = ;探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图②,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程;(3)如图③,在△ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE 绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论.图1 图2 图3【答案】(1)BF⊥BE;BC;(2)(3)见解析.【解析】解:(1)∵∠EAF=∠BAC=90°,∴∠EAF-∠BAE=∠BAC-∠BAE,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为: BF⊥BE,BC.(2)过D作DH∥AC交BC于H,∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可证得:BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD =DH =2,∴BH =22,∴BF +BE =BH =22;(3)过D 作DH ∥AC 交BC 的延长线于H ,作DM ⊥BC 于M .∵AC ∥DH ,∴∠ACH =∠H ,∠BDH =∠BAC =α,∵AB =AC ,∴∠ABC =∠ACB∴∠DBH =∠H ,∴DB =DH ,∵∠EDF =∠BDH =α,∴∠BDF =∠HDE ,∵DF =DE ,DB =DH ,∴△BDF ≌△HDE ,∴BF =EH ,∴BF +BE =EH +BE =BH ,∵DB =DH ,DM ⊥BH ,∴BM =MH ,∠BDM =∠HDM ,∴BM =MH =BD •sin 2α.∴BF +BE =BH =2n •sin 2α.5.(2019·濮阳二模)在△ABC 中,AC =BC ,∠ACB =α,点D 为直线BC 上一动点,过点D 作DF ∥AC 交AB 于点F ,将AD 绕点D 顺时针旋转α得到ED ,连接BE .(1)特例猜想如图1,当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.图1 图2 图3【答案】(1)AF=BF,90°;(2)(3)见解析.【解析】解:(1)设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°,所以答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,即∠ADF=∠EDB,∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)分两种情况讨论:①当点D在线段BC上时,由(2)可知:BE=AF,∵DF∥AC,∴14 AF CDBA BC==,∵AB=8,∴AF=2,∴BE=AF=2,②当点D在BC的延长线上时,∵AC∥DF,∴12 AF CDBA BC==,∵AB=8,∴AF=4,即BE=4,综上所述,BE的长度为2或4.6.(2019·开封二模)问题发现如图1,△ABC是等边三角形,点D是边AD上的一点,过点D作DE∥AC交AC于E,则线段BD与CE有何数量关系?拓展探究如图2,将△ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决如果△ABC的边长等于23,AD=2,直接写出当△ADE旋转到DE与AC所在的直线垂直时BD的长.图1 图2 备用图【答案】见解析.【解析】解:(1)如图1,BD=CE,理由是:∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴△ADE是等边三角形,即AD=AE,∴BD=CE;(2)结论仍然成立,由图1得:AD=AE,由旋转性质得:∠BAD=∠CAE,∵AB=AC,∴△BAD≌△CAE,∴BD=CE;(3)分两种情况讨论,①如图所示,过D作DG⊥AB,垂足为G,∵AF⊥DE,AD=AE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,由AD=2,得:DG=1,AG3由AB=3BG3由勾股定理得:BD=2.②如图,由(2)中证明可知:△BAD≌△CAE,∴BD=CE,∵AD=AE,DE⊥AC,∠ADE=60°∴∠EAF=∠FAD=30°,∴EF=FD=12AD=1,∴AF=3,∴CF=AC+CF=33,在Rt△EFC中,由勾股定理得:EC=27,∴BD=EC=27,综上所述,BD的长为2或27.7.(2019·安阳二模)(1)问题发现:如图1,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,则AB,AD,DC之间的数量关系为.(2)问题探究:如图2,在四边形ABCD中,AB∥DC,E是BC的中点,点F是DC的延长线上一点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,并证明你的结论(3)问题解决:如图3,AB∥CD,点E在线段BC上,且BE:EC=3:4.点F在线段AE上,且∠EFD =∠EAB,直接写出AB,DF,CD之间的数量关系.图1 图2 图3【答案】(1)AD=AB+CD;(2)(3)见解析.【解析】解:(1)结论:AD=AB+CD.理由:∵AB∥CF,∴∠CFE=∠EAB,∵CE=EB,∠CEF=∠AEB,∴△CEF≌△BEA,∴AB=CF.∵AF平分∠DAB,∴∠DAF=∠EAB,∵∠EAB=∠CFE,∴∠DAF=∠DFA,∴AD=DF,∵DF=DC+CF=CD+AB,∴AD=AB+CD.(2)结论:AB=AF+CF.理由:延长AE、DC交于G,∵AB∥DG,∴∠G=∠EAB,∵CE=EB,∠CEG=∠BEA,∴△CEG≌△BEA,∴AB=CG,∠G=∠EAB,∵AE平分∠FAB,∴∠FAG=∠EAB,∵∠G=∠EAB,∴∠FAG=∠G,∴FA=FG,∵CG=CF+FG=CF+AF,∴AB=AF+CF.(3)结论:AB=34(CD+DF).延长AE、CD交于G.∵CG∥AB,∴34BE ABCE CG==,∠G=∠A,∴AB=34 CG,∵∠DFE=∠A,∴∠DFG=∠G,∴DF=DG,∴CD+DF=CD+DG=CG,∴AB=34(CD+DF).8.(2019·中原名校大联考)如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点,(1)【观察猜想】图1中,线段AP与BE的数量关系是,位置关系是.(2)【探究证明】把△ADE绕点A逆时针旋转到图2的位置,(1)中的猜想是否仍然成立?若成立请证明,否请说明理由;(3)【拓展延伸】把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出线段AP长度的最大值和最小值.图1 图2【答案】(1)AP=12BE,PA⊥BE;(2)(3)见解析.【解析】解:(1)设PA交BE于点O.∵AD=AE,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB,∴BE=CD,∠ACD=∠ABE,∵∠DAC=90°,DP=PC,∴PA=12CD=PC=PD,∴PA=12BE,∠C=∠PAE,∵∠CAP+∠BAO=90°,∴∠ABO+∠BAO=90°,∴∠AOB=90°,∴PA⊥BE,(2)结论成立.理由:延长AP至M,使PM=PA,连接MC,延长PA交BE于O.∵PA=PM,PD=PC,∠APD=∠CPM,∴△APD≌△MPC,∴AD=CM,∠ADP=∠MCP,∴AD∥CM,∴∠DAC+∠ACM=180°,∵∠BAC=∠EAD=90°,∴∠EAB=∠ACM,∵AB=AC,AE=CM,∴△EAB≌△MCA,∴BE=BM,∠CAM=∠ABE,∵PA=12AM,PA=12BE,∵∠CAM+∠BAO=90°,∴∠ABE+∠BAO=90°,∴∠AOB=90°,∴PA⊥BE.(3)∵AC=10,CM=4,∴10﹣4≤AM≤10+4,∴6≤AM≤14,∵AM=2AP,∴3≤PA≤7.∴PA的最大值为7,最小值为3.9.(2018·新乡一模)如图1,在△ABC与△ADE中,AB=AC,AD=AE,∠A是公共角.(1)BD与CE的数量关系是:;(2)把图1的△ABC绕点A旋转一定的角度,得到如图2所示的图形.①求证:BD=CE;②BD与CE所在直线的夹角与∠DAE的数量关系是什么?说明理由.(3)若AD=10,AB=6,把图1中的△ABC绕点A顺时针旋转α度(0°<α≤360)直接写出BD长度的取值范围.图1 图2【答案】(1)=;(2)(3)见解析. 【解析】解:∵AD=AE,AB=BC,∴AD-AB=AE-AC,即BD=CE;(2)①∵∠DAE=∠BAC,∴∠DAE+∠BAE=∠BAC+∠BAE.即∠BAD=∠CAE.在△ABD和△ACE中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS)∴BD=CE.②BD与CE所在直线的夹角与∠DAE的度数相等. 延长DB交CE于点F.OF BEC∵△ABD≌△ACE,∴∠ADB=∠AEC∵∠AOD=∠EOF,∴180°-∠ADB-∠AOD =180°-∠AEC-∠EOF,即∠DAE=∠DFE③当B在线段AD上时,BD最小,最小值为10-6=4;当B在线段DA延长线上时,BD最大,最大值为10+6=16,即4≤BD≤16.10.(2019·河南模拟)【问题探索】(1)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,点D,E分别在AC、BC边上,DC=CE,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN. 探索BE与MN的数量关系. 聪明的小华推理发现PM、PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】(2)将△DEC绕点C逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;【答案】见解析.【解析】解:(1)PM=PN,PM⊥PM;BE2MN;∵AM=ME,AP=PB,∴PM∥BE,PM=12 BE,同理:PN∥AD,PN=12 AD,∵AC=BC,CD=CE,∴AD=BE,∴PM=PN,∵∠ACB=90°,∴AC⊥BC,∴∵PM∥BC,PN∥AC,∴PM⊥PN,∴△PMN的等腰直角三角形,∴MN2PM,∴MN2×12 BE,∴BE2MN.(2)结论仍然成立.连接AD、延长BE交AD于点H.∵△ABC和△CDE是等腰直角三角形,∴CD=CE,CA=CB,∠ACB=∠DCE=90°,∴∠ACD=∠ECB,∴△ECB≌△DCA,∴BE=AD,∠DAC=∠EBC,∠AHB=180°-(∠HAB+∠ABH)=180°-(45°+∠HAC+∠ABH)=∠180°-(45°+∠HBC+∠ABH)=90°,∴BH⊥AD,∵M、N、P分别为AE、BD、AB的中点,∴PM∥BE,PM=12BE,PN∥AD,PN=12AD,∴PM=PN,∠MPN=90°,∴BE=2PM 2MN2.。
河南中考数学类比探究学生精选文档

河南中考数学类比探究学生精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-中考数学类比探究 实战演练(一)22.(10分)如图1,在矩形ABCD 中,AB =mBC ,E 为BC 上一点,且BC =nBE ,连接AE ,过点B 作BM⊥AE ,交AE 于点M ,交AC 于点N .(1)如图2,当m =1,n =3时,求证:AN =3CN ; (2)如图3,当m =1时,求AN 与CN 之间的数量关系;图1NM E DCBACBADE M N 图2图3N M E DCBA.中考数学类比探究 实战演练(二)22. (10分)小华遇到这样一个问题:在菱形ABCD 中,∠ABC =60°,边长为4,在菱形ABCD 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是:如图1,将△APC 绕点C 顺时针旋转60°,恰好旋转至△DEC ,连接PE ,BD ,则BD 的长即为所求.(1)请你写出在图1中,PA +PB +PC 的最小值为________. (2)参考小华思考问题的方法,解决下列问题:①如图2,在△ABC 中,∠ACB =30°,BC =6,AC =5,在△ABC 内部有一点P ,连接PA ,PB ,PC ,求PA +PB +PC 的最小值.②如图3,在正方形ABCD 中,AB =5,P 为对角线BD 上任意一点,连接PA ,PC ,请直接写出PA +PB +PC 的最小值(保留作图痕迹).图1PADBEC BCPA图2P图3DCBA图1F E DCBA 中考数学类比探究 实战演练(三)22. (10分)如图,在Rt △ABC 中,∠ACB =90°,BC =nAC ,CD ⊥AB 于D ,点E 是直线AC 上一动点,连接DE , 过点D 作FD ⊥ED ,交直线BC 于点F ,连接EF .(1)探究发现:如图1,若n =1,点E 在线段AC 上,则tan ∠EFD =____.(2)数学思考:①如图2,若点E 在线段AC 上,则tan ∠EFD =____(用含n 的代数式表示). ②当点E 在直线AC 上运动时,①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.从“点E 是线段AC 延长线上的任意一点”或“点E 是线段AC 反向延长线上的任意一点”中,任选一种情况,在图3中画出图形,给予相应的证明或理由.(3)拓展应用:若AC,BC=DF=,请直接写出CE 的长.图2F E DCBA图3DCBA中考数学类比探究 实战演练(四)22. (10分)已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,∠AOB =∠COD =90°.(1)如图1,点C ,D 分别在边OA ,OB 上,连接AD ,BC ,点M 为线段BC 的中点,连接OM ,则线段AD 与OM 之间的数量关系是__________,位置关系是_________.(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α(0°<α<90°).连接AD ,BC ,点M 为线段BC 的中点,连接OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由.(3)如图3,将图1中的△COD 绕点O 逆时针旋转到使△COD 的一边OD 恰好与△AOB 的一边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点,请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.O图1M D C BAO图2MDCBA图3中考数学类比探究实战演练(五)22.(10分)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EF=EG.(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a,BC=b,求EFEG的值.E(A)B CDFGGFDCBAE图1图1GFDCBAEEACDFG(B)图1图2图3图2EACDFG(B)图2图3图3中考数学类比探究 实战演练(六)22. (10分)如图1,在等腰Rt △ABC 和等腰Rt △CDE (CD >BC )中,点C ,B ,D 在同一直线上,点M 是AE 的中点,连接MD ,MB .(1)探究线段MD ,MB 的位置关系及数量关系,并证明.(2)将图1中的△CDE 绕点C 顺时针旋转45°,使△CDE 的斜边CE 恰好与△ABC 的边BC 垂直,如图2,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若将图2中的△ABC 绕点C 逆时针旋转大于0°且小于45°的角,如图3,原问题中的其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.EMDCBA图1M DCBA图2ABCDM图3中考数学类比探究 实战演练(七)22. (10分)已知:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,求证:①BD ⊥CF ;②CF =BC -CD .(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系.(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变.①请直接写出CF ,BC ,CD 三条线段之间的关系;②若连接正方形的对角线AE ,DF ,交点为O ,连接OC ,探究△AOC 的形状,并说明理由.EDBACF图1EDA C F图2OEDB ACF图3中考数学类比探究 实战演练(八)22. (10分)在△ABC 中,∠A =90°,点D 在线段BC 上,∠EDB =12∠C ,BE ⊥DE ,垂足为E ,DE 与AB 相交于点F .(1)如图1,若点D 与点C 重合,AB =AC ,探究线段BE 与FD 的数量关系.(2)如图2,若点D 与点C 不重合,AB =AC ,探究线段BE 与FD 的数量关系,并加以证明;(3)如图3,若点D 与点C 不重合,AB =kAC ,求BEFD的值(用含k 的式子表示). C B (D )AFE图1CB DAFE图2CBD AFE图3中考数学类比探究 实战演练(九)22. (10分)点A ,B 分别是两条平行线m ,n 上任意一点,在直线n 上找一点C ,使BC =kAB ,连接AC ,在直线AC 上任取一点E ,作∠BEF =∠ABC ,EF 交直线m 于点F . (1)如图1,当∠ABC =90°,k =1时,判断线段EF 和EB 之间的数量关系,并证明.(2)如图2,当∠ABC =90°,k ≠1时,(1)中的结论还成立吗?若成立,请证明;若不成立,请重新判断线段EF 和EB 之间的数量关系.(3)如图3,当0°<∠ABC <90°,k =1时,探究EF 和EB 之间的数量关系,并证明.A FCB EA F ECBBCEFAnm图1 图2 图3中考数学类比探究实战演练(十)22.(10分)在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)如图2,若∠ABC=90°,G是EF的中点,连接DB,DG,直接写出∠BDG的度数;(3)如图3,若∠ABC =120°,FG ∥CE ,且FG =CE ,连接DB ,DG ,求∠BDG 的度数.A BC EF D图1A BC EF DG图2A BC E FDG图3中考数学类比探究 实战演练(十一)图2BC QP E FAAF E (P )Q CB图122. (10分)已知点P 是Rt △ABC 斜边AB 上一动点(不与点A ,B 重合),分别过点A ,B 向直线CP 作垂线,垂足分别为E ,F ,Q 是斜边AB 的中点.(1)如图1,当点P 与点Q 重合时,AE 与BF 的位置关系是___________,QE 与QF 的数量关系是______________.(2)如图2,当点P 不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图3,当点P 在线段BA (或AB )的延长线上时,(2)中的结论是否仍然成立?请画出图形并给予证明.中考数学类比探究 实战演练(十二)22. (10分)问题解决:如图1,将正方形纸片ABCD 折叠,使点B 落在CD 边上的点E 处(不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN的值. 类比归纳:在图1中,若13CE CD =,则AM BN 的值为__________;若14CE CD =,则AMBN 的值为__________;若1CE CD n =(n 为整数),则AMBN的值为__________.(用含n 的式子表示)联系拓广:如图2,将矩形纸片ABCD 折叠,使点B 落在CD 边上的点E 处(不与点C D ,重合),压平后得到折痕MN ,设1AB BC m =(1m >),1CE CD n =,则AMBN的值为_______.(用含m n ,的式子表示)图2图1CBD A FEM N CBDA FEM N。
河南中考:解答题重难点题型(九) 第22题类比、拓展探究题 (2)

解答题重难点题型(九)第22题类比、拓展探究题例1:(1)发现如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于________时,线段AC的长取得最大值,且最大值为________.(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P 的坐标.例子2:如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AEBD=;②当α=180°时,AEBD=;(2)拓展探究试判断:当0°≤α<360°时,AEBD的大小有无变化?请仅就图2的情况给出证明;(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.1.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.2.(1)发现如图1,直线l1∥l2,l1和l2的距离为d,点P在l1上,点Q在l2上,连接PQ,填空:PQ 长度的最小值为d;(2)应用如图2,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M是线段AD上,AM=3MD,点N在直线BC上,连接MN,求MN长度的最小值;(3)拓展如图3,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为;②线段AC,CD,CE之间的数量关系为;(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC上,连接CE.请判断∠ACE的度数及线段AC,CD,CE之间的数量关系,并说明理由;(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.图1图2图34.(1)探究发现下面是一道例题及其解答过程,请补充完整:如图1,在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2.证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∴∠APP′=60°,PA=PP′,PC=P′B.∵∠APB=150°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,即PA2+PB2=PC2.(2)类比延伸如图2,在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA,PB,PC之间的数量关系,并证明;(3)联想拓展如图3,在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.5.已知,如图1,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图1,线段OF与EC的数量关系为;②将△AED绕点A逆时针旋转45°,如图2,OF与EC的数量关系为;(2)类比延伸将图1中△AED绕点A逆时针旋转到如图3所示的位置,请判断线段OF与EC的数量关系,并给出证明;(3)拓展探究将图1中△AED绕点A逆时针旋转,旋转角为α,0°≤α≤90°,AD=2,△AED在旋转过程中,存在△ACD为直角三角形,请直接写出线段CD的长.6.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2.则S1与S2的数量关系是;(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想;(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.7.(1)问题发现:如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为;(2)拓展探究:在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)问题解决:当正方形CDEF旋转到B,E,F三点共线时,直接写出线段AF的长.8.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.9.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB′C′边B′C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB′C′是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明;拓展应用:(3)如图4,在四边形ABCD中,∠C=90°,∠D=150°,BC=12在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在并求△PAB的“旋补中线”长;若不存在,说明理由.图4 图5解答题重难点题型(九)第22题类比、拓展探究题答案例子1:(1)发现如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于________时,线段AC的长取得最大值,且最大值为________.(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P 的坐标.【思路点拨】(1)当点A在线段CB延长线上时,AC长度最大;最大值是AB与BC长度之和;(2)①图中与BE相等的线段是CD.运用三角形全等的判定方法即可证明;②因为BE =CD,所以求BE的最大值即求CD的最大值,根据(1)中结论可知CD的最大值为BD与CB的长度之和;(3)通过(2)的学习可知,如图4,需要构造△BPN≌△MPA,则BN=AM,由(1)得当点N在BA的延长线上时,NB有最大值(如图5),易得AN=22,所以AM=NB =3+2 2.过点P作PE⊥x轴于点E,PE=EA=2,从所以P(2-2,2).解:(1)CB的延长线上a+b2分(2)①CD =BE ,理由如下:∵△ABD 与△ACE 是等边三角形,∴AD =AB ,AC =AE ,∠BAD =∠CAE =60°. ∴∠BAD +∠BAC =∠CAE +∠BAC , 即∠CAD =∠EAB.5分在△CAD 与△EAB 中,⎩⎨⎧AD =AB ,∠CAD =∠EAB ,AC =AE ,∴△CAD ≌△EAB(SAS ). ∴CD =BE.6分②BE 长的最大值是4.8分(3)AM 的最大值3+22,点P 的坐标为(2-2,2).10分【解法提示】 如图4,连接BM ,∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,则△APN 是等腰直角三角形, ∴PN =PA =2,BN =AM.点B 的坐标为(5,0), 长的最大值=线段BN 长的最大值.的延长线时,线段BN 取得最大值,最大值=AB +AN.轴于点E , 是等腰直角三角形,∴OE =OA -AE =2- 2. ∴P(2-2,2). 例子2:如图1,在Rt △ABC 中,∠B =90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α. (1)问题发现①当α=0°时,AE BD =2②当α=180°时,AE BD =2(2)拓展探究试判断:当0°≤α<360°时,AEBD 的大小有无变化?请仅就图2的情况给出证明;(3)问题解决当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.【思路点拨】 (1)①根据题意可知DE 是△ABC 的中位线,根据中位线的性质和勾股定理求得AE 的长度即可求解;②根据旋转180°,画出图形,结合①,分别得到AC ,CE ,BC 和CD 的长即可求解;(2)由(1)可知CE CA =CD CB ,结合旋转的性质得到CE CA =CDCB 任然成立,运用两边对应成比例,夹角相等求得,△ACE ∽△BCD ,利用相似三角形的性质,求得AEDB 的值.(3)当△EDC 旋转至A ,D ,E 三点共线时分两种情况讨论,即边DE 在BC 上方和在BC 下方,再针对每一种情况分类讨论计算即可.【自主解答】 (2)证明:在图1中,∵DE 是△ABC 的中位线, ∴DE ∥AB ,∴CE CA =CDCB ,∠EDC =∠B =90°.∴AEBD的大小不变. (3)45或1255.提示:如图3,当△EDC 在BC 上方,且A ,D ,E 三点共线时,四边形ABCD 为矩形,∴BD =AC =45;如图4,当△EDC 在BC 下方,且A ,E ,D 三点共线时,△ADC 为直角三角形,由勾股定理可求得AD =AC 2-CD 2=8,∴AE =AD -DE =6,根据AE BD =52可求得BD =1255.1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是PM =PN ,位置关系是PM ⊥PN ;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解:(2)等腰直角三角形,理由如下: CAE. , SAS ), =∠ACE.,DE 的中点, 的中位线. CE.PN ∥BD.∴PM =PN ,∠MPD =∠ECD ,∠PNC =∠DBC.∴∠MPD =∠ECD =∠ACD +∠ACE =∠ACD +∠ABD. ∠DPN =∠PNC +∠PCN =∠DBC +∠PCN.∴∠MPN =∠MPD +∠DPN =∠ACD +∠ABD +∠DBC +∠PCN =∠ABC +∠ACB =90°.即△PMN 为等腰直角三角形. (3)492. 提示:由(2)知,△PMN 是等腰直角三角形,PM =PN =12BD ,∴PM 最大时,△PMN 面积最大, ∴点D 在BA 的延长线上,∴BD =AB +AD =14,∴PM =7, ∴S △PMN 最大=12PM 2=12×72=492.2.(1)发现如图1,直线l 1∥l 2,l 1和l 2的距离为d ,点P 在l 1上,点Q 在l 2上,连接PQ ,填空:PQ长度的最小值为d;(2)应用如图2,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M是线段AD上,AM=3MD,点N在直线BC上,连接MN,求MN长度的最小值;(3)拓展如图3,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M在线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值.解:(2)如图.MN的值最小,∴∠E=45°.∴△EMN是等腰直角三角形,∵EM=3,∴MN=32=322.(3)10.提示:当MN⊥AD时,MN的长最小,∴MN∥DC∥AB,∴∠DCM=∠CMN=∠MNB=∠NBH,设MN与BC相交于点G,∵ME∥BN,MC=CE,∴CGBG=12.∴G是BC上一定点.作NH⊥AB,交AB的延长线于H,∵∠D=∠H=90°,∴Rt△MDC∽Rt△NHB,即DCHB=12.∴BH=2DC=4,∴AH=AB+BH=6+4=10,∴当MN ⊥AD 时,MN 的长最小,即为10.则线段MN 长度的最小值为10.3.(1)问题发现如图1,△ABC 和△ADE 均为等边三角形,点D 在边BC 上,连接CE.请填空: ①∠ACE 的度数为60°;②线段AC ,CD ,CE 之间的数量关系为AC =CD +CE ;(2)拓展探究 如图2,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,点D 在边BC 上,连接CE.请判断∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由; (3)解决问题如图3,在四边形ABCD 中,∠BAD =∠BCD =90°,AB =AD =2,CD =1,AC 与BD 交于点E ,请直接写出线段AC 的长度.图1 图2 图3 解:(1)①∵△ABC 和△ADE 均为等边三角形, ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠B =60°.∴∠BAC -∠DAC =∠DAE -∠DAC , 即∠BAD =∠CAE.∴△BAD ≌△CAE(SAS ).∴∠ACE =∠B =60°.②线段AC ,CD ,CE 之间的数量关系为:AC =CD +CE. 理由是:由①得:△BAD ≌△CAE ,∴BD =CE. ∵AC =BC =BD +CD ,∴AC =CD +CE.(2)∠ACE =45°,2AC =CD +CE ,理由如下:∵△ABC 和△ADE 均为等腰直角三角形,且∠BAC =∠DAE =90°,∴AB =AC ,AD =AE ,∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE. ∴△ABD ≌△ACE(SAS ).∴BD =CE ,∠ACE =∠B =45°. ∵BC =CD +BD ,∴BC =CD +CE.∵在等腰直角三角形ABC 中,BC =2AC , ∴2AC =CD +CE. (3)14+22. 提示:在CB 的延长线上截取BF =DC ,易证△ABF ≌△ADC.∴AF =AC ,∠FAB =∠CAD.∴∠FAC =∠FAB +∠BAC =∠DAC +∠BAC =90°. ∴△ACF 是等腰直角三角形,由(2)得2AC =BC +CD.∴AC =BC +CD 2=7+12=14+22.4.(1)探究发现下面是一道例题及其解答过程,请补充完整:如图1,在等边△ABC内部,有一点P,若∠APB=150°.求证:AP2+BP2=CP2.证明:将△APC绕A点逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∴∠APP′=60°,PA=PP′,PC=P′B.∵∠APB=150°,∴∠BPP′=90°,∴P′P2+BP2=P′B2,即PA2+PB2=PC2.(2)类比延伸如图2,在等腰三角形ABC中,∠BAC=90°,内部有一点P,若∠APB=135°,试判断线段PA,PB,PC之间的数量关系,并证明;(3)联想拓展如图3,在△ABC中,∠BAC=120°,AB=AC,点P在直线AB上方,且∠APB=60°,满足(kPA)2+PB2=PC2,请直接写出k的值.解:(2)关系式为:2PA2+PB2=PC2.证明:将△APC绕A得到△AP′B,连接PP′,则△APP′为等腰直角三角形.∴∠APP′=45°,PP,∵∠APB=135°,∴∠BPP′=90°.∴P′P2+BP2=P′B2.∴2PA2+PB2=PC2.(3)k= 3.提示:将△APC绕A点顺时针旋转120°得到△AP′B,连接PP′,过点A作AH⊥PP′,可得∠APP′=30°,PP′=3PA,PC=P′B.∵∠APB=60°,∴∠BPP′=90°.∴P′P2+BP2=P′B2.∴(3PA)2+PB2=PC2.∵(kPA)2+PB2=PC2,∴k= 3.5.已知,如图1,△ABC,△AED是两个全等的等腰直角三角形(其顶点B,E重合),∠BAC=∠AED=90°,O为BC的中点,F为AD的中点,连接OF.(1)问题发现①如图1,线段OF与EC的数量关系为OF=2EC;②将△AED绕点A逆时针旋转45°,如图2,OF与EC的数量关系为OF=2EC;(2)类比延伸将图1中△AED绕点A逆时针旋转到如图3所示的位置,请判断线段OF与EC的数量关系,并给出证明;(3)拓展探究将图1中△AED绕点A逆时针旋转,旋转角为α,0°≤α≤90°,AD=2,△AED在旋转过程中,存在△ACD为直角三角形,请直接写出线段CD的长.解:(2)OF=22EC.证明:在等腰直角△ADE中,F为AD的中点,∴AF=12AD=22AE.在等腰直角△ABC中,O为BC的中点,连接AO,∴AO=2AC,∠BAO=∠CAO=45°.DAO=∠CAE.提示:∵△ABC和△AED是两个全等的等腰直角三角形,∴AD=BC=2,∴ED=AE=AB=AC=1.△ACD为直角三角形时,分两种情况:①当AD与AB重合时,如图4,连接CD,∵△ACD为直角三角形,AD⊥AC,即将△ADE逆时针旋转45°.∵AD=2,AC=1,∴由勾股定理可得CD=(2)2+12=3;②当AE与AC重合时,如图5,△ACD为直角三角形,AC⊥CD,即将△ADE逆时针旋转90°,此时CD=AC=1.综上:CD的长为3或1.6.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°. (1)操作发现如图2,固定△ABC ,使△DEC 绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是DE ∥AC ;②设△BDC 的面积为S 1,△AEC 的面积为S 2.则S 1与S 2的数量关系是S 1=S 2;(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想;(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE ∥AB 交BC 于点E(如图4).若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出相应的BF 的长. 解:(2)根据已知∠DCE =90°,作AN ⊥EC 交EC 延长线于点N ,则∠ANC =∠DCN =90°. 而∠ACB =90°,∠ACN =90°-∠NCM =∠DCM , AC =DC ,MD ⊥BC 于点M , 则∠DMC =90°.在△ANC 和△DMC 中,⎩⎨⎧∠ANC =∠DMC ,∠ACN =∠DCM ,AC =DC ,则△ANC ≌△DMC(AAS ),∴AN =DM.而CE =BC ,△BDC 和△AEC 等底等高,∴△BDC 和△AEC 面积相等,则S 1=S 2的数量关系仍然成立. (3)BF 长度是433或833.图5提示:(3)如图5,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,∴BE =DF 1,且BE ,DF 1上的高相等,此时S △DCF 1=S △BDE .过点D 作DF 2⊥BD ,∵∠ABC =60°,F 1D ∥BE ,∴∠F 2F 1D =∠ABC =60°.∵BF 1=DF 1,∠F 1BD =12∠ABC =30°,∠F 2DB =90°, ∴∠F 1DF 2=∠ABC =60°.∴△DF 1F 2是等边三角形.∴DF 1=DF 2.∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠DBC =∠DCB =12×60°=30°. ∴∠CDH 1=180°-∠BCD =180°-30°=150°.∠CDF 2=360°-150°-60°=150°.∴∠CDF 1=∠CDF 2.⎪⎧DF 1=DF 2,∴BF 1=433,BF 2=BF 1+F 1F 2=433+433=833. 故BF 的长为433或833.7.(1)问题发现:如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)拓展探究:在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)问题解决:当正方形CDEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.解:(2)无变化.理由如下:在Rt △ABC 中,AB =AC =2,∴∠ABC =∠ACB =45°,∴sin ∠ABC =AC BC =22. 在正方形CDEF 中,∠FEC =12∠FED =45°, 在Rt △CEF 中,sin ∠FEC =CF CE =22,∴CF CE =AC BC. ∵∠FCE =∠ACB =45°,∴∠FCE -∠ACE =∠ACB -∠ACE.②当点E 在线段BF 的延长线上时,如图3, ∵△ABC ,△CFE 为等腰直角三角形.易证:△ACF ∽△BCE. ∴BE AF =BC AC= 2.∴BE =2AF. 由(1)知,CF =EF =CD = 2.在Rt △BCF 中,CF =2,BC =22,根据勾股定理得,BF =6,∴BE =BF +EF =6+ 2.由(2)知,BE =2AF ,∴AF =3+1.即当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF 的长为3-1或3+1.8.(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE. 填空:①∠AEB 的度数为60°;②线段AD ,BE 之间的数量关系为AD =BE ;(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由;(3)解决问题如图3,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.解:(2)∠AEB =90°,AE =2CM +BE.理由:∵△ACB 和△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴AC =BC ,CD =CE ,∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE.∴△ACD ≌△BCE(SAS ).∴AD =BE ,∠BEC =∠ADC =135°.∴∠AEB =∠BEC -∠CED =135°-45°=90°.在等腰直角三形DCE 中,CM 为斜边DE 上的高,∴CM =DM =ME ,∴DE =2CM.∴AE =DE +AD =2CM +BE.(3)3-12或3+12. 提示:∵PD =1,∠BPD =90°.∴BP 是以点D 为圆心,以1为半径的⊙D 的切线,点P 为切点.第一种情况:如图4,过点A 作AP 的垂线,交BP 于点P′,可证△APD ≌△AP′B ,PD =P′B =1.∵CD =2,∴BD =2,BP =3,∴AM =12PP′=12(PB -BP′)=3-12. 第二种情况,如图5,可得AM =12PP′=12(PB +BP′)=3+12.9.我们定义:如图1,在△ABC 中,把AB 绕点A 顺时针旋转α(0°<α<180°)得到AB′,把AC 绕点A 逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,我们称△AB′C′是△ABC 的“旋补三角形”,△AB ′C ′边B′C′上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB′C′是△ABC 的“旋补三角形”,AD 是△①如图2,当△ABC 为等边三角形时,AD 与②如图3,当∠BAC =90°,BC =8时,则猜想论证:(2)在图1中,当△ABC 为任意三角形时,猜想拓展应用:(3)如图4,在四边形ABCD 中,∠C =90°在四边形内部是否存在点P ,使△PDC 是△并求△PAB 的“旋补中线”长;若不存在,图4 图5解:(2)①猜想:AD =12BC. 证明:如图5,延长AD 至点E ,使DE =AD.∵AD 是△ABC 的“旋补中线”,∴B ′D =C′D.∴四边形AB′EC′是平行四边形.∴EC ′∥B ′A ,EC ′=B′A.∴∠AC ′E +∠B′AC′=180°.由定义可知∠B′AC′+∠BAC =180°,B ′A =BA ,AC =AC′,∴∠AC ′E =∠BAC ,EC ′=BA.∴△AC ′E ≌△CAB(SAS ).∴AE =BC.∵AD =12AE , ∴AD =12BC. (3)存在.以AD 为边向四边形ABCD 的内部作等边△PAD ,连接PB ,PC ,延长BP 交AD 于点F , 则有∠ADP =∠APD =60°,PA =PD =AD =6.∵∠CDA =150°,∴∠CDP =90°.过点P 作PE ⊥BC 于点E ,易知四边形PDCE 为矩形.∴CE =PD =6.∴tan ∠DPC =CD PD =236=33. ∴∠DPC =30°,∠EPC =60°.∴BE =12-6=6=CE.又PE ⊥BC ,在Rt △ABF 中,AB =(73)2+32=239.∵△PDC 是△PAB 的“旋补三角形”,∴△PAB 的“旋补中线”长为12AB =39.。
2024河南考数学二轮中考题型研究 题型四 类比、拓展探究题题(课件)

和三角形的内外角关系,得到∠DPC=2∠BAC,
通过题干得到∠BAC的度数,即可求解.
例1题图①
【解法提示】
∵∠ACB=90°,点P为AE的中点,∴PC为Rt△AEC斜边AE的中线,
∴CP= 1 AE,同理可证,DP= 1 AE,∴DP=CP;
2
2
∴∠DPE=2∠DAE,∠CPE=2∠CAE,
∵AC=BC,∴∠BAC=45°,∴∠DPC=2∠BAC=90°,
例1题图①
填空:①DP与CP的数量关系是________; ②DP与CP的位置关系是____________;
【思维教练】①要求DP与CP的数量关系,通过直角三角形的性质:
斜边上的中线等于斜边的一半,即可得到CP=1 AE,DP=1 AE,即
2
2
可求解;②要求DP与CP的位置关系,
即求∠DPC的度数,通过等腰三角形性质
பைடு நூலகம்∴DP⊥CP.
填空:①DP与CP的数量关系是_D_P_=__C__P_; ②DP与CP的位置关系是_D__P_⊥__C_P_;
例1题图①
(2)类比探究 把△BDE绕点B逆时针旋转45°至如图②的位置,(1)中的结论是否仍 然成立?若成立,请就图②的情形给出证明;若不成立,请说明理由;
【思维教练】要求DP与CP的数量关系和位 置关系,过点P作AC的垂线,并构造出DP 与PC所在的两个直角三角形,结合旋转的 性质可证明DP和PC所在的两个三角形全等, 即可求解.
②如解图③,由(2)可知DP⊥CP,DP=CP,
例1题解图②
∴△PCD为等腰直角三角形,
∵BC=3BD=3 2,∴CD=BC-BD=2 2,∴CP=2. 综上所述,CP的长为4或2.
中考复习数学--类比探究专题

类比探究专题1. 如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 分别在边AB ,AC上,AD =AE ,连接DC ,BE ,点P 为DC 的中点. (1)观察猜想图1中,线段AP 与BE 的数量关系是________,位置关系是________; (2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出线段AP 的取值范围.(1)操作:如图1,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图1画出一对以点O 为对称中心的全等三角形.(不写画法)根据上述操作得到的经验完成下列探究活动:(2)探究一:如图2,在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE =∠EAF ,AF 与DC 的延长线相交于点F .试探究线段AB 与AF ,CF 之间的等量关系,并证明你的结论. (3)探究二:如图3,DE ,BC 相交于点E ,BA 交DE 于点A ,且BE :EC =1:2,∠BAE =∠EDF ,CF ∥AB .若AB =5,CF =1,求DF 的长度.PEDA BC 图1PEDABC图2图1M NQ PO图2F EDC B AAB C D E F图32.特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为_________________;②线段BC,DE的位置关系为_________________.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM 与△AFD全等时,请直接写出DE的值.M F ED CB A图1EMDCBA图2MFEDC BA图33. 已知△ABC 中,CA =CB ,0°<∠ACB ≤90°.点M ,N 分别在边CA ,CB 上(不与端点重合),BN =AM ,射线AG ∥BC 交BM 延长线于点D ,点E 在直线AN 上,EA =ED .(1)【观察猜想】如图1,点E 在射线NA 上,当∠ACB =45°时, ①线段BM 与AN 的数量关系是_________; ②∠BDE 的度数是____________.(2)【探究证明】如图2,点E 在射线AN 上,当∠ACB =30°时,判断并证明线段BM 与AN 的数量关系,求∠BDE 的度数;(3)【拓展延伸】如图3,点E 在直线AN 上,当∠ACB =60°时,AB =3,点N 是BC 边上的三等分点,直线ED 与直线BC 交于点F ,请直接写出线段CF 的长.图1A B CD ENMG图2AB CD MN EG 图3A BCG4.如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF=__________.(2)数学思考:①如图2,若点E在线段AC上,则DEDF=__________(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明.(3)拓展应用:若ACBC=DF=CE的长.FEDC BA图1图2ABCDEFDB FECA图3DC BA备用图5. (1)【问题发现】如图1,△ABC 和△CEF 都是等腰直角三角形,∠BAC =∠EFC =90°,点E 与点A 重合,则线段BE 与AF 的数量关系为__________; (2)【拓展研究】在(1)的条件下,将△CEF 绕点C 旋转,连接BE ,AF ,线段BE 与AF 的数量关系有无变化?仅就图2的情形给出证明; (3)【问题发现】当AB =AC =2,△CEF 旋转到B ,E ,F 三点共线时,直接写出线段AF 的长.(1)问题发现:如图1,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 的中点,以点D 为顶点作正方形DFGE ,使点A ,C 分别在DE 和DF 上,连接BE ,AF ,则线段BE 和AF 数量关系是________.(2)类比探究:如图2,保持△ABC 固定不动,将正方形DFGE 绕点D 旋转α(0<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC =DF =2,在(2)的旋转过程中,连接AE ,请直接写出AE 的最大值.F图1CBA (E )EABC图2F备用图CBA图1A BC DEF G图2GFED CB A 备用图A BC DEFG6.在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是__________,CE与AD的位置关系是__________.(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明).(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=BE= ADPE的面积.(直接写出结果)P EDCBA图1图2ABCDEPPEDCBA图3图4ABCDEP7. (1)操作发现如图1,AD 是等边三角形ABC 的角平分线,请你按下列要求画图:过点A 作AM ⊥AB ,过点C 作CN ∥AB ,AM 与CN 相交于点E .则AD 与AE 的数量关系是________,∠EAC =________°. (2)问题探究将图1中的△AEC 绕点A 逆时针旋转,点C 落在点F 的位置,连接EC ,DF ,如图2所示,请你探究DF 与EC 的数量关系并说明理由. (3)拓展延伸若(2)中等边△ABC 的边长为2,当F A ⊥AC 时,请直接写出DF 2的值.在Rt △ABC 中,∠BAC =90°,AC =AB =4,D ,E 分别是边AB ,AC 的中点,若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)问题发现如图1,当α=90°时,线段BD 1的长等于__________,线段CE 1的长等于__________. (2)探究证明如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1. (3)问题解决求点P 到AB 所在直线的距离的最大值.(直接写出结果)图1AB CD图2EFDCBA备用图CBAE1(D1)ABCDE PEDCBAD1E1图2图18. 如图1,在正方形ABCD 和正方形AB′C′D′中,AB =2,AB′=,连接CC′.(1)问题发现:CC BB'='__________;(2)拓展探究:将正方形AB′C′D′绕点A 逆时针旋转,记旋转角为θ,连接BB′,试判断:当0°≤θ<360°时,CC BB ''的值有无变化?请仅就图2中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C ,C′,D′三点共线时BB′的长.问题发现:如图1,△ABC 是等边三角形,点D 是边AB 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 的数量关系为___________;拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明;问题解决:如果△ABC的边长等于AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.D′C′B′ABCD 图1图2DCBA B′C′D′A BCD备用图图1EDCBA 图2ABCDE备用图E D A9. 如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,垂足为点E ,GF ⊥CD ,垂足为点F . (1)证明与推断:①求证:四边形CEGF 是正方形;②推断AGBE的值为_______.(2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转α角(0°<α<45°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:正方形CEGF 在旋转过程中,当B ,E ,F 三点在一条直线上时,如图3所示,延长CG 交AD 于点H .若AG =6,GH=BC =________.GFDC BAE图1ABCD EFG图2H GF EDCBA 图310. (1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P 是等边三角形ABC 内一点,P A =1,PB,PC =2.求∠BPC 的度数. 为利用已知条件,不妨把△BPC 绕点C 顺时针旋转60°得△AP′C ,连接PP′,则PP′的长为__________;在△P AP′中,易证∠P AP′=90°,且∠PP′A 的度数为__________,综上可得∠BPC 的度数为__________. (2)类比迁移 如图2,点P 是等腰Rt △ABC 内一点,∠ACB =90°,P A =2,PB,PC =1.求∠APC 的度数. (3)拓展应用如图3,在四边形ABCD 中,BC =3,CD =5,AB =AC =12AD ,∠BAC =2∠ADC ,请直接写出BD 的长.P′ABCP图1图2P CBAD图3C BA11. 如图,在□ABCD 中,AC 与BD 交于点O ,以点O 为顶点的∠EOF 的两边分别与边AB ,AD 交于点E ,F ,且∠EOF 与∠BAD 互补. (1)观察猜想若四边形ABCD 是正方形,则线段OE 与OF 有何数量关系?请直接写出结论.(2)延伸探究若四边形ABCD 是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由. (3)拓展证明若AB :AD =m :n ,探索线段OE 与OF 的数量关系,并证明你的结论.(1)阅读理解:如图1,在四边形ABCD 中,AB ∥DC ,E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC ,得到AB =FC ,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系为_____________;(2)问题探究:如图2,在四边形ABCD 中,AB ∥DC ,AF 与DC 的延长线交于点F ,E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图3,AB ∥CF ,AE 与BC 交于点E ,BE :EC =2:3,点D 在线段AE 上,且∠EDF =∠BAE ,试判断AB ,DF ,CF 之间的数量关系,并证明你的结论.A BCDOEFABCD EF图1ABCDE F图2A BCDE F图312. 如图1,菱形ABCD 与菱形GECF 的顶点C 重合,点G 在对角线AC 上,且∠BCD =∠ECF =60°. (1)问题发现: AGBE的值为__________. (2)探究与证明:将菱形GECF 绕点C 按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG 与BE 之间的数量关系,并说明理由. (3)拓展与运用:菱形GECF 在旋转过程中,当点A ,G ,F 三点在一条直线上时,如图3所示,连接CG 并延长,交AD 于点H ,若CE =2,GHAH 的长为__________.已知∠AOB =90°,点C 是∠AOB 的角平分线OP 上的任意一点,现有一个直角∠MCN 绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .(1)如图1,若CD ⊥OA ,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由.(2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.图1AB CDEFGG FE DCB A图2H图3AB CD E FG(3)如图3,若点D 在射线OA 的反向延长线上,且OD =2,OE =8,请直接写出线段CE 的长度.图1OABC D EMPN N PMED CBAO图2图3O ABCD E MPN13.如图,在矩形ABCD中,AB=8,AD=6,点E,F分别是边DC,DA的中点,四边形DFGE为矩形,连接BG.(1)问题发现在图1中,CEBG__________.(2)拓展探究将图1中的矩形DFGE绕点D旋转一周,在旋转过程中,CEBG的大小有无变化?请仅就图2的情形给出证明. (3)问题解决当矩形DFGE 旋转至B ,G ,E 三点共线时,请直接写出线段CE 的长.GFED CBA 图1图2ABCDEFG备用图ABCD14. 四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD 等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD 中,AB =AD ,CB =CD ,则AC 与BD 的位置关系是__________,请说明理由.(2)试探究图1中四边形ABCD 的两组对边AB ,CD 与BC ,AD 之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt △ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE ,连接CE ,BG ,GE ,已知AC =4,AB =5,求GE 的长.观察猜想(1)如图1,在Rt △ABC 中,∠BAC =90°,AB =AC =3,点D 与点A 重合,点E 在边BC 上,连接DE ,将线段DE 绕点D 顺时针旋转90°得到线段DF ,连接BF ,BE 与BF 的位置关系是_________,BE +BF =_________; 探究证明(2)在(1)中,如果将点D 沿AB 方向移动,使AD =1,其余条件不变,如图2,判断BE 与BF 的位置关系,并求BE +BF 的值,请写出你的理由或计算过程; 拓展延伸ABCD图1图2DCB AABCDEFG图3(3)如图3,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BA 的延长线上,BD =n ,连接DE ,将线段DE 绕着点D 顺时针旋转,旋转角∠EDF =α,连接BF ,则BE +BF 的值是多少?请用含有n ,α的式子直接写出结论.图1A (D )B CE FD FE C B A 图2图3A C D E F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七 类比探究题专题类型突破类型一 图形旋转引起的探究 (2019·河南)在△ABC 中,CA =CB ,∠ACB=α.点P 是平面内不与点A ,C 重合的任意一点.连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,BD ,CP.(1)观察猜想如图1,当α=60°时,BD CP的值是________,直线BD 与直线CP 相交所成的较小角的度数是________.(2)类比探究如图2,当α=90°时,请写出BD CP的值及直线BD 与直线CP 相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E ,F 分别是CA ,CB 的中点,点P 在直线EF 上,请直接写出点C ,P ,D 在同一直线上时AD CP的值.【分析】(1)延长CP 交BD 的延长线于E ,设AB 交EC 于点O.证明△CAP≌△BAD,即可解决问题.(2)设BD 交AC 于点O ,BD 交PC 于点E.证明△DAB∽△PAC,即可解决问题.(3)分两种情况:当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题;当点P在线段CD上时,同法可证DA=DC,解决问题.【自主解答】1.(2018·河南)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为________;②∠AMB的度数为________;(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M.请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD =1,OB =7,请直接写出当点C 与点M 重合时AC 的长.2.(2017·河南)如图1,在Rt△ABC 中,∠A=90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是________,位置关系是________;(2)探究证明把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸把△ADE 绕A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.图1 图23.(2015·河南)如图1,在Rt△ABC 中,∠B=90°,BC =2AB =8,点D ,E 分别是边BC ,AC 的中点,连接DE.将△EDC 绕点C 按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,AE BD=________;②当α=180°时,AE BD=________; (2)拓展探究试判断:当0°≤α<360°时,AE BD的大小有无变化?请仅就图2的情形给出证明. (3)解决问题当△EDC 旋转至A ,D ,E 三点共线时,直接写出线段BD 的长.类型二 动点引起的探究(2016·河南)(1)发现如图1,点A 为线段BC 外一动点,且BC =a ,AB =b.填空:当点A 位于________时,线段AC 的长取得最大值,且最大值为________(用含a ,b 的式子表示);(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值;(3)拓展如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM 长的最大值及此时点P的坐标.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE的最大值=线段CD的最大值,根据(1)中的结论即可得到结果.(3)将△APM 绕着点P 顺时针旋转90°得到△PBN,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN =PA =2,BN =AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为22+3;过P 作PE⊥x 轴于E ,根据等腰直角三角形的性质即可得到点P 的坐标.【自主解答】4.(2019·河南模拟)(1)问题发现如图1,在Rt△ABC 中,∠BAC=90°,ABAC =1,点P 是边BC 上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.填空:①PB CD=________; ②∠ACD 的度数为________;(2)拓展探究如图2,在Rt△ABC 中,∠BAC=90°,AB AC=k.点P 是边BC 上一动点(不与点B 重合),∠PAD=90°,∠APD=∠B,连接CD ,请判断∠ACD 与∠B 的数量关系以及PB 与CD 之间的数量关系,并说明理由;(3)解决问题如图3,在△ABC 中,∠B=45°,AB =42,BC =12,P 是边BC 上一动点(不与点B 重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA =5,请直接写出所有CD 的长.类型三 图形形状变化引起的探究(2019·信阳一模)(1)观察猜想如图1,点B,A,C在同一条直线上,DB⊥BC,EC⊥BC,且∠DAE=90°,AD=AE,则BC,BD,CE之间的数量关系为________;(2)问题解决如图2,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连接BD,求BD的长;(3)拓展延伸如图3,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.【分析】(1)通过证明△ADB≌△EAC,可得结论:BC=AB+AC=BD+CE;(2)过D作DE⊥AB,交BA的延长线于E,同理证明△ABC≌△DEA,可得DE=AB =2,AE=BC=4,最后利用勾股定理求BD的长;(3)同理证明三角形全等,设AF=x,DF=y,根据全等三角形对应边相等列方程组可得结论.【自主解答】5.(2014·河南)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:①∠AEB的度数为________;②线段AD,BE之间的数量关系为________;(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题如图3,在正方形ABCD中,CD=2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.参考答案类型一【例1】(1)1 60°(2)BDCP 的值为2,直线BD 与直线CP 相交所成的较小角的度数为45°.理由如下: 如图,设BD 交AC 于点O ,BD 交PC 于点E.∵∠PAD=∠CAB=45°, ∴∠PAC=∠DAB. ∵AB AC =ADAP =2, ∴△DAB∽△PAC,∴∠PCA=∠DBA,BD PC =ABAC= 2.∵∠EOC=∠AOB,∴∠CEO=∠OAB=45°,∴直线BD 与直线CP 相交所成的较小角的度数为45°. (3)ADCP的值为2+2或2- 2. 如图,当点D 在线段PC 上时,延长AD 交BC 的延长线于H.∵CE=EA ,CF =FB ,∴EF∥AB, ∴∠EFC=∠ABC=45°.∵∠PAO=45°,∴∠PAO=∠OFH.∵∠POA=∠FOH,∴∠H=∠APO.∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA.∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°.∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC.设AD=a,则DC=AD=a,PD=2 2a,∴ADCP=aa+22a=2- 2.如图,当点P在线段CD上时,同法可证DA=DC.设AD=a,则CD=AD=a,PD =22a,∴PC=a-22a,∴AD PC =a a -22a=2+ 2. 综上所述,点C ,P ,D 在同一直线上时,ADCP 的值为2-2或2+ 2.跟踪训练 1.解:(1)①1提示:∵∠AOB=∠COD=40°, ∴∠COA =∠DOB.∵OC=OD ,OA =OB ,∴△COA≌△DOB(SAS), ∴AC=BD ,∴ACBD =1.②40°提示:∵△COA≌△DOB, ∴∠CAO=∠DBO.∵∠AOB=40°,∴∠OAB+∠ABO=140°.在△AMB 中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB +∠ABD)=180°-140°=40°. (2)ACBD =3,∠AMB=90°.理由如下: 在Rt△OCD 中,∠DCO=30°,∠DOC=90°, ∴OD OC =tan 30°=33. 同理得OB OA =tan 30°=33.∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD, ∴AC BD =OCOD=3,∠CAO=∠DBO, ∴∠AMB=180°-∠CAO-∠OAB -MBA =180°-(∠DAB+∠MBA+∠OBD)=180°-90°=90°. (3)23或3 3.提示:①点C 与点M 重合时,如图,同理得△AOC∽△BOD, ∴∠AMB=90°,ACBD = 3.设BD =x ,则AC =3x. 在Rt△COD 中, ∵∠OCD=30°,OD =1, ∴CD=2,∴BC=x -2.在Rt△AOB 中,∠OAB=30°,OB =7. ∴AB=2OB =27.在Rt△AMB 中,由勾股定理得AC 2+BC 2=AB 2, 即(3x)2+(x -2)2=(27)2, 解得x 1=3,x 2=-2(舍去), ∴AC=3 3.②点C 与点M 重合时,如图,同理得∠AMB=90°,ACBD= 3.设BD =x ,则AC =3x ,在Rt△AMB 中,由勾股定理得AC 2+BC 2=AB 2, 即(3x)2+(x +2)2=(27)2. 解得x 1=-3,解得x 2=2(舍去), ∴AC=2 3.综上所述,AC 的长为33或2 3. 2.解:(1)PM =PN PM⊥PN 提示:∵点P ,N 是BC ,CD 的中点, ∴PN∥BD,PN =12BD.∵点P ,M 是CD ,DE 的中点, ∴PM∥CE,PM =12CE.∵AB=AC ,AD =AE ,∴BD=CE ,∴PM=PN. ∵PN∥BD,∴∠DPN=∠ADC, ∵PM∥CE,∴∠DPM=∠DCA.∵∠BAC=90°,∴∠ADC+∠ACD=90°, ∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN.(2)△PMN 为等腰直角三角形.理由如下: 由旋转知,∠BAD=∠CAE.∵AB=AC ,AD =AE ,∴△ABD≌△ACE(SAS),∴∠AB D =∠ACE,BD =CE.同(1)的方法,利用三角形的中位线定理得 PN =12BD ,PM =12CE ,∴PM=PN ,∴△PMN 是等腰三角形. 同(1)的方法得PM∥CE, ∴∠DPM=∠DCE. 同(1)的方法得PN∥BD, ∴∠PNC=∠DBC.∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB +∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC. ∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°, ∴△PMN 是等腰直角三角形. (3)492.提示:同(2)的方法得△PMN 是等腰直角三角形, ∴当MN 最大时,△PMN 的面积最大, ∴DE∥BC 且DE 在顶点A 上面, ∴MN 最大=AM +AN. 如图,连接AM ,AN.在△ADE 中,AD =AE =4,∠DAE=90°, ∴AM=2 2.在Rt△ABC 中,AB =AC =10,AN =52, ∴MN 最大=22+52=72,∴S △PMN 最大=12PM 2=12×12MN 2=14×(72)2=492.3.解:(1)①52提示:当α=0°时, ∵在Rt△ABC 中,∠B=90°,∴AC=AB 2+BC 2=(8÷2)2+82=4 5. ∵点D ,E 分别是边BC ,AC 的中点, ∴AE=45÷2=25,BD =8÷2=4, ∴AE BD =254=52. ②25提示:如图,当α=180°时,则可得AB∥DE.∵AC AE =BC BD, ∴AE BD =AC BC =458=52. (2)当0°≤α≤360°时,AEBD的大小没有变化.∵∠ECD=∠ACB,∴∠ECA=∠DCB. 又∵EC DC =AC BC =52,∴△ECA∽△DCB, ∴AE BD =EC DC =52. (3)BD 的长为45或125 5提示:a.如图,∵AC=45,CD =4,CD⊥AD ,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵AD=BC ,AB =DC ,∠B=90°, ∴四边形ABCD 是矩形, ∴BD=AC =4 5.b .如图,连接BD ,过点D 作AC 的垂线交AC 于点Q ,过点B 作AC 的垂线交AC 于点P.∵AC=45,CD =4,CD⊥AD,∴AD=AC 2-CD 2=(45)2-42=80-16=8. ∵点D ,E 分别是边BC ,AC 的中点, ∴DE=12AB =12×(8÷2)=12×4=2,∴AE=AD -DE =8-2=6, 由(2)得AE BD =52,∴BD=652=1255.综上所述,BD 的长为45或1255.类型二【例2】(1)CB 的延长线 a +b (2)①CD=BE.理由:∵△ABD 与△A CE 是等边三角形, ∴AD=AB ,AC =AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC, 即∠CAD=∠EAB. 在△CAD 和△EAB 中, ⎩⎪⎨⎪⎧AD =AB ,∠CAD=∠EAB,AC =AE , ∴△CAD≌△EAB, ∴CD=BE. ②4提示:∵线段BE 长的最大值等于线段CD 的最大值, 由(1)知,当线段CD 取得最大值时,点D 在CB 的延长线上, ∴线段BE 的最大值为BD +BC =AB +BC =4.(3)线段AM的最大值为22+3,点P的坐标为(2-22,2).提示:如图,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN 是等腰直角三角形,∴PN=PA=2,BN=AM.∵点A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM的最大值等于线段BN的最大值,∴当点N在线段BA的延长线时,线段BN取得最大值,即最大值为AB+AN.∵AN=2AP=22,∴线段AM的最大值为22+3.如图,过点P作PE⊥x轴于点E.∵△APN是等腰直角三角形,∴PE=AE=2,∴OE=BO-AB-AE=5-3-2=2-2,∴P(2-2,2).跟踪训练4.解:(1)①1②45°(2)∠ACD=∠B,PB CD=k. 理由如下:∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∴AB AC =AP AD=k. ∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,PB CD =AB AC=k. (3)102或7102. 类型三【例3】(1)BC =BD +CE提示:∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC.∵∠B=∠C=90°,AD =AE ,∴△ADB≌△EAC,∴BD=AC ,EC =AB ,∴BC=AB +AC =BD +CE.(2)如图,过D 作DE⊥AB,交BA 的延长线于E.由(1)同理得△ABC≌△DEA,∴DE=AB =2,AE =BC =4.在Rt△BDE 中,BE =6,∴由勾股定理得BD =62+22=210.(3)如图,过点D 作DE⊥BC 于E ,作DF⊥AB,交BA 的延长线于F.同理得△CED≌△AFD,∴CE=AF ,ED =DF.设AF =x ,DF =y ,则⎩⎪⎨⎪⎧x +y =4,2+x =y ,解得⎩⎪⎨⎪⎧x =1,y =3,∴BF=2+1=3,DF =3,由勾股定理得BD =32+32=3 2.跟踪训练5.解:(1)①60°提示:∵△ACB 和△DCE 均为等边三角形,∴CA=CB ,CD =CE ,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD=∠BCE,CD =CE ,∴△ACD≌△BCE,∴∠ADC=∠BEC.∵△DCE 为等边三角形,∴∠CDE=∠CED=60°.∵点A ,D ,E 在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB =∠BEC-∠CED=60°.②AD=BE(2)∠AEB=90°,AE =BE +2CM.理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∴CA=CB ,CD =CE ,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD 和△BCE 中,⎩⎪⎨⎪⎧CA =CB ,∠ACD=∠BCE,CD =CE ,∴△ACD≌△BCE,∴AD=BE ,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A ,D ,E 在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为3-12或3+12.提示:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.(i)当点P在如图所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A 作AE⊥AP,交BP于点E.∵四边形ABCD是正方形,∴∠ADB=45°,AB=AD=DC=BC=2,∠BAD=90°,∴BD=2.∵DP=1,∴BP= 3.∵∠BPD=∠BAD=90°,∴点A,P,D,B在以BD为直径的圆上,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B,E,P共线,AH⊥BP,∴由(2)中的结论可得BP=2AH+PD,∴3=2AH+1,∴AH=3-1 2.(ii)当点P在如图所示位置时,连接PD,PB,PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E.同理可得BP=2AH-PD,∴3=2AH-1,∴AH=3+1 2.综上所述,点A到BP的距离为3-12或3+12.(注:文档可能无法思考全面,请浏览后下载,供参考。