中考数学压轴题解题技巧

合集下载

初中数学的压轴题答题技巧

初中数学的压轴题答题技巧

初中数学的压轴题答题技巧很多同学说在解答压轴题的时候,会感到压力很大,找不到解题思路。

不同类型的压轴题所对应的解题思想也存在很大的差异。

今天就来给同学们详细讲讲如何破译中考数学压轴题,帮助大家在考场中从容应对各种类型的压轴题,争取拿到关键的分数!1.分类讨论题分类讨论在数学题中经常以最后压轴题的方式出现,以下几点是需要大家注意分类讨论的:1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。

在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

2、讨论点的位置一定要看清点所在的范围,是在直线上,还是在射线或者线段上。

3、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

4、代数式变形中如果有绝对值、平方时,里面的数开出来要注意正负号的取舍。

5、考查点的取值情况或范围。

这部分多是考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围。

6、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

7、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)时,所写的函数应该进行分段讨论。

值得注意的是:在列出所有需要讨论的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。

最常见的就是一元二次方程如果有两个不等实根,那么我们就要看看是不是这两个根都能保留。

2.四个秘诀切入点一:做不出、找相似,有相似、用相似压轴题牵涉到的知识点较多,知识转化的难度较高。

学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点二:构造定理所需的图形或基本图形在解决问题的过程中,有时添加辅助线是必不可少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

中考数学压轴题解题技巧压轴题这类题目一般分数多,难度大,考验综合能力强,在考试中是能够拉开成绩的题目,也是很多同学重点钻研项目。

下面是小编整理的中考数学压轴题解题技巧,希望小编整理的数学压轴题解题方法对同学们有用! 从总体上来看,中考数学压轴题通常有3小问,其中第一问比较简单,中等水平的学生能够比较轻易地解出来。

所以,同学们看到压轴题,不要产生恐惧心理,拿下第一问还能得两三分。

第二问通常有些难度,通常要利用第一问的条件和结论,所以,如果第一问做不出来,后面就别提了。

第三问难度最大,考验的是同学的综合能力。

1中考数学压轴题解题技巧1、基本知识不丢一分在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。

“首先要梳理知识网络,思路清晰知己知彼。

其次要掌握数学考纲,对考试心中有谱。

掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的解题技巧,根据考纲和自己的实际情况来侧重复习。

2、运用数形结合思想中考数学压轴题解题技巧之一就是数形结合思想,是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法,或利用数量关系来研究几何图形的性质,解决几何问题的一种数学思想。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些数学问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵。

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路
中考数学压轴题是考试中最难的题型,涉及的内容相对较为复杂,解题思路也较为繁琐。

以下是一些中考数学压轴题的常见类型和解题思路。

常见类型一:应用题
应用题是中考数学压轴题中最常见的类型之一。

这类题目通常涉及实际问题,需要运用数学知识进行分析和计算。

解题思路:
1. 仔细阅读题目,理解问题的背景和要求。

2. 分析问题,确定解题的核心思路和步骤。

3. 运用所学的数学知识和技巧,进行计算和推理。

4. 对结果进行合理性检验,确保解答的准确性和完整性。

解题思路:
1. 仔细观察图形,寻找图形的性质和特点。

2. 运用几何性质和定理,进行推理和证明。

3. 利用几何性质,绘制等边、等腰和直角三角形等特殊图形进行推理和计算。

4. 运用实际问题,将几何题转化为代数问题,从而更好地解决问题。

总结:
中考数学压轴题的常见类型包括应用题、几何题、代数题和概率题等。

解题时需要仔细阅读题目、分析问题、运用所学的数学知识和技巧进行计算和推理,并对结果进行合理性检验。

通过充分的准备和练习,掌握解题的方法和技巧,就能够更好地应对中考数学压轴题。

安徽中考数学压轴题解题技巧

安徽中考数学压轴题解题技巧

安徽中考数学压轴题解题技巧说起安徽中考数学压轴题的技巧,我有一些心得想分享。

我辅导过一些中考生学习数学,那时候才真正感受到中考数学压轴题就像一座难以攻克的碉堡。

起初,很多同学看到压轴题就直接投降,其实只要掌握了一定技巧,并不是完全不能得分。

就拿函数类型的压轴题来说吧,它好像一个神秘迷宫。

首先,你得像个侦探一样把题目里给出的所有线索,也就是已知条件找出来。

比如说给定函数的表达式、坐标点这些,可别小瞧这一步,就和你找东西先得知道东西长啥样似的重要。

然后呢,我一般会建议学生把这些已知条件往图形里标,这就像是给地图做标记。

比如一次函数和二次函数交了个点,咱就把这个点的坐标标在图上。

真有学生忽略这个步骤,结果做题的时候就像迷失在迷宫里的小鹿,到处乱撞还找不到出口。

对了,还有个事儿要说。

方程思想是解压轴题的一把“利剑”。

很多时候我们需要根据题目中的等量关系列方程。

这就好比是在称东西,左右两边要一样重。

比如说在涉及三角形面积、线段长度关系的时候,利用已知的面积公式或者线段关系列出方程求解。

当然,我也遇到过一些失败的情况。

有一次,一个学生盲目地套技巧,题目要求用一种方法求解,他硬是用另一种不适用的技巧,结果全军覆没。

这就告诉我们,不能死记技巧,还得看清题目背后的逻辑。

而且要知道这些技巧也不是万能药。

有些压轴题出题非常灵活,可能会有陷阱或者超纲的小拓展。

如果遇到这种情况,咱们不要死磕,先把能做的部分做出来,就像吃个苹果,能吃一口是一口。

对于那些很难的部分,有时候用直觉或者排除法说不定还能得到一点分呢。

你来想想看,如果压轴题是一场战斗,那解题技巧就是我们的武器装备,你觉得你还需要在哪些方面加强这个装备库呢?希望大家也能分享一下在做安徽中考数学压轴题时的经验或者困惑呀。

像在一些几何图形结合函数的压轴题当中,图形的运动轨迹是个难点,就如同追踪一只调皮的小松鼠。

咱们要把每个时间点或者运动阶段的图形特征分析出来。

这就需要不断地划分阶段,就好比把这只松鼠走过的路分成好几段去观察。

九年级数学下册常考【压轴题】类型+解题思路

九年级数学下册常考【压轴题】类型+解题思路

九年级数学下册常考【压轴题】类型+解题思路中考数学常考压轴题类型1、线段、角的计算与证明中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

2、一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

3、多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。

这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。

所以,在中考中面对这类问题,一定要做到避免失分。

4、列方程(组)解应用题在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。

方程,可以说是初中数学当中最重要的部分,所以也是中考中必考内容。

从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。

实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。

5、动态几何与函数问题整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。

而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。

初中中考各类压轴题答题技巧

初中中考各类压轴题答题技巧

初中中考各类压轴题答题技巧一、数学压轴题类型1. 函数综合题初中中考的函数综合题常常把一次函数、二次函数甚至反比例函数揉在一起考。

对于这种题,你得先把函数的基本性质搞清楚。

像二次函数的对称轴公式、顶点坐标公式,这些都是最基础的,要像背九九乘法表一样熟练。

别一看到题目就慌,先把题目里给出的函数表达式看明白,看看是要你求最值呢,还是求与坐标轴的交点。

要是求最值,那就赶紧把顶点坐标求出来,往往答案就在那里等着你呢。

2. 几何综合题几何压轴题有时候是三角形、四边形、圆各种图形组合在一起。

比如说三角形全等和相似,这可是经常用到的知识点。

看到三角形相关的条件,先在脑海里过一遍全等和相似的判定条件。

对于圆的问题,什么切线的性质、圆周角定理之类的,可不能忘。

在做几何题的时候,辅助线就像一把神奇的钥匙,有时候一条合适的辅助线就能让整个题目变得超级简单。

你可以多尝试从特殊点、特殊线去作辅助线,比如中点、角平分线之类的。

3. 动点问题动点问题最让人头疼了,因为点在动,情况就一直在变。

这时候你要抓住不变的量。

比如说有些线段的长度虽然点在动,但它们之间的比例关系可能是不变的。

还有就是要学会用含未知数的式子表示线段的长度,这样就能建立方程来求解了。

有时候还可以通过找特殊时刻的情况,来推测整个运动过程中的规律。

二、答题技巧通用部分1. 读题要仔细很多时候,答案就藏在题目里。

那些看似不起眼的条件,可能就是解题的关键。

别走马观花地读题,要一个字一个字地看,把所有的条件都找出来,还可以在题目上做一些小标记,提醒自己哪些是重点。

2. 大胆假设如果一时没有思路,那就大胆假设一些情况。

比如说假设某个点的坐标,或者假设某个图形的形状。

然后根据假设去推导,如果推导过程中出现矛盾,那就说明假设不成立,再换一个假设。

有时候通过这种不断试错的方式,就能找到正确的解题方向。

3. 检查很重要做完题可别着急交卷,一定要检查。

检查的时候可以换一种思路重新做一遍,或者把答案代入题目中看看是否符合所有的条件。

初三数学压轴题解题方法大全

初三数学压轴题解题方法大全

初三数学压轴题在数学学习中占据着非常重要的地位,下面我将为您提供一些解题方法和技巧,以帮助您更好地解决这些难题。

1. 熟悉基本概念和公式:在解题之前,首先要熟练掌握相关的基本概念和公式。

这包括对代数、几何、三角函数等基本概念的深入理解,以及掌握各种常用的数学公式。

2. 仔细审题:审题是解题的关键步骤。

在审题时,需要明确问题的要求和条件,并尝试从问题入手,找出解题的突破口。

同时,要注意题目中的隐含条件,这些条件往往会成为解题的关键。

3. 善于运用转化思想:转化思想是数学解题中非常重要的思想。

通过转化,可以将复杂的问题转化为简单的问题,将未知的问题转化为已知的问题。

因此,在解题时,要善于运用转化思想,寻找问题的突破口。

4. 学会归纳和总结:归纳和总结是解题的重要环节。

在解题过程中,需要不断总结归纳题目中的信息和条件,找出规律和解题方法。

同时,在解题后要及时总结和反思,加深对题目的理解和掌握。

5. 实践练习:要想真正掌握压轴题的解题方法,必须通过大量的实践练习。

只有通过不断地练习,才能逐渐掌握各种解题技巧和方法,提高解题能力。

在练习时,可以采用模拟试题、历年考题等素材进行练习。

总之,初三数学压轴题的解题方法需要不断地积累和实践。

只有在熟练掌握基本概念和公式的基础上,通过仔细审题、转化思想、归纳总结和实践练习等步骤,才能逐步提高解题能力,攻克压轴题的难关。

中考数学压轴题解题技巧

中考数学压轴题解题技巧

中考数学压轴题解题技巧
1. 哎呀呀,你知道吗,中考数学压轴题其实并不可怕!就像爬山,虽然陡峭,但找对路径就容易多啦!比如遇到那种几何和函数结合的难题,咱别慌,先仔细观察图形,找到关键的线段或角度呀。

2. 嘿,要我说啊,做中考数学压轴题得有耐心!这就好比钓鱼,得沉得住气。

像那种需要分类讨论的题目,一个个情况去分析呀,像搭积木一样,慢慢就把答案堆出来啦!
3. 哇哦,解中考数学压轴题一定要抓住关键信息!这就像在一堆宝藏里找那颗最闪亮的宝石。

比如看到一个条件提及比值,那是不是可以考虑设未知数来求解呢!
4. 呀,可得注意啦,中考数学压轴题中方程思想超重要的!这就如同给了你一把万能钥匙。

像那种给出很多等式的题目,咱就勇敢地设未知数,列方程求解呀!
5. 嘿呀,千万别忘了,做中考数学压轴题思维要灵活!像孙悟空一样会七十二变。

比如遇到一个看似无解的题目,咱换个角度想想,说不定就有新思路啦!
6. 哇,告诉你哦,中考数学压轴题也得注重细节!就跟拼图一样,少一块都不行。

比如计算过程中一个小数点可都不能马虎呀!
总之,中考数学压轴题并不可怕,只要掌握了这些技巧,多练习,咱就一定能拿下它!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题解题技巧数学压轴题是初中数学中覆盖知识面最广,综合性最强的题型。

综合近年来各地中考的实际情况,压轴题多以数学综合题的形式出现,常见题型有两类:函数型压轴题和几何形压轴题。

压轴题考查知识点多,条件也相当隐晦,这就要求学生有较强的理解问题、分析问题、解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识和创新能力,当然,还必须具有强大的心理素质。

下面从知识角度和技术角度谈谈中考数学压轴题的解题技巧。

先以2009年河南中考数学压轴题为例:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.这是一道函数型压轴题。

函数型压轴题主要有:几何与函数相结合型、坐标与几何、方程与函数相结合型。

这些压轴题主要以函数为主线,涉及函数的图象、方程、点的坐标及线段长度、图形面积等问题。

先从知识角度来分析:(1)通过观察图象可以发现,直线AD和x轴平行,直线AB和y轴平行,因此,A点与D点的纵坐标相同,A点与B的横坐标相同,因此A的坐标为(4,8).知道了点A的坐标,加上已知条件点C的坐标,利用待定系数法很容易可以求出抛物线的解析式。

此问在本题中占3分,解决此问的关键在于:①多角度、全方位观察图形;②熟练掌握待定系数法求抛物线解析式。

(2)这是个动态的问题,解决动态问题的一个根本方法就是化动为静,动静结合。

先看第一小问,当t为何值时,线段EG最长?我们通过观察图形,很容易能够发现t的变化,会导致点P位置的变化,点P位置的变化会引起点E位置的变化,而E点位置的变化直接决定了线段EF位置和长度的变化,而线段EF位置和长度的变化决定了线段EG位置和长度的变化,我们看到,问题最终就是回归到线段EG的长度之上。

如果把整个这个变化的过程当作是一个事件来看的话,事件的起因就是t的变化,而事件的结果就是线段EG的长度发生变化。

换句话说就是因为t的变化导致线段EG长度的变化。

那么我们就可以把这个变化过程中的t当作自变量,线段EG的长度就是t的函数。

因此,求当t为何值时,线段EG最长?实际上就是求函数取最大值时自变量的值。

因此本问的关键就是如何求线段EG长关于t的函数。

而求线段EG长关于t的函数,实际上就是把t看作是一个常数,求线段EG的长。

通过观察图形,不难发现,求线段EG的长,可以通过求点E、G的纵坐标求得,点E的纵坐标可以通过点P的纵坐标求得,点G的纵坐标需要通过点E的横坐标求得,而点E的横坐标可以通过求线段PE的长度求得。

思路如下图所示:解决此问的关键是:体会问题中涉及到的函数思想,利用数形结合的方法解决问题。

(3)在点P、Q运动的过程中,△CEQ的形状不断在发生变化,如果△CEQ是等腰三角形,需要分三种情况进行讨论,即点C、E、G分别可能是等腰三角形顶角的顶点。

解决此问的关键是:体会△CEQ形状不断变化的特点,能够想到存在的情况可能有三种,然后分别去求三种情况所对应的t的值。

详细解题过程如下:解:(1)点A 的坐标为(4,8) …………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t ) =-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分 从技术角度来分析:①压轴题的出现是为了让参加中考的学生成绩更有区分度,所以并不是每一个同学都可以把压轴题完整地做出来的。

所以我们告诫所有参加中考的同学,不要一味地把时间都花在压轴题上,一定要保证选择、填空万无一失,前面的解答题尽可能的检查一遍。

如果时间还有剩余,再静下心来攻克压轴题,这是技术方面的一个考虑。

②压轴题并不可怕,所以情绪上要积极自信,没有必要惊慌失措。

③就本题而言,如何才能让自己多拿一些分数呢?ⅰ)做一问是一问。

第一问对绝大多数同学来说,不是问题;第二问的两小问都有难度,但是细心的同学会发现第二小问和第一小问没有特别大的联系,因此如果第一小问不会解,切忌不可轻易放弃第二小问。

事实上中考有较多的压轴题并不是每一问之间都有联系。

ⅱ)过程会多少写多少,因为数学解答题是按步骤给分的,拿第二小问来说,大部分同学都知道有3个时刻,可是因为写不出来相应的t 值,因此就放弃不写了,殊不知,你只要回答有3个时刻就可以多得1分。

和2009河南中考压轴题类似的中考题有很多,多数情况下类似第二问会有这样的问题:记图形中的某个变化三角形的面积为s ,求s 关于t 的函数,并求当t 取何值时s 最大,s 最大值是多少?涉及到等腰三角形的讨论类似的情况有直角三角形的问题。

比如: (2009年济南中考题的最后一题的第三问)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(2009年辽宁朝阳中考题最后一题第二问)将ABO △沿着垂直于x 轴的线段CD 折叠,(点C 在x 轴上,点D 在AB 上,点D 不与A ,B 重合)如图②,使点B 落在x 轴上,点B 的对应点为点E .设点C 的坐标为)0,(x ,CDE △与ABO △重叠部分的面积为S .i )试求出S 与x 之间的函数关系式(包括自变量x 的取值范围);ii )当x 为何值时,S 的面积最大?最大值是多少?iii )是否存在这样的点C ,使得ADE △为直角三角形?若存在,直接写出点C 的坐标;若不存在,请说明理由.再以2009年江西中考数学压轴题为例:如图1,在等腰梯形ABCD 中,BC AD //,E 是AB 的中点,过点E 作BC EF //交CD 于点F .6,4==BC AB ,∠ 60=B .(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作AB MN //交折线ADC 于点N ,连结PN ,设x EP =.①当点N 在线段AD 上时(如图2),⊿PMN 的形状是否发生改变?若不变,求出⊿PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使⊿PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A D EFA D EFPNA D EFPN这是一道几何型压轴题。

常见的几何型压轴题以常见的三角形、四边形(如正方形、等腰梯形等)、圆等知识为考查重点,贯穿几何、代数及三角函数等知识,以证明题、计算题出现。

先从知识角度来分析:(1)求点到直线的距离,一般的方法就是过这个点向直线作垂线段,然后利用勾股定理或者是解直角三角形的方法求垂线段的长度。

(2)①通过观察点N 的不同位置,可以发现⊿PMN 的形状并不发生变化。

不需要说明理由,然后分别去求三角形的三边长,最终求出三角形的周长。

线段PM 的长实际上就是线段EG 的长,第一问已经求出来了,线段MN 的长就是线段AB 的长,问题复杂就复杂在求线段PN 的长上,求线段的长,我们最容易想到也是最常用的方法还是构造直角三角形,然后使用勾股定理,因此过点P P 作PH MN ⊥于H 。

②通过画草图,可以看到当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形。

和2009河南中考压轴题一样,PMN △为等腰三角形需要讨论三种情况。

详细解题过程如下:解:(1)如图1,过点E 作EG BC ⊥于点G . ···················· 1分∵E 为AB 的中点, ∴122BE AB ==. 在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ··········· 2分图1A D E BF CG∴112BG BE EG ====, 即点E 到BC····································· 3分 (2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴2330cos =⋅=PM MH 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································ 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,32MR =. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分图2A D E BF CPNMG H当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===--=当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴130tan =⋅=PM MC此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形.………………..10分从技术角度来分析基本同上,比如求PMN △的周长,即使算不出来线段PN 的长,最起码可以求出另外两边的长,只要形成过程,就会给分。

相关文档
最新文档