低噪声放大器设计

合集下载

低噪声放大器的设计

低噪声放大器的设计

低噪声放大器的设计参数:低噪声放大器的中心频率选为2.4GHz,通带为8MHz通带内增益达到11.5dB,波纹小于0.7dB通带内的噪声系数小于3通带内绝对稳定通带内输入驻波比小于1.5通带内的输出驻波比小于2系统特性阻抗为50欧姆微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤:1.打开工程,命名为dzsamplifier。

2.新建设计,命名为dzsamplifier。

设置框如下:点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。

3.在ADS元件库中选取晶体管。

单击原理图工具栏中的,打开元件库,然后单击,在搜索“32011”。

其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。

以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。

4.按照下图进行连接5.将参数扫描控制器中的【Start】项修改为Start=0.6.点击进行仿真,仿真结束后,数据显示窗自动弹出。

如下图:7.晶体管S参数扫描。

(1)重新新建一个新的原理图S_Params,进行S参数扫描。

如下图:点击OK后,出现:(2)在ADS元件库中选取晶体管。

单击原理图工具栏中的,打开元件库,然后单击,在搜索“32011”。

此处选择sp 开头的。

(3)以如图的形式连接。

(4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。

数据如下图所示:(6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图执行后:注意:晶体管参数指标如下:1.晶体管sp_hp_AT32011_5_1995105的频率范围为0.1GHz-5.1GHz,满足技术指标。

2.通带内噪声系数满足技术指标。

3.通带内增益不满足技术指标。

4.通带内输入驻波比不满足技术指标。

5.通带内输出驻波比不满足技术指标。

结论如下:1.频率范围和噪声系数满足技术指标,可以选取该晶体管。

《低噪声放大器设计》课件

《低噪声放大器设计》课件
线性化和稳定化技巧
采用线性化和稳定化技术,提高放 大器的线性度和稳定性。
低噪声放大器设计的案例分析
我们将分享几个具体的低噪声放大器设计案例,包括设计过程、技术方案和 实际效果分析,帮助您更好地理解和应用低噪声放大器设计。
结语
低噪声放大器设计是通信系统中重要的一环,通过深入研究和应用设计原理 和技巧,我们可以提高系统的性能和可靠性。感谢您的聆听!
《低噪声放大器设计》 PPT课件
噪声放大器设计是通信系统中关键的组成部分,为了提高系统的性能和可靠 性,我们需要深入了解低噪声放大器的设计原理和应用。本课件将介绍低噪 声放大器的基本概念、设计技巧和应用案例。
什么是低噪声放大ห้องสมุดไป่ตู้?
低噪声放大器是一种具有较高信号放大增益且噪声水平较低的放大器。它主 要用于在信号链的前端进行信号放大,从而提升整个系统的信噪比和灵敏度。
低噪声放大器具有宽 频带特性,适用于不 同频段的信号处理。
低噪声放大器的常见应用
无线通信
低噪声放大器在接收机和发射机中广泛应 用,提高通信质量和覆盖范围。
医疗设备
低噪声放大器在医学检测和成像设备中起 到关键作用,提高信号质量和可靠性。
传感器系统
低噪声放大器用于信号采集和处理,提高 传感器系统的灵敏度和精度。
卫星通信
低噪声放大器用于卫星通信系统,提供可 靠的信号接收和转发功能。
如何设计低噪声放大器?
1
放大器电路的优化设计
2
利用合适的电路结构和元件参数,
优化放大器的性能和噪声系数。
3
调试和测试技巧
4
合理调试和测试放大器的工作状态, 确保其性能和可靠性。
前端设计
选择合适的前端元件和电路拓扑, 降低系统的噪声输入。

低噪声放大器设计

低噪声放大器设计

低噪声放大器设计随着电子技术的不断发展,低噪声放大器(Low Noise Amplifier,简称LNA)在无线通信和微波领域的重要性不断提升。

低噪声放大器的主要作用是在前置放大器中放大微弱信号,同时将噪声压制到最小,以保证整个系统的性能。

低噪声放大器的噪声系数是衡量其性能的重要指标,通常用dB比值或者分贝数来表示,简称Nf。

低噪声放大器的设计要确保Nf足够低,才能在微弱信号中产生足够的增益且不引入过多的噪声。

因此,低噪声放大器的设计非常重要。

一、低噪声放大器设计的挑战在设计低噪声放大器时,需要面临几个挑战。

第一,如何处理噪声。

在放大器中,噪声来自于电阻、晶体管的温度、元器件的起伏等因素,噪声在传输信号时会被放大。

因此,设计低噪声放大器需要充分考虑噪声的来源,并采取合适的抑制措施,以保证系统的高效运作。

第二,如何改善热噪声。

热噪声是低噪声放大器中一个常见的问题,是由器件本身热引起的噪声。

为了减小热噪声,需要减小器件的温度,采用低噪声晶体管等高品质元器件来代替常规器件,并减小元器件之间的串扰。

第三,如何平衡增益和噪声。

低噪声放大器需要在增益和噪声之间进行权衡,在增益和噪声之间找到平衡点。

增加放大器的增益会对噪声产生影响,因此需要采用低失真、高效率的放大器设计来保证放大器的性能。

二、低噪声放大器的设计要点低噪声放大器的设计要点主要包括器件选择、电路结构、滤波器和匹配等。

器件选择是设计低噪声放大器时非常关键的一个方面,选择适当的低噪声、低电荷、高频率的晶体管材料,能提高系统的性能,也能减小噪声系数。

电路结构是设计低噪声放大器时的另外一个重要方面。

直接耦合放大器和共源放大器是常见的电路结构,其中直接耦合放大器简单、稳定,但增益和噪声系数会受到限制。

而共源放大器的增益和噪声系数的选择范围更大,但也更过程更为复杂。

此外,混频器的阻抗匹配和反馈网络设计也是设计低噪声放大器的重要方面。

滤波器也是设计低噪声放大器时需要重点考虑的方面之一。

低噪声放大器设计流程

低噪声放大器设计流程

低噪声放大器设计流程低噪声放大器可是个很有趣的东西呢,那咱就来说说它的设计流程吧。

一、确定需求。

咱得先搞清楚这个低噪声放大器要用在啥地方呀。

是在无线电通信里呢,还是在其他的一些电子设备里。

不同的用途对它的要求可不一样哦。

比如说,如果是用在收音机这种接收微弱信号的设备里,那对噪声的要求就特别严格,因为一点点噪声可能就会让我们听到的广播全是杂音。

这就像是你在一个很安静的图书馆里,哪怕一点点小动静都会很烦人一样。

所以这时候我们就要明确,这个放大器要把信号放大多少倍,能允许的最大噪声是多少,工作的频率范围是多少之类的基本要求。

二、选择晶体管。

晶体管可是低噪声放大器的核心部件呢。

这就像挑演员一样,要挑个合适的。

我们要找那种本身噪声就比较小的晶体管。

一般来说,场效应晶体管(FET)在这方面就比较有优势。

不过呢,也不是所有的FET都好,我们还得看它的其他参数,像增益呀,输入输出阻抗呀之类的。

就好比你选演员,不能只看颜值,演技也很重要对吧。

在这个过程中,我们可能要在各种晶体管的数据手册里翻来翻去,对比它们的各种参数,就像在购物网站上挑东西一样,得精挑细选。

三、电路拓扑结构。

这一步就像是给我们的放大器设计一个房子的框架。

有好几种常见的拓扑结构可以选择呢,像共源极、共栅极、共漏极这些。

每一种都有它的优缺点。

共源极结构比较简单,而且增益比较高,但是输入输出的隔离度可能不是很好。

共栅极结构呢,在高频的时候表现比较好,输入输出的隔离度也不错,不过增益相对来说会低一点。

这就需要我们根据之前确定的需求来选择最合适的结构。

这就像你盖房子,要根据自己的居住需求和预算来选择是盖个小平房还是小洋楼一样。

四、计算元件参数。

选好了晶体管和拓扑结构,接下来就要计算电路里各个元件的参数啦。

比如说电阻、电容的值。

这可不是随便乱猜的哦。

我们要根据一些电路理论知识,像欧姆定律、基尔霍夫定律之类的来计算。

这个过程可能会有点复杂,就像做一道超级难的数学题一样。

低噪声放大器的设计

低噪声放大器的设计

一种900MHz频段低噪声放大器设计方法及测试结果本文介绍一种低噪声放大器的设计方法,对初学者可能有一定的借鉴作用。

关键词: LNA:低噪声放大器 IL:插入损耗ACPR:邻道功率比值 IM3:三阶交调EESOF\TOUCHSTN:八十年代流行的HP公司的小型微波软件一、任务的来源:受外单位的委托,要求设计一种低噪声放大器,具体要求如下:1.频率范围:820-960MHz2.增益:G≥45dB3.噪声系数:Nf≤1.54.带内平坦度:≤±0.2dB5.线性功率:P-1≥15dBm6.电调衰减:Att= 31dB (5bit)二、设计框架:1.放大器级数的考虑:由于常见器件有效实际增益为11~17dB,故此,3-4级方可满足增益要求。

经对比分析我们确定了以下方案:第一级:A TF10136 Nf=0.4dB G=13.5dB OIP3=18dBm第二级:MSA1105 Nf=4.1dB G=10.5 dB OIP3=25dBm第三级:SGA6586 Nf=2.6dB G=23.8dB OIP3=33dBm在第二级与第三级之间插入数字电调衰减器,其数字电调衰减器的最小IL为1.8dB,所以,总增益约为46dB。

2.噪声系数的计算:一个放大器的噪声系数主要取决于第一、二级放大管的Nf及Gain,见以下公式:NFs=NF1+(NF2-1)/G1+(NF3-1)/(G1G2)+……(NFn-1)/(G1G2…Gn-1) 式中:NFn为第n级器件的噪声系数Gn-1为第n-1级器件的增益基于产品批量生产的一致性考虑,经HP的EESOF\TOUCHSTN编程计算,将第一级FET优化设计成:Nf=0.85dB Gain=13.5dB,经以上公式计算得出噪声系数理论值为1.1dB,满足指标要求。

3.线性功率考虑:线性功率小,交调指标差,它将最终影响功放的ACPR 值和IM3;但是,过分地要求加大P-1,将增加电流消耗,降低了设备的可靠度,同时提高了造价,综合考虑诸多因素,SGA6586比较合适。

ADS设计低噪声放大器详细步骤

ADS设计低噪声放大器详细步骤

ADS设计低噪声放大器详细步骤低噪声放大器(Low Noise Amplifier,LNA)是无线通信系统中一个重要的组成部分,其功能是将接收到的微弱信号放大,以便后续的处理和解调。

设计低噪声放大器需要考虑多个因素,包括噪声系数、增益、带宽、稳定性等。

下面是一个详细的设计步骤,用于设计低噪声放大器。

1.确定设计规格:a.确定工作频率范围:通常情况下,设计LNA需要确定工作频率的范围,以便选择合适的器件和电路结构。

b.确定增益和噪声系数要求:根据系统需求,确定LNA的增益和噪声系数的要求。

一般来说,增益越高,噪声系数越低,但二者之间存在一定的折衷关系。

2.选择器件:根据设计规格,选择适当的射频器件。

常见的射频器件包括双极性晶体管(BJT),高电子迁移率晶体管(HEMT),甲乙基氮化镓场效应晶体管(GaAsFET)等。

3.确定电路结构:根据选择的器件和设计规格,确定LNA的电路结构。

常见的LNA电路结构包括共源极结构、共栅极结构和共基极结构。

根据不同的结构,可以实现不同的增益和噪声系数。

4.进行器件参数提取:使用器件模型,从所选器件中提取器件的S参数(散射参数)、Y参数(混合参数)等。

这些参数将在后续的仿真和优化中使用。

5.进行电路仿真:使用电路仿真软件(如ADS,Spectre等),根据设计的电路结构和选取的器件参数,进行电路的仿真。

可以通过改变电路参数和器件参数,来优化电路的性能。

6.进行电路优化:在仿真过程中,可以进行电路参数的优化。

优化的目标可以是噪声系数、增益、带宽等。

通过反复地优化,寻找最佳的电路参数。

7.器件布局和仿真:根据优化后的电路参数,进行射频电路的布局设计。

布局需要考虑信号和功率的传输、射频电感和电容的布线、射频耦合以及射频接地等因素。

8.器件特性提取:根据布局后的射频电路,提取各个节点的特性参数,如增益、输入输出阻抗、稳定性等。

9.进行电路仿真验证:使用仿真软件进行电路的验证,比较仿真结果与设计目标的一致性。

《低噪声放大器设计》课件

《低噪声放大器设计》课件
详细描述
低噪声放大器(LNA)是一种专门设计的电子器件,主要用于接收微弱信号并 进行放大。在无线通信、雷达、电子战等领域中,低噪声放大器被广泛应用于 提高信号的信噪比,从而提高接收系统的灵敏度和性能。
低噪声放大器的性能指标
总结词
低噪声放大器的性能指标主要包括增益、噪声系数、线性度等。
详细描述
增益是低噪声放大器的重要指标,表示放大器对输入信号的放大倍数。噪声系数是衡量低噪声放大器性能的重要 参数,表示信号在放大过程中引入的噪声量。线性度则表示放大器在放大信号时保持信号不失真的能力。
采取电磁屏蔽、滤波等措施, 减小外部噪声对放大器性能的 影响。
降低闪烁噪声
采用适当的偏置条件和频率补 偿,降低闪烁噪声的影响。
03
CATALOGUE
低噪声放大器的电路设计
晶体管的选择
总结词
晶体管的选择是低噪声放大器设计的关 键,需要考虑其噪声性能、增益、稳定 性等参数。
VS
详细描述
在选择晶体管时,需要考虑其噪声性能, 通常选用低噪声晶体管以减小放大器的噪 声。同时,需要考虑晶体管的增益,以保 证放大器能够提供足够的增益。此外,稳 定性也是需要考虑的一个重要参数,以确 保放大器在工作时不会发生振荡或失真。
匹配网络的设计
总结词
匹配网络的设计对于低噪声放大器的性能至 关重要,其主要作用是减小信号反射和减小 噪声。
详细描述
匹配网络是低噪声放大器中不可或缺的一部 分,其主要作用是减小信号反射和减小噪声 。设计时需要考虑阻抗匹配和噪声匹配,以 使信号尽可能少地反射回源端,同时减小放 大器的噪声。常用的匹配网络有LC匹配网络 、微带线匹配网络等。
《低噪声放大器设 计》ppt课件
目 录

低噪声放大器的设计与实现

低噪声放大器的设计与实现

低噪声放大器的设计与实现低噪声放大器是一种特殊的放大器,它主要用于在频率范围内放大微小信号,且尽可能地减小噪声干扰。

在现代电子通信、无线网络、雷达等领域都有广泛的应用。

本文将介绍低噪声放大器的设计与实现,同时探讨一些常见的优化方法。

一、低噪声放大器的设计基本原理低噪声放大器的实现需要满足多个条件,如宽带、低噪声、高增益、稳定性等,这些条件相互制约,需要在设计时进行平衡考虑。

首先,低噪声放大器需要使用低噪声信号源作为输入,这样才能尽可能减少噪声产生的影响。

其次,为了达到高增益的要求,可以使用多级放大器来实现。

不过,每一级放大器都会引入一些噪声,因此需要对每一级放大器进行优化,以达到低噪声的目标。

低噪声放大器的设计还要满足传输线和匹配网络的要求。

传输线的设计需要尽可能减少传输线的损耗和噪声,同时匹配网络的设计则需要将输出端的负载和输入端的驱动电路匹配,以保证信号传输的最大功率。

二、低噪声放大器的实现方法低噪声放大器的实现方法有很多种,这里我们介绍一种常用的方法:差分放大器。

差分放大器是一种基于差分放大器电路结构而形成的放大器,它有两个输入,每个输入通过独立放大的电路,输出相减。

差分放大器可以通过噪声消除的方式减少输入信号中的噪声干扰,同时也可以增加信号的线性范围和热稳定性。

差分放大器的实现需要使用两个宽带放大器,一个用于正向增益,一个用于反转增益。

为了保证放大器的相位稳定性和增益平衡,需要使用一些调节网络和补偿电路。

其中,调节网络可以在信号到达输入端时调整放大器的增益,从而保证放大器的线性度。

而补偿电路则可以减少放大器中信号反馈的影响,提高放大器的稳定性。

三、低噪声放大器的优化方法在低噪声放大器的设计中,需要综合考虑多种因素,如噪声、增益、速度、频率响应等。

针对这些因素,有几种常用的优化方法可以帮助提高低噪声放大器的性能。

1. 选择适当的放大器器件放大器的选型是影响低噪声放大器性能的重要因素。

选择合适的放大器器件可以大大提高低噪声放大器的增益和灵敏度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低噪声放大器设计
线性仿真
内容说明
设计一个低噪声放大器(LNA) 元件特性测试 稳态电路调节 输入、输出匹配电路调节 LNA总电路特性测试
技术指标
工作频率:5GHz 增益:>10dB 噪声系数:<1.2dB 稳定性:无特别要求
器件测试
创建原理图,命名为Device 在元件库选择器件,富士FHX35LG,则自动
-0.2 -0.4
-0.6 -0.8 -1.0
-2.0
Swp Min 0.1GHz
测量增益参数
创建图表:Two Port Gain,测S21、MSG 重设频率坐标:取消Auto,设起始值为0
40 30 20 10
0 0
Two Port Gain
DB(|S[2,1]|) Device
DB(MSG) Device
1
3
RES ID=R2 R=300 Ohm
TLIN ID=TL1 Z0=75.4 Ohm EL=90 Deg F0=5 GHz
PORT P=1
Z=50 Ohm
RES ID=R3 R=20 Ohm
RES ID=R1 R=450 Ohm
PORT P=2 Z=50 Ohm
CAP ID=C1
C=100 pF
S[1,1] Stable Device
Swp Max 20GHz
3.0 4.0 5.0
10.0
-3.0 -4.0 -5.0
-10.0
-0.2 -0.4
-0.6 -0.8 -1.0
-2.0
Swp Min 0.1GHz
9 8 7 6 5 4 3 2 1 0 -1
0
Stability Data
B1 Stable Device K Stable Device
-2.0
Swp Min 0.1GHz
0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 10.0
0.2 0.4
0.6 0.8 1.0
2.0
Outport Port
Swp Max 20GHz
S[2,2] 3.0 Device 4.0
5.0
10.0
-3.0 -4.0 -5.0
-10.0
PORT P=1 Z=50 Ohm
CAP ID=C1 C=100 pF
IND ID=L1 L=2.5 nH
PORT P=2 Z=50 Ohm
IND ID=L2 L=4.37 nH
L1、 L2 为可调受限变量,设置如下:
说明: 元件属性设置与变量 调节器是相互对应的。
调节L1、L2 ,在噪声、增益、匹配之间 找个平衡点
5
10
15
20
Frequency (GHz)
工作点,5GHz
10 9 8 7 6 5 4 3 2 1 0 0
Two Port Noise Parameters
DB(NF) Stable Device DB(NFMin) Stable Device
5
10
15
20
Frequency (GHz)
圆图测量
改变接地点类型:
SUBCKT ID=S1
NET="FHX35LG"
1
2
3
说明:双击打开元件 属性对话窗。
重设符号,选择FET类型: 说明:此时仅显示3节 点的元件符号。
添加端口
PORT P=1 Z=50 Ohm
1
PORT P=2 Z=50 Ohm
2
SUBCKT ID=S1 NET=FHX35LG
增益圆
-0.6 -0.8 -1.0
-2.0
0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 10.0
0.2 0.4
0.6 0.8 1.0
2.0
Input Port Of Device
NFCIR[2,0.5] Stable Device GAC_MAX[1,2] Stable Device S[2,2] Input Matching Circuit
3
设置频率
0.1GHz~20GHz,步长0.1GHz:
说明:必须要点击Apply 才能设定好频率。
查看元件数据
在晶体管符号上点右键,选open subcircuit, 可查看线性s参数、噪声数据等
说明:参数都是可以编辑的,注意!
测量端口参数S11、S22
创建图表:Input port,Output port
0.2 0.4
0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 10.0
0.6 0.8 1.0
2.0
Input Port
S[1,1] Device
Swp Max 20GHz
3.0 4.0 5.0
10.0
-3.0 -4.0 -5.0
-10.0
-0.2 -0.4
-0.6 -0.8 -1.0
RES ID=R3 R=20 Ohm
PORT P=2 Z=50 Ohm RES ID=R1 R=450 Ohm
说明: R1、R2、R3为 可调电阻。
调节结果
0.2 0.4
0 0.2 0.4 0.6 0.8 1.0 2.0 3.0 4.0 5.0 10.0
0.6 0.8 1.0
2.0
Input Port
测量噪声系数圆NFCIR,稳定性圆SCIR1,测 量类型为circle。
潜在不稳定区
Input Port
Swp Max 20GHz
NFCIR[1,0.45] Stable Device
SCIR1 Stable Device
Swp Min 0.2GHz
说明:可重设频点的范围、步 长,以减少显示的曲线数。
DB(NFMin) Device
5
10
15
20
Frequency (GHz)
测量噪声参数
创建图表:Two Port Noise Parameters,测 K、B1,测量类型为linear
在K参数曲线上标注出K=1的频点
1.5
1
0.5
说明: 不要选dBs
单位。
0
0
Stability Data
11.763 GHz 1
B1 Device
K Device
5
)
创建稳态电路
创建原理图:Stable Device,调节
PORT P=1 Z=50 Ohm
SUBCKT ID=S1
NET="FHX35LG" 2
1
3
RES ID=R2 R=300 Ohm
TLIN ID=TL1 Z0=75.4 Ohm EL=90 Deg F0=5 GHz
DB(|S[2,2]|) Amplifier
5
10
15
20
Frequency (GHz)
Noise
10
9
DB(NF)
8
Amplifier
7
6
5
4
3
2
1
0
0
5
10
15
20
Frequency (GHz)
Done!
IND ID=L1
L=2.18 nH
PORT P=2
Z=50 Ohm
PORT P=1 Z=50 Ohm
CAP ID=C1 C=100 pF
LNA总电路
PORT P=1 Z=50 Ohm
1
SUBCKT ID=S1
NET=Stable Device
21
21
PORT P=2 Z=50 Ohm
2
SUBCKT ID=S2
5
10
15
20
Frequency (GHz)
测量噪声参数
创建图表:Two Port Noise Parameters,测 NF、NFmin,测量类型为noise
重设频率坐标:设起始值为0
3 2.5
2 1.5
1 0.5
0 0
Two Port Noise Parameters
DB(NF) Device
SUBCKT ID=S1
NET="FHX35LG" 2
1
3
RES ID=R3 R=20 Ohm
PORT P=2 Z=50 Ohm
RES ID=R1 R=450 Ohm
PORT P=2
Z=50 Ohm
RES ID=R2 R=300 Ohm
TLIN ID=TL1 Z0=75.4 Ohm EL=90 Deg F0=5 GHz
-0.2
-0.4
-3.0 -4.0 -5.0
-10.0
Swp Max 5GHz
3.0 4.0 5.0 10.0
Swp Min 5GHz
噪声圆
输出匹配
添加输出匹配电路:Output matching circuit, 调节使得增益值最大。
PORT P=1
Z=50 Ohm
CAP ID=C1
C=100 pF
输入匹配
添加输入匹配电路:Input matching circuit,
频率设为5GHz
SUBCKT ID=S2
NET=Input Matching Circuit
PORT P=1
Z=50 Ohm
SUBCKT ID=S1
NET=Stable Device
1
21
2
PORT P=1 Z=50 Ohm
NET=Input Matching Circuit
相关文档
最新文档