钢筋混凝土受弯构件正截面承载力计算课件

合集下载

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算

第三章钢筋混凝土受弯构件正截面承载力计算受弯构件(bendingmember)是指截面上通常有弯矩和剪力共同作用而轴力可以忽视不计的构件。

钢筋混凝土受弯构件的主要形式是板(Slab)和梁(beam),它们是组成工程结构的基本构件,在桥梁工程中应用很广。

在荷载作用下,受弯构件的截面将承受弯矩M和V的作用。

因此设计受弯构件时,一般应满意下列两方面的要求:(1)由于弯矩M的作用,构件可能沿弯矩最大的截面发生破坏,当受弯构件沿弯矩最大的截面发生破坏时,破坏截面与构件轴线垂直,称为正截面破坏。

故需进行正截面承载力计算。

(2)由于弯矩M和剪力V的共同作用,构件可能沿剪力最大或弯矩和努力都较大的截面破坏,破坏截面与构件的轴线斜交,称为沿斜截面破坏,故需进行斜截面承载力计算。

为了保证梁正截面具有足够的承载力,在设计时除了适当的选用材料和截面尺寸外,必需在梁的受拉区配置足够数量的纵向钢筋,以承受因弯矩作用而产生的拉力;为了防止梁的斜截面破坏,必需在梁中设置肯定数量的箍筋和弯起钢筋,以承受由于剪力作用而产生的拉力。

第一节受弯构件的截面形式与构造一、钢筋混凝土板的构造板是在两个方向上(长、宽)尺度很大,而在另一方向上(厚度)尺寸相对较小的构件。

钢筋混凝土板可分为整体现浇板和预制板。

在施工场地现场搭支架、立模板、配置钢筋,然后就地浇筑混凝土的板称为整体现浇板。

通常这种板的截面宽度较大,在计算中常取单位宽度的矩形截面进行计算。

预制板是在预制厂和施工场地现场预先制好的板,板宽度一般掌握在Inl左右,由于施工条件好,预制板不仅能采纳矩形实心板,还能采纳矩形空心板,以减轻板的自重。

板的厚度h由截面上的最大弯矩和板的刚度要求打算,但是为了保证施工质量及耐久性的要求,《大路桥规》规定了各种板的最小厚度;行车道板厚度不小于IOOmm人行道板厚度,就地浇注的混凝土板不宜小于80mm,预制不宜小于60mm。

空心板桥的顶板和底板厚度,均不宜小于80mm。

第3章钢筋混凝土受弯构件正截面承载力

第3章钢筋混凝土受弯构件正截面承载力

b b
钢筋级别
不超筋 超筋
b
≤C50 C80
HPB300
HRB335 HRB400 RRB400
0.576
0.550
0.518
0.493
0.518
0.429
2.适筋与少筋的界限——截面最小配筋率
min
min 不少筋 min 少筋
附表9
min
ft max(0.45 ,0.2%) fy
第3章 钢筋混凝土受弯构件正截面承载力
3.1 3.2 3.3 3.4 3.5 3.6
概述 受弯构件正截面受力性能试验 受弯构件正截面承载力计算的基本原则 单筋矩形截面受弯构件正截面承载力计算 双筋矩形截面受弯构件正截面承载力计算 T形截面受弯构件正截面承载力计算
3.1 概述
截面上有弯矩和剪力共同作用,轴力可以忽略不计的构件称为 受弯构件。梁和板是典型的受弯构件 。 一是由M引起,破坏截面与构件的纵轴线垂直,为沿正截面破 坏; 二是由M和V共同引起,破坏截面是倾斜的,为沿斜截面破坏。
特征:受压区混凝土被压碎 破坏时,钢筋尚未屈服。 属于:“脆性破坏”
③ 少筋破坏
配筋率小于最小配筋率 的梁为少筋梁。 ρ<ρmin
特征:一裂就坏 属于:“脆性破坏”
3.3 受弯构件正截面承载力计算的基本原则
3.3.1 正截面受弯承载力计算的几个基本假定
①平截面假定 构件正截面弯曲变形后仍保持一平面,即截面 上的应变沿梁高度为线性分布,基本上符合平截面假定。 ②不考虑截面受拉区混凝土的抗拉强度 认为拉力完全由钢筋 承担。因为混凝土开裂后所承受的拉力很小,且作用点又靠近中 和轴,对截面所产生的抗弯力矩很小,所以忽略其抗拉强度。

第三讲受弯构件正截面承载力计算精选全文

第三讲受弯构件正截面承载力计算精选全文

Mu
1.0
砼退出工作,拉力主要由钢筋 承担,单钢筋未屈服;
b. 受压区砼已有塑性变形,但 不充分;
c. 弯距-曲率关系为曲线,曲
0.8 My
0.6
0.4
II
M cr
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
率与挠度增长加快。
(三)屈服阶段(钢筋屈服至破坏): 纵向受力钢筋屈服后,截面曲率
和梁的挠度也突然增大,裂缝宽度随 My 之扩展并沿梁高向上延伸,中和轴继 续上移,受压区高度进一步减小。弯 矩再增大直至极限弯矩实验值Mu时, 称为第Ⅲ阶段(Ⅲa)。
截面每排受力钢筋最好相同,不同时,直径差≥2mm,但 不超过4~6mm。
钢筋根数至少≥2,一排钢筋宜用3~4根,两排5~8根。 钢筋间的距离: ≥d,且≥30mm、且≥1.25倍最大骨料粒径。 自下而上布置钢筋,且要求上下对齐。
五.板内钢筋的直径和间距
❖钢筋直径通常为6~12mm;
板厚度较大时,直径可用16~25mm,特殊的用32、36mm ; 同一板中钢筋直径宜相差2mm以上,以便识别。
第二节 试验研究与分析
一、适筋受弯构件正截面的受力过程
1.梁的布置及特点 通常采用两点对称集中加荷,加载点位于梁跨度的
1/3处,如下图所示。这样,在两个对称集中荷载间的区 段(称“纯弯段”)上,不仅可以基本上排除剪力的影响 (忽略自重),同时也有利于在这一较长的区段上(L/3)布 置仪表,以观察粱受荷后变形和裂缝出现与开展的情况。 在“纯弯段”内,沿梁高两侧布置多排测点,用仪表量 测梁的纵向变形。
前无明显预兆,属脆性破坏。
第3种破坏情况——少筋破坏
配筋量过少: 拉区砼一出现裂缝,钢筋很快达到屈服,可能经

精华混凝土结构的受弯构件正截面承载力计算

精华混凝土结构的受弯构件正截面承载力计算

Mu Mu,max s,max 1 fcbh02
(这种情况在施工质量出现问题,混凝土没有达到设计强度 (3)时当会As产<r生m。inb)h时,不能使用,应采取措施(加固等)。
第四章 受弯构件正截面承载力 4、公式应用之二---截面设计
已知:弯矩设计值M 求:截面尺寸b、h(h0);截面配筋As;以及材料强度fy、fc 未知数:受压区高度x、 b、h(h0)、As、fy、fc 基本公式:两个
单筋部分
x 2
)
+
f y As f y As2 M f y As (h0 a)
纯钢筋部分
▲ As’(受压钢筋)与As2(纯钢筋部分的受拉钢筋)组成 的“纯钢筋截面”的受弯承载力与混凝土无关;
▲截面破坏形态不受As2配筋量的影响,理论上这部分配 筋可以很大,如形成钢骨混凝土构件。
第四章 受弯构件正截面承载力
CC=1fcbx
T=fyAS
(2)计算公式
X 0 M 0
1 fcbx f yAs f y As
M
Mu
1
fcbx(h0
x) 2
f yAs(h0
a)
第四章 受弯构件正截面承载力
6、双筋梁计算简图和计算公式的分解 (1)计算简图的分解
As
As
As
As1
As2
fy'As'
fy'As'
M
1fcbx
简支梁:h=(1/10 ~ 1/16)L,b=(1/2~1/3)h ; 简支板:h = (1/30 ~ 1/35)L 。 (c)按经济配筋率估计截面尺寸。 (根据工程经验,截面尺寸的选择范围较大,为此需从经济角度进 一步分析)
第四章 受弯构件正截面承载力 ▲配筋率与总造价的关系曲线(了解)

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
在实际工程中要做到经济合理,梁的截面
配筋率要比b 低一些。
4.2.1 正截面受弯的三个受力阶段
试验方法
荷载分配梁
试验梁
P
外加荷载
数据采集系统
应变计
位移计
L/3
L/3
L
h0
h
As
b
As
bh0
矩M/Mu~ af 关系曲线如图:
af
第一阶段 —— 截面开裂前阶段。 第二阶段 —— 从截面开裂到纵向受拉钢筋
屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
各阶段和各特征点的截面应力 — 应变分析:
cu
应变图
应力图 M
t u
Mcr
M
y
My
M
xc C
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=T IIIa
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
• 破坏前裂缝、变形有明显的发展, 有破坏征 兆, 属延性破坏
• 钢材和砼材料充分发挥
• 设计允许
4.2.2 正截面受弯的三种破坏

钢筋混凝土课件 第3章 正截面受弯

钢筋混凝土课件 第3章 正截面受弯

3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 正截面的破坏特征 3. 超筋破坏 当梁的配筋率 比较大时,梁发生超筋破坏。 破坏特征: (1) 由于 比较大,受拉钢筋还没有屈服时,受压区混 凝土已经被压碎(其承载力较高)。 (2) 截面破坏时,没有明显预兆——脆性破坏。 (3) 梁发生超筋破坏时,混凝土被压碎,但钢筋强度未 充分利用,故在实际工程的设计中应予避免。 防止措施:主要是通过限制梁的最大配筋率 max或限 制梁的最大受压区高度。
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 2. 适筋梁的受力全过程 跨中截面在弯矩作用下,中和轴以上受压,简称“受 压区”,中和轴以下受拉,简称“受拉区”。 试验结果表明:适筋梁从开始加载到破坏,其正截面 的受力全过程分成三个阶段: (1) 第Ⅰ阶段——整体工作阶段:从开始加载到拉区混 凝土即将开裂;受力特 点为:压区应力由混凝 M M 土承担,拉区因混凝土 A A <f =f ( = ) 未开裂,由钢筋和混凝 应力分布 应变分布 应力分布(阶段末) 第一阶段跨中截面应变及应力分布 土共同承担拉力。
分布钢筋 受力钢筋
3.2 受弯构件正截面受力全过程及破坏特征 3.2.1 适筋梁受力破坏的全过程 1. 试验装置 ⑴ 反力支撑系统;
P
外加荷载
数据采 集系统
荷载分配梁
h0 h
⑵ 加载系统;
⑶ 量测系统; ⑷ 数据处理系统 。
试验梁
应变计
位移计
b
L/3 L L/3
As
As bh0
根据适筋梁的荷载试验,可测出梁从开始加载到破 坏整个受力过程中各测点的应变和梁的挠度变形,然后 根据各测点的应变和跨中变形,分析跨中截面的应力分 布规律。

第4章-钢筋混凝土受弯构件正截面承载力计算

第4章-钢筋混凝土受弯构件正截面承载力计算

第4章钢筋混凝土受弯构件正截面承载力计算本章学习要点:⏹了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;⏹掌握建筑工程中单筋矩形截面、双筋矩形截面和T形截面承载力的计算方法;⏹熟悉受弯构件正截面的构造要求。

受弯构件:同时受到弯矩M 和剪力V共同作用, 而轴力N可以忽略的构件。

p pl l lM plVp§4.1 概述•受弯构件截面类型:梁、板( a )( b )( c )( d )( e )( f )( g )现浇梁板形成T形截面和倒L形截面在弯矩作用下发生正截面受弯破坏;在弯矩和剪力共同作用下发生斜截面受剪或受弯破坏。

•本章要求掌握:单筋矩形截面、双筋矩形截面、单筋T形截面正截面承载力计算。

§4.2受弯构件正截面的受力特征4.2.1 配筋率对构件破坏特征的影响•截面配筋率纵向受力钢筋截面面积A s 与截面有效面积的百分比•构件的破坏特征取决于配筋率、混凝土强度等级、截面形式等因素,但以配筋率对构件破坏特征的影响最为明0s bh A =ρ(4-1)1. 少筋梁(脆性破坏):•一裂即断, 由砼的抗拉强度控制, 承载力很低。

•破坏很突然, 属脆性破坏。

•砼的抗压承载力未充分利用。

•设计不允许。

ρ< ρmin2. 适筋梁(塑性破坏):•破坏开始于受拉区钢筋屈服,屈服时,弯矩为My ,随后受压区混凝土压碎;•钢材、混凝土的强度都得到充分利用。

•ρmin ≤ρ≤ρmax •构件破坏前有明显预兆。

3. 超筋梁(脆性破坏):•开裂,裂缝多而细,钢筋应力不高,最终由于压区砼压碎而崩溃。

•裂缝、变形均不太明显,破坏具有脆性性质。

•钢材未充分发挥作用。

•设计不允许。

ρ>ρmax不同配筋率构件的破坏特征:⏹适筋破坏:⏹超筋破坏:⏹少筋破坏:⏹受弯构件的破坏形式取决于受拉钢筋与受压区混凝土相互抗衡的结果;⏹应避免将受弯构件设计成少筋构件和超筋构件,只允许设计成适筋构件;⏹通过控制配筋率或控制相对受压区高度等措施来设计适筋构件。

钢筋混凝土受弯构件正截面承载力PPT课件

钢筋混凝土受弯构件正截面承载力PPT课件
一是由M引起,破坏截面与构件的纵轴线垂直,为沿正截面破 坏; 二是由M和V共同引起,破坏截面是倾斜的,为沿斜截面破坏。
斜截面波坏
正截面波坏
图3-1受弯构.件破坏截面
2
3.1.1 受弯构件的截面形状与尺寸
(1)受弯构件的截面尺寸
梁的截面形式主要有矩形、T形、倒T形、L形、Ⅰ形、十 字形、花篮形等
板的截面形式一般为矩形、空心板、槽形板等
计算步骤如下:
①确定截面有效高度h0
②求受压区高度x,并判断梁的类型
x As f y 1 fcb
若As mibn h,且 xbh0 为适筋梁;
若x bh0 为超筋梁若 ;As minbh 为少筋梁。
③计算截面极限抵抗弯矩Mu
适筋梁 M uA sfyh 0x2
超筋梁 M u M u m , ax 1 fc b0 2b h (1 0 .5b )
.
7
(2)板内钢筋的布置
受力钢筋的直径 一般为6~12 mm。
钢筋间距:当板 厚≤150 mm时,不易大 于200mm;当板厚>150 mm时,不易大于1.5d且 不易大于250 mm。为了 保证施工质量,钢筋间 距也不宜小于70 mm。
.
8
分布钢筋的作用:
将板上荷载更有效地传递到受力钢筋上去, 防止因温度或混凝土收缩等原因沿跨度方向引起 裂缝;固定受力钢筋的正确位置。
① 适筋破坏
配置适量纵向受力钢筋的梁称为适筋梁。 ρmin≤ρ≦ρmax
特征:有明显的三个阶段
属于:“塑性破坏”
第Ⅰ阶段(未裂阶段) 加载→即将开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段)
屈服→压碎
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝土被压碎而引起,受拉区纵向受力钢筋不屈服,在破坏前虽 然也有一定的变形和裂缝预兆.但不象适筋破坏那样明显,而且 当混凝土压碎时,破坏在然发生,钢筋的强度得不到充分利用 ,破坏带有脆性性质(图3-7c)。
少筋破坏和超筋破坏都具有脆性性质破坏前无明显预兆. 破坏时将造成严重后果,材料的强度得不到充分利用.因此应避 免将受弯件设计成少筋构件和超筋构件,只允许设计成适筋构 件。在后面的讨论中,我们将所讨论的范围限制在适筋构件范 围以内,并且将通过控制配筋率或控制相对受压区高度等措施 使设计成为适筋构件。
下面通过图3-7所示承受两个对称集中荷载的矩形截面 简支梁说明配筋率对构件破坏特征的影响。
1.少筋破坏(ρ<ρmin),构件承载能力很低,只要其
一开裂,裂缝就急速开展.裂缝截面处的拉力全部由钢筋承 受 ,钢筋由于突然增大的应力而屈服.构件立即发生破坏(图 3-7a).这种破坏具有明显的脆性性质。
2. 适筋破坏( ρmin ≤ρ≤ρmax构件的破坏首先是由于受
当ε0≤ εc ≤ εcu时 σc=fc
(3-2) (3-3)
(3-4)
(3-5)
(3-6)
式中 σc——对应于混凝土应变εc时的混凝土压应力;
ε 0
——对应于混凝土压应力刚达到fc时的混凝土压应
变,当计算的ε0值小于0.002时,应取为0.002;
εcu——正截面处于非均匀受压时的混凝土极限压应变 ,当计算的εcu值大于0.0033时,应取为0.0033;
图3-8 梁在各受力阶段的应力、应变图 C-受压区合力;T-受拉区合力
试验同时表明,从开始加载到构件破坏的整 个受力过程中,变形前的平面,变形后仍保持平 面。
进行受弯构件截面受力工作阶段的分析,不 但可以使我们详细地了解截面受力的全过程,而 且为裂缝、变形以及承载力的计算提供了依据。 往后将会看到,截面抗裂验算是建立在第Ⅰa阶段 的基础之上,构件使用阶段的变形和裂缝宽度的 验算是建立在第阶Ⅱ段的事础之上,而截面的承 载力计算则是建立在第Ⅲa阶段的基础之上的。
截面受力达Ia阶段后,荷载只要稍许增加截面立即开裂,
截面上应力发生重分布,裂缝处混凝土不再承受拉应 力,钢筋的拉应力突然增大,受压区混凝土出现明显的塑性 变形,应力图形呈曲线(图3-8c)。这种受力阶段称为第Ⅱ阶段。
荷载继续增加,裂缝进一步开展,钢筋和混凝土的应力 不断增大。当荷载增加到某一数值时,受拉区纵向受力钢筋 开始屈服,钢筋应力达到其屈服强度(图3-8d)。这种特定的受 力状态称为Ⅱa阶段。
筋截面重心的距离为截面的有效高度
bh0——截面宽度与截面有效高度
的乘积为截面的有效面积(图3-6)。
ρ—— 构件的截面配筋率是指纵
向受力钢筋截面面积与截面有效面积
之比。即
As
bh0
(3-1)
构件的破坏特征取决于配筋率、混凝土的强度等级、 截面形式等诸多因素,但是以配筋率对构件破坏特征的影 响最为明显,试验表明随着配筋率改变,构件的破坏特征 发生质的变化。
钢筋混凝土结构学
第三章 钢筋混凝土受 弯 构件正截面承载力计算
第三章 钢筋混凝土受弯构件正截面承载力计算
§3.1 概述
一、受弯构件:指截 面上通常有弯矩和剪力共 同作用而轴力可以忽略不 计的构件(图3-1)。
梁和板是典型的受弯构 件。它们是土木工程中数 量最多、使用面最广的一 类构件。
二、常见的截面形式:建筑工程中受弯构件常用的 截面形状如图3-2所示。公路桥涵工程中受弯构件常用的 截面形状如图3-3所示。
3、第三阶段——破坏阶段
受拉区纵向受力钢筋屈服后,截面的承载力无明显的增 加,但塑性变形急速发展,裂缝迅速开展并向受压区延伸, 受压区面积减小,受压区混凝土压应力迅速增大,这是截面 受力的第Ⅲ阶段(图3-8e)。
在荷载几乎保持不变的情况下,裂缝进一步急剧开展, 受压区混凝土出现纵向裂缝,混凝土被完全压碎,截面发生 破坏(图3-8f),这种特定的受力状态称为第Ⅲa阶段。
3.2.2 适筋受弯构件截面受力的三阶段
试验证明,对于配筋量适中的受弯构件,从开始加载到正 截面完全破坏,截面的受力状态可以分为下面三个大的阶段
1. 第一阶段——未裂阶段 当荷载很小时,截面上应力与应变成正比,应力分布为直 线(图3-8a), 称为第I阶段。 当荷载不断增大时,受拉区混凝土出现塑性变形,受拉区 应力图形呈曲线。当荷载增大到某一数值时,受拉区边缘的混 凝土达其实际的抗拉强度和拉极限应变值、截面处在开裂前的 临界状态(图3-8b),这种受力状态称为第Ia阶段. 2. 第二阶段——从截面开裂到受拉区纵向受力钢筋开始屈 服的阶段
拉区纵向受力钢筋屈服.然后受压区混凝土被压碎,钢筋和 混凝土的强度都得到充分利用。这种破坏前有明显的塑性 变形和裂缝预兆.破坏不是突然发生的,呈塑性性质(图3-7b)。
界限破坏:适筋破坏的特例, 当ρ=ρmax时,当受拉钢筋
达到屈服强度的同时,受压区混凝土压碎。
3.超筋破坏(ρ>ρmax)构件的破坏是由于受压区的混

进行受弯构件设计时: 既要保证构件不得沿正截面发生破坏只要保证构件不
得沿斜截面发生破坏 ,因此要进行正截面承载能力和斜截面 承载能力计算。
§3.2 受弯构件正截面的受力特性
3.2.1 配筋率对构件破坏特征的影响
b——截面宽度,
h——截面高度,
As——纵向受力钢筋截面面积
As
h0——从受压边缘至纵向受力钢
肋形结构:当板与梁一起浇灌时(图3-4),板不但将其 上的荷载传递给梁,而且和梁一起构成T形或倒L形截面共 同承受荷载。
图3-4 现浇梁板结构的截面形状 三、受弯构件的破坏形式:
两种主要的破坏:①正截面破坏(一种沿弯矩最大 的截面破坏图3-5a);②斜截面破坏(一种沿剪力最大或弯
矩和剪力都较法
3.3.1 基本假定 建筑工程中在进行受弯构件正截面承载力计 算时,引人了如下几个基本假定; 1.截面应变保持平面; 2.不考虑混凝土的抗拉强度; 3.混凝土受压的应力一应变关系曲线按下列 规定取用(图3-9)。
当εc≤ ε0时 σc=fc[1-(1- εc/ ε 0)n]
相关文档
最新文档