低噪话筒麦克风放大电路设计

合集下载

电容式麦克风的低噪声设计与实现

电容式麦克风的低噪声设计与实现

电容式麦克风的低噪声设计与实现摘要:在现代通信和音频系统中,麦克风是一个至关重要的装置,它用于将声音转换为电信号。

然而,麦克风的性能往往受到噪声的干扰,而低噪声设计是实现高质量音频采集的关键。

本文将讨论电容式麦克风的低噪声设计原理和实现方法,并介绍一些常见的噪声抑制技术。

1. 引言电容式麦克风是一种常见的麦克风类型,它利用电容变化来转换声音信号为电信号。

然而,由于麦克风自身的电路噪声和环境噪声的干扰,电容式麦克风在低噪声设计上面临着一些挑战。

因此,针对电容式麦克风的低噪声设计变得尤为重要。

2. 低噪声设计原理低噪声设计的目标是最小化麦克风电路中的噪声源,并采用合适的技术来减少噪声的传播和干扰。

以下是几个常见的低噪声设计原理:2.1 信号增强信号增强是减少噪声影响的一种重要方法。

通过增强输入信号的强度,可以使信号部分更容易从噪声中区分出来。

常见的信号增强技术包括放大器和前置滤波器等。

2.2 降低电路噪声电路噪声是指麦克风电路本身产生的噪声,可以通过合理的电路设计和使用低噪声元件来降低。

例如,使用低噪声运放和低噪声电容等可以减少电路噪声的影响。

2.3 噪声抑制技术噪声抑制技术通过处理输入信号,抑制或去除其中的噪声成分,从而降低整体噪声水平。

常见的噪声抑制技术包括滤波器,降噪算法和自适应噪声抑制等。

3. 低噪声设计实现针对电容式麦克风的低噪声设计,可以从以下几个方面入手:3.1 选择合适的麦克风元件在设计麦克风电路时,选择低噪声的麦克风元件非常重要。

常见的低噪声麦克风元件包括全氟碳酸聚酯膜电容和低噪声运放等。

3.2 电路布局优化合理的电路布局可以减少电路噪声的传播和干扰。

应该尽量避免噪声源与信号源之间的物理接触,并采用屏蔽和隔离技术来降低噪声的干扰。

3.3 噪声抑制器的应用在电容式麦克风电路中,添加适当的噪声抑制器可以有效降低噪声水平。

常见的噪声抑制器包括滤波器、降噪算法和自适应噪声抑制等。

4. 常见的噪声抑制技术以下是一些常见的用于降低电容式麦克风噪声的技术:4.1 滤波器滤波器是一种常见的噪声抑制技术,可以通过去除输入信号中高频噪声成分来减少噪声的影响。

低噪话筒麦克风放大电路设计

低噪话筒麦克风放大电路设计

低噪话筒麦克风放大电路设计摘要:麦克风是一种将声音转换成电信号的装置,常用于音频采集、语音识别、语音合成等应用中。

在麦克风电路中,放大电路是主要的一部分,其功能是将微弱的麦克风信号放大到适合输入到后续电路中的水平。

在本文中,我们将介绍一种低噪话筒麦克风放大电路的设计。

引言:目前市场上已经有很多种麦克风放大电路的设计方案,但是低噪声一直是一个难题。

在设计低噪话筒麦克风放大电路时,需要考虑音频信号的放大和噪声的抑制两个方面。

本文将针对这些问题提供一种解决方案。

主体:低噪声话筒麦克风放大电路的设计主要包括以下几个方面。

1.选择低噪声运放芯片:在麦克风放大电路中,运放是一个起到放大和滤波作用的关键部件。

为了保证低噪声的要求,合适的选择低噪声运放芯片是非常重要的。

常用的低噪声运放芯片有NE5532、TL072等。

在选择时,需要考虑其噪声系数和增益等参数。

2.适当选择放大倍数:放大倍数的选择应根据麦克风信号的输入水平和后续电路的输入要求来确定。

放大倍数过大会容易引入噪声,而放大倍数过小则可能导致信号过小无法满足后续处理电路的工作要求。

在设计中需要进行恰当的权衡。

3.电源滤波和消除地线杂散声:在麦克风放大电路中,电源滤波是非常重要的一环。

电源滤波电路能够滤除电源中的高频噪声。

此外,地线杂散声也是一个要考虑的问题。

在设计中,可以采取一些防护措施,如使用单点接地,尽量减少杂散产生的机会等。

4.使用差模输入方式:差模输入方式可以大大减少输入信号中的共模噪声。

常用的差模输入运放有INA103、INA128等,它们能够抑制共模噪声,提高信号质量。

5.使用低噪声电阻:电阻噪声在放大电路中占有重要地位。

使用低噪声电阻能够减少电路中的噪声,提高信号质量。

常用的低噪声电阻有金属膜电阻、金属箔电阻等。

结论:低噪声话筒麦克风放大电路的设计要点包括选择低噪声运放芯片、适当选择放大倍数、电源滤波和消除地线杂散声、使用差模输入方式以及使用低噪声电阻等。

给麦克风加装放大电路

给麦克风加装放大电路

给麦克风加装放大电路
一、放大电路工作原理
图1是整个话筒放大电路的电路图,从图1中可以看出,整个电路只要六七个原件。

下面大概说说工作原理,其中电阻R1负责给咪头提供工作电压,R2与R3负责给三极管提供偏置电压,电容C1负责把咪头的信号耦合给三极管以便放大,最终放大后的信号通过电容C2耦合后送回到话筒线路的正极中,也就时话筒线最外层的屏蔽层(也就是外层的那层铜网)。

图2就是我们制作时要用到的材料或电子元件。

二.制作似的注意事项
整个放大电路所需的电子元件的规格如下:电阻R1为1KΩ,电阻R2为1M Ω,电阻R3为1KΩ,三极管VT为9014,电容C1为4.7μF,电容C2为4.7μF,电池采用一般的五号电池即可,一般正常使用可用半年左右。

制作完成后的电路板成品见图3。

在制作过程中要注意以下几点:1.三极管的管脚一定要接对,否则起不到放大的作用,管脚区分以下三极管引线朝下,平的一面朝自己,依次是E(发射极),B(基极)和C(集电极);2.麦克风咪头也是有极性的(具体区分见图4);3.耦合电容的极性可通过标记来分辨,有箭头且标记为“-”的引脚是负极,正极一般不作标记。

由于元件少也可直接搭棚焊接,电路板做好后可直接装进麦克风的底座的内,电路板的电源引线则接入麦克风预留的电池槽里即可。

三,效果测试
经过试用,麦克风有效距离完全可以达到5—6米,而且用Office Word2003的语音输入功能,效果也很明显,离话筒1米左右说话也可准确识别。

低噪声放大器的两种设计方法与低噪声放大器设计实例

低噪声放大器的两种设计方法与低噪声放大器设计实例

低噪声放大器的两种设计方法与低噪声放大器设计实例低噪声放大器的两种设计方法低噪声放大器(LNA)是射频收发机的一个重要组成部分,它能有效提高接收机的接收灵敏度,进而提高收发机的传输距离。

因此低噪声放大器的设计是否良好,关系到整个通信系统的通信质量。

本文以晶体管ATF-54143为例,说明两种不同低噪声放大器的设计方法,其频率范围为2~2.2 GHz;晶体管工作电压为3 V;工作电流为40 mA;输入输出阻抗为50 Ω。

1、定性分析1.1、晶体管的建模通过网络可以查阅晶体管生产厂商的相关资料,可以下载厂商提供的该款晶体管模型,也可以根据实际需要下载该管的S2P文件。

本例采用直接将该管的S2P文件导入到软件中,利用S参数为模型设计电路。

如果是第一次导入,则可以利用模块S-Params进行S参数仿真,观察得到的S参数与S2P文件提供的数据是否相同,同时,测量晶体管的输入阻抗与对应的最小噪声系数,以及判断晶体管的稳定性等,为下一步骤做好准备。

1.2、晶体管的稳定性对电路完成S参数仿真后,可以得到输入/输出端的mu在频率2~2.2 GHz之间均小于1,根据射频相关理论,晶体管是不稳定的。

通过在输出端并联一个10 Ω和5 pF的电容,m2和m3的值均大于1,如图1,图2所示。

晶体管实现了在带宽内条件稳定,并且测得在2.1 GHz时的输入阻抗为16.827-j16.041。

同时发现,由于在输出端加入了电阻,使得Fmin由0.48增大到0.573,Γopt为0.329∠125.99°,Zopt=(30.007+j17.754)Ω。

其中,Γopt是最佳信源反射系数。

1.3、制定方案如图3所示,将可用增益圆族与噪声系数圆族画在同一个Γs平面上。

通过分析可知,如果可用增益圆通过最佳噪声系数所在点的位置,并根据该点来进行输入端电路匹配的话,此时对于LNA而言,噪声系数是最小的,但是其增益并没有达到最佳放大。

因此它是通过牺牲可用增益来换取的。

MIC放大电路

MIC放大电路

电子技术基础课程设计课题三MIC放大电路班级:姓名:学号:组号:指导教师:四川师范大学成都学院二〇一〇年六月MIC放大电路内容摘要:本设计是应用数模电路知识完成无线调频话筒设计。

放大电路理是将声波信号通过麦克风转化为音频电信号,通过改变结电容来改变高频振荡器的输出频率,进行放大,有电压低,受话灵敏,制作简易等特点。

一、设计内容及要求1、任务(1)设计一款简单的放大器电路(2)根据需要列出元件清单。

(3)使用万用板搭建并且独立焊接电路。

(4)调试电路查看放大效果。

2、要求(1) Mic灵敏度高(2)放大效果明显二、设计方案本实验是用模电三极管放大功效放大的电路,图2.1 发射部分结构框图三、电路工作原理及设计MIC是驻极体话筒,它的作用就是感应空气中声波的微弱振动,并输出跟声音变化规律一样的电信号(注意:话筒有正负极之分,一般和外壳相通的是负极)。

R1是MIC驻极话筒的偏置电阻,有了这个电阻,话筒才能输出音频信号,这是因为MIC话筒内部本身有一极场效应管放大电路,用来阻抗匹配和提高输出能力等作用。

R2是Q9018的基极偏置电阻,给Q提供一个较小的基极电流,Q将会有一个较大的发射极电流到过R3。

由于R2、R3中的电流作用会在各自电阻上产生压降并互相影响,结果会自动稳定在某一数值状态,这便是射极跟随器,直流负反馈不稳定直流工作点的作用。

R3是Q9018的发射极电阻,起稳定直流工作点作用C1是电源滤波电容,给交流信号提供回路,减小电源的交流内阻。

C2是音频信号耦合电容,将话筒感应输出的声音电信号专递到下一级。

C3是Q9018的基极滤波电容,一方面滤除高频杂音,另一方面让Q9018的高频电位为0,对50MHz以上的高频电路来说,Q9018是一个共基极放大电路,这是最后能形成振荡的基础。

因为振荡电路的基础条件就是必须具备一定的增益,再就是具备合适相位的反馈(一般是正反馈)。

图一实验电路图四、测试1.模拟话筒发出的声音放大信号图二 模拟话筒发出的声音放大信号2.为减少噪声的影响,场效应管T1的工作点取低一些 取工作点为:V V GS 3-=mA I D Q 3.0=能够得到:G S D Q V R R I -=+)(32所以:Ω==+K mAVR R 103.0332 再取 2CCD V V =Vcc =9V则有:V V D 5.4=所以有:V V D S 5.135.4=-=Ω==K mAVR 153.05.44 因为在总体分析中我们已经确定话筒的放大倍数为20倍 所以有:2034==R R A v附录:附录一整机电路原理图说明,原理图中mic和二极管电阻代替附录二 PCB图参考文献:[1] 李蒙电子技术基础. 北京:高等教育出版社,20051.第四版[2] 李中天电路分析基础. 北京: 高等教育出版社,1992.5.第三版。

综合电子设计_驻极体话筒放大电路

综合电子设计_驻极体话筒放大电路

综合电子设计_驻极体话筒放大电路驻极体话筒是一种高质量的话筒,具有高灵敏度和低噪声的特点。

驻极体话筒需要使用特定的放大电路才能使其工作。

本文将介绍一种针对驻极体话筒的放大电路设计,并详细阐述其工作原理。

1. 驻极体话筒简介驻极体话筒是一种基于伏打效应(电容变化)的话筒。

其工作原理是将声波转化为一个机械振动,再通过一个驻极体(一种小的金属电容)来测量振动的电容变化。

这种话筒具有高灵敏度和低自噪声的优点,因此被广泛用于录音、广播、音乐制作等领域。

2. 放大电路设计驻极体话筒的驱动电路需要具备高输入阻抗、高增益和低噪声等特点。

我们推荐以下驻极体话筒放大电路:该电路是一种共基极放大电路,适用于单极性电源供电的场合。

Q1是一个NPN型晶体管,它的基电极通过C1与驻极体话筒相连,发射极通过R1与地相连,集电极通过R2与正极相连。

C2和C3用于耦合和直流滤波,提高电路的稳定性和抗干扰能力。

3. 工作原理当声波进入驻极体话筒时,驻极体就会振动,从而产生一个微小的电容变化。

这个电容变化被传递到晶体管的基极,使得基极电压发生变化。

因为这是一个共基极放大电路,所以基极电压变化会通过电容C2耦合到集电极,从而使得集电极电压变化。

由于信号源的输出电阻极低,所以Q1的输入阻抗较高,可达到几百千欧姆,使得放大器能够很好地工作。

为了让输出信号变成一个可供使用的信号,我们需要对其进行加工。

输出信号经过C3的直流滤波后,传递到一个负载电阻中去,从而产生所需的放大效果。

此时,从负载电阻得到的输出信号,即为驻极体话筒的放大信号。

4. 总结本文介绍了一种适用于驻极体话筒的放大电路设计。

该电路具有高输入阻抗、高增益和低噪声等特点,可满足驻极体话筒应用的需求。

其他类型的驱动电路也可以应用于驻极体话筒,但本文提供的电路是一种经过验证的实际设计。

希望本文能够对驻极体话筒电路设计感兴趣的读者提供一些借鉴和帮助。

卡拉OK话筒放大、混合电路设计

卡拉OK话筒放大、混合电路设计

模拟电子技术课程设计任务书(18)系(部):电子与通信工程系专业:电子信息工程指导教师:绪论 (5)1.1课题的背景及目的 (5)二、设计的任务及要求 (5)2.1设计的任务 (5)2.2设计的要求 (5)三、音响放大器的基本组成 (5)四、设计方案 (6)实验原理 (6)设计电路图 (6)五、仿真测试 (7)话音放大器EWB仿真 (8)混合放大级EWB仿真 (9)两级放大EWB仿真 (10)六、电路的安装与调试 (11)七、测试结果与分析 (11)八、心得体会 (12)参考文献 (13)1.1课题的背景及目的在日常生活和工作中,经常会遇到这样一些问题,如在检修各种机器设备时,常常需要依靠故障机器的异常声响来寻找故障,这种异常的频谱覆盖面积很广,需要高亮度的声音来传达消息,例如校园广播,大型会议等,而仅仅凭自己的喉咙是无法实现的,因而要用到信号放大器。

声音信号频率低,在放大的过程中极易受到外界的干扰,又如:在打电话的时候,有时往往因声音太大或干扰太大而难以听清对方讲话,于是需要一种既能放大语音信号又能降低外来噪音的仪器。

由于诸上原因,具有类似功能的实用电路实际上就是一个识别不同范围的小信号放大系统。

所以需要设计一个语音放大电路。

二、设计的任务及要求 2.1设计的任务1、设计一卡拉OK 话筒放大、混合电路,能对话音进行放大,并与录音机中的音乐信号进行混合。

2.2设计的要求1、话筒输出电压为5mV ,录音机的输出信号电压为100mV ,混合级输出电压>=125 mV 。

2、截止频率为为f L =40、Hz ,f H =10kHz 。

3、声音和音乐的音量可调三、音响放大器的基本组成话筒四、设计方案已知:设计一卡拉OK话筒放大、混合电路,能对话音进行放大,并与录音机中的音乐信号进行混合。

话筒输出电压为5mV,录音机的输出信号电压为100mV,混合级输出电压>=125 mV。

截止频率为为f L=40Hz,f H=10kHz。

话筒放大器电路图大全(六款话筒放大器电路设计原理图详解)

话筒放大器电路图大全(六款话筒放大器电路设计原理图详解)

话筒放大器电路图大全(六款话筒放大器电路设计原理图详解)话筒放大器简称“话放”,是对话筒输入的信号进行放大的设备。

话放的全称是:话筒专用“前置”放大器,现在很多高档话放采用“电子管”放大,目的是要得到“电子管”的柔美韵味。

其实话放不仅仅是“功率放大”的单纯功能,很多还包含参量均衡、压缩器、幻向供电等等功能,特别是压缩器和参量均衡器。

很多话放设备还拥有高采集率的A/D模数转换器,将话筒的模拟信号转换成数字音频信号,输出AES等等数字音频格式。

话筒放大器的基本组成结构为压限器、均衡效果器、扑声消除器、嘶声消除器、噪声门等。

无论我们把话筒插在调音台上,声卡上,或是卡拉OK机上,这些设备都有一个(或多个)话放,那么,还有一种是独立工作的话放,他只负责把话筒信号放大并且进行一些必要的处理,然后变成线路输出信号再输出出去。

话筒放大器电路图设计(一)原理图如下图所示,采用MC2830形成语音电路。

传统的语音电路无法区分语音和噪声的输入信号。

在嘈杂的环境,往往是开关引起的噪音,为了克服这一弱点。

语音电路一级以上的噪声,这样做是利用不同的语音和噪声波形。

语音波形通常有广泛的变化幅度,而噪音波形更稳定。

语音激活取决于R6。

语音激活的敏感性降低,如果R6变化14K到7.0k,从3分贝到8分贝以上的噪音。

话筒放大器电路图设计(二)巧用NE5532作平衡输入话筒放大器电路图一般单端不平衡输入话筒放大器,无论指标做得多高,都无法抑制话筒引入的共模干扰信号,使信噪比受到局限。

这里介绍的采用NE5532高速运算放大器制作的平衡输入话筒放大器则无此缺点,信噪比可以做得很高,能满足专业级的要求,且电路简单,制作方便。

平衡输入话筒放大器的电路见下图所示。

电路核心为3只运算放大器,实际只要用两块运算放大器,还多出1只运放可移作它用,如作音调控制,或再添一块运算放大器组成两路平衡输人话筒放大器。

电路原理:由Cannon(卡依)插座平衡输入的话筒信号经Rl-R4组成的阻抗匹配和抗射频干扰网络后分别进入两只远放的同相输入端进行放大,R5-R7决定两只运放的增益(约为34dB)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低噪话筒麦克风放大电路设计
本电路的设计是采用低噪三极管9014作为电容式话筒麦克风信号放大20倍左右,可推动耳机、一般功放、低音炮等。

本电路设计的最大特点是
1、有效的抑制呼啸声的产生(实验结果喇叭和话筒距离小于0.5m时才会产生轻微的呼啸声);
2、输出频率限制在300~4000Hz之间,完全满足人声输入的要求,是通过无源带通滤波器实现,同时可以大大抑制呼啸声。

电路图如下:
①②③④⑤⑥分析:
①声电转换部分:该电路是采用电容式话筒(老式录音机里或者普通的耳麦)所以我们必须给他一个电压才可以正常工作,我们引入图中的R1就是这个偏置电阻,电阻越小话筒的灵敏度越高。

②信号放大部分:采用低噪的三极管9014,由集电极电阻R2和反馈电阻R3的大小决定其放大倍数,这里的放大倍数大约是20倍。

话筒的小信号经过耦合电容C1到三极管基极,耦合电容的容量可取
0.1u~2.2u;放大后信号输出经过一个隔直耦合电容C2,因为三极管的集电极输出一般都是带有直流电压的,因此必须加隔直耦合电容可取1u~10u的容量。

③抑制呼啸声部分:常常我们拿着话筒对准喇叭,会产生非常刺耳的呼啸声,通过正反接二极管到地可有效的抑制呼啸信号的输出。

④音量大小调节部分:通过滑动变阻器输出信号的大小。

⑤带通滤波部分:本电路是采用人声的标准频率300Hz~5kHz,完全接近人声,同时可以有效的消除呼啸声。

C6和R6决定低频的大小,C3和R5是决定高频的大小,截止频率计算:1/2πRC 。

⑥话筒麦克风放大输出接口
仿真曲线分析如下:。

相关文档
最新文档