专题12 压轴题 .doc

合集下载

【压轴题全揭秘(河南专版)】专题12 击破类比、探究类综合题利器之全等知识(原卷版)

【压轴题全揭秘(河南专版)】专题12 击破类比、探究类综合题利器之全等知识(原卷版)

专题12 击破类比、探究类综合题利器之全等知识模型一、A 字形(手拉手)及其旋转模型二、K 字型及其旋转【例1】(2021·济源一模)在菱形 ABCD 中,∠ABC =60°,点P 是射线BD 上一动点,以AP 为边向右侧作等边∠APE ,点 E 的位置随着点 P 的位置变化而变化.(1)探索发现如图1,当点E 在菱形ABCD 内部或边上时,连接CE .填空:BP 与CE 的数量关系是 ,CE 与 AD 的位置关系是.(2)归纳证明当点E 在菱形 ABCD 外部时,(1)中的结论是否还成立若成立,请予以证明;若不成立,请说明理由.(选择图2,图3中的一种情况予以证明或说理)(3)拓展应用如图4,当点P 在线段 BD 的延长线上时,连接BE ,若AB=,BE=请直接写出四边形 ADPE 的面积.图1 图2 图3 图4D【变式1-1】(2021·周口二模)在△ABC 中,∠ABC 为锐角,点M 为射线AB 上一动点,连接CM ,以点C 为直角顶点,以CM 为直角边在CM 右侧作等腰直角三角形CMN ,连接NB .(1)如图1,图2,若∠ABC 为等腰直角三角形,问题初现:∠当点M 为线段AB 上不与点A 重合的一个动点,则线段BN ,AM 之间的位置关系是_____________,数量关系是______________;深入探究:∠当点M 在线段AB 的延长线上时,判断线段BN ,AM 之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB ≠90°,若当点M 为线段AB 上不与点A 重合的一个动点,MP ∠CM 交线段BN 于点P ,且∠CBA =45°,BC=,当BM =_________时,BP 的最大值为__________.图1 图2图3图1CBAMNABC图2图3CBAMNP【例2】(2021·洛阳三模)在正方形ABCD中,动点E、F分别从D、C两点出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边CD上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出∠ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.【变式2-1】(2021·西华县一模)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG∠DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立请直接写出你的判断.图1 图2 图31.(2021·河南南阳一模)我们定义:如图1,在∠ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB’,把AC绕点A逆时针旋转β得到AC’,连接B’C’,当α+β=180°时,我们称∠AB’C’是∠ABC的“旋补三角形”,∠AB’C’边B’C’上的中线AD是∠ABC的旋补中线,点A叫旋补中心.特例感知:(1)在图2,图3中,∠AB’C’是∠ABC的“旋补三角形”,∠AB’C’边B’C’上的中线AD是∠ABC的旋补中线,∠如图2,当∠ABC是等边三角形时,AD与BC的数量关系是∠如图3,当∠BAC=90°,BC=8时,则AD的长为猜想论证:(2)如图1,当∠ABC是任意三角形时,猜想AD与BC的数量关系,并给予证明.2.(2021·郑州外国语测试)已知如图1所示,在∠ABC中,∠ACB=90°,AC=BC,点D在AB上,DE∠AB 交BC于E,点F是AE的中点,(1)写出线段FD与线段FC的关系并证明;(2)如图2所示,将∠BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出结论并证明;(3)将∠BDE绕点B逆时针旋转一周,如果BC=4,BE,直接写出线段BF的范围.3.(2021·偃师一模)特殊:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°.作CM平分∠ACB 交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD,BE.填空:①线段BD,BE的数量关系为;②线段BC,DE的位置关系为.一般:(2)如图2,在等腰三角形ABC中,∠ACB=α,作CM平分∠ACB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转α度得到线段CE,连接DE,BD,BE.请判断(1)中的结论是否成立,请说明理由.特殊:(3)如图3,在等边三角形ABC中,作BM平分∠ABC交AC于点M,点D为射线BM 上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD,AE.若AB=4,当△ADM与△AFD全等时,请直接写出DE的值.图1 图2 图34.(2021·省实验一模)观察猜想(1)如图∠,在Rt∠ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF =;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图∠,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图∠,在∠ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少请用含有n,a的式子直接写出结论.图1 图2图35.(2021·濮阳二模)在∠ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∠AC 交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.(1)特例猜想如图1,当α=90°时,试猜想:∠AF与BE的数量关系是;∠∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在∠ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.图1 图2 图36.(2021·开封二模)问题发现如图1,∠ABC是等边三角形,点D是边AD上的一点,过点D作DE∠AC交AC于E,则线段BD与CE有何数量关系拓展探究如图2,将∠ADE绕点A逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立如果成立,请就图中给出的情况加以证明.问题解决如果∠ABC的边长等于AD=2,直接写出当∠ADE旋转到DE与AC所在的直线垂直时BD的长.图1 图2 备用图7.(2021·安阳二模)(1)问题发现:如图1,在四边形ABCD中,AB∠DC,E是BC的中点,若AE是∠BAD的平分线,则AB,AD,DC之间的数量关系为.(2)问题探究:如图2,在四边形ABCD中,AB∠DC,E是BC的中点,点F是DC的延长线上一点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的数量关系,并证明你的结论(3)问题解决:如图3,AB∠CD,点E在线段BC上,且BE:EC=3:4.点F在线段AE上,且∠EFD =∠EAB,直接写出AB,DF,CD之间的数量关系.图1 图2 图38.(2021·中原名校大联考)如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点,(1)【观察猜想】图1中,线段AP与BE的数量关系是,位置关系是.(2)【探究证明】把∠ADE绕点A逆时针旋转到图2的位置,(1)中的猜想是否仍然成立若成立请证明,否请说明理由;(3)【拓展延伸】把∠ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出线段AP长度的最大值和最小值.图1 图29.(2021·新乡一模)如图1,在∠ABC与∠ADE中,AB=AC,AD=AE,∠A是公共角.(1)BD与CE的数量关系是:;(2)把图1的∠ABC绕点A旋转一定的角度,得到如图2所示的图形.∠求证:BD=CE;∠BD与CE所在直线的夹角与∠DAE的数量关系是什么说明理由.(3)若AD=10,AB=6,把图1中的∠ABC绕点A顺时针旋转α度(0°<α≤360)直接写出BD长度的取值范围.图1 图210.(2021·河南模拟)【问题探索】(1)如图1,在Rt∠ABC中,∠ACB=90°,AC=BC,点D,E分别在AC、BC边上,DC=CE,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN. 探索BE与MN的数量关系. 聪明的小华推理发现PM、PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】(2)将∠DEC绕点C逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;。

专题12 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(原卷版)

专题12 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(原卷版)

专题12难点探究专题:相似三角形中动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】 (1)【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】 (2)【考点三相似三角形动点中求线段及线段和最值问题】 (4)【考点四相似三角形中的动点问题与函数图像问题】 (5)【考点五相似三角形中的动点问题与几何综合问题】 (7)【考点六相似三角形中的动点探究应用问题】 (9)【典型例题】【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】【变式训练】1.(2023秋·安徽安庆·九年级统考期末)如图,在钝角A出发运动到点B停止,动点E运动的速度为2cm/s.如果两点同时运动,那么当以点2.(2023·上海·九年级假期作业)如图,米/秒的速度同时开始运动,其中点直移动到点A为止.经过多长时间后,3.(2022·辽宁·灯塔市第一初级中学九年级期中)如图,在平面直角坐标系内,已知点0),动点P从点A开始在线段段BA上以每秒2个单位长度的速度向点(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为24 5【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】【变式训练】2.(2023春·江苏无锡·八年级宜兴市实验中学校考阶段练习)如图,在矩形连接BD,点M,N分别是边BC,终落在BD上,当PBM为直角三角形时,线段3.(2023·江苏盐城·校考一模)如图,在动点,过点E作DE⊥为等腰三角形时,当BCF4.(2023·山东济宁·统考一模)如图,在矩形点P是直线BC上的一个动点.若【考点三相似三角形动点中求线段及线段和最值问题】【变式训练】1.(2023·江苏苏州AE翻折得AFE△连接PF,则PQ2.(2023·湖北襄阳·统考模拟预测)如图,矩形△M,连接EM、BM,将BEM为.3.(2023春·安徽·九年级专题练习)如图,在正方形,上的动点,且BEG是AB CD为.4.(2023·江苏南通·统考三模)点C 的坐标为()0,3上一点,且3AQ PQ =【考点四相似三角形中的动点问题与函数图像问题】例题:(2023春·河南安阳·九年级统考期末)如图,正方形ABCD 一边AB 在直线l 上,P 是直线l 上点A 左侧的一点,24AB PA ==,E 为边AD 上一动点,过点P ,E 的直线与正方形ABCD 的边交于点F ,连接BE BF ,,若设DE x =,BEF △的面积为S ,则能反映S 与x 之间函数关系的图象是()A .B ...2023·山西运城·统考二模)如图中,36B ∠=︒,动点P 速运动至点C 停止.点P 的运动速度为,设点P 的运动时间为t (函数图像如图2所示.当AP 时,BP 的长为()A .252+B .425-C .4+2.(2023·河南焦作·统考二模)如图,在Rt ABC △中,过点P 作直线l AB ⊥,交折线ACB 于点Q .设AP x =A ....2023·安徽合肥·校联考二模)如图,在正方形ABCD 中,1AB =,动点P 从A 点出发沿和BC 上匀速移动,连接DP 交BC 或BC 的延长线于Q ,记点移动的距离为x ,的函数图像大致是()A .B .C .D .4.(2023·黑龙江·模拟预测)如图,已知直线l 是线段AB 的中垂线,l 与AB 相交于点C ,D 是位于直线AB 下方的l 上的一动点(点D 不与点C 重合),连接AD BD ,,过点A 作AE BD ∥,过点B 作BE AE ⊥于点E ,若6AB =,设AD x =,AE y =,则y 关于x 的函数关系用图像可以大致表示为().A .B .C .D .【考点五相似三角形中的动点问题与几何综合问题】例题:(2023春·山东济宁·八年级统考期末)如图,在平面直角坐标系中,O 是坐标原点,矩形OABC 的两边分别在x 轴和y 轴上,点B 的坐标为()12,8,现有两动点P ,Q ,点P 以每秒3个单位的速度从点O 出发向终点A 运动,同时点Q 以每秒2个单位的速度从点A 出发向终点B 运动,连接PC ,PQ ,CQ .设运动时间为t 秒()0t >.(1)点P 的坐标为______,点Q 的坐标为______(用含t 的代数式表示);(2)请判断四边形APCQ 的面积是否会随时间t 的变化而变化,并说明理由;(3)若A ,P ,Q 为顶点的三角形与OCP △相似时,请求出t 的值.【变式训练】(1)BM =________;BN =__________.(2)若BMN 与ABC 相似,求t 的值;(3)连接AN CM ,,如图2,若AN CM ⊥BC=,点E是AD边上的一个动点,以CE为边在CE的右(2)如图2,四边形ABCD是矩形,2AB=,4CG CE=,连接DG,BE.判断线段DG与BE,有怎样的数量关系和位置关系,侧作矩形CEFG,且:1:2并说明理由;(3)如图3,在(2)的条件下,点E是从点A运动D点,则点G的运动路径长度为______;+的最小值为______.(4)如图3,在(2)的条件下,连接BG,则2BG BE【考点六相似三角形中的动点探究应用问题】【变式训练】【基础巩固】(1)参照小慧提供时思路,利用图(2)请证明上述结论;(2)A 、B 、C 、是同一直线l 上从左到右顺次的点,点P 是直线外一动点,【尝试应用】①若2AB =,1BC =,延长AB 至D ,使CD BC =【拓展提高】②拓展:若AB m =,BC n =,()m n ≠,P 点在长为___________(用含m 、n 的式子表示).。

浙江省宁波市中考数学试题分类解析 专题12 押轴题

浙江省宁波市中考数学试题分类解析 专题12 押轴题

宁波市2002-2013年中考数学试题分类解析专题12 押轴题一、选择题1. (2002年浙江宁波3分)如图,有一住宅小区呈四边形ABCD,周长为2000 m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积是(精确至lm2)【】2. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】【分析】如图,延长AB、DC交于M点,延长CD、FE交于N点,延长EF、HG交于P点,延长GH、BA交于Q点,则MNPQ是正方形,△BCM、△DEN、△FGP、△AHQ均为等腰直角三角形∴这个八边形的面积等于=矩形面积-4个小三角形的面积13341172=⨯-⨯⨯⨯=。

故选A。

3. (2003年浙江宁波3分)如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135°,AB=CD=EF=GH=1cm,BC=DE=FG=HA=2cm,则这个八边形的面积等于【】4. (2005年浙江宁波3分)一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是【】A. 12B.13C.14D.16【答案】D。

【考点】概率。

【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。

因此,设4个珠子分别为红1,红2,蓝1,蓝2,从这个袋中任取2个珠子的所有情况有(红1,红2),(红1,蓝1),(红1,蓝2),(红2,蓝1),(红2,蓝2),(蓝1,蓝2)6种,都是蓝色的情况为1种,∴从这个袋中任取2个珠子,都是蓝色的概率是16。

故选D。

5. (2006年浙江宁波大纲卷3分)已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是【】6. (2006年浙江宁波课标卷3分)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转90°至DE,连接AE,则△ADE的面积是【】A.1 B.2 C.3 D.47. (2007年浙江宁波3分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光 的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别 为2m 和1m ,那么塔高AB 为【 】【答案】A 。

2020年中考数学压轴专题12 圆的有关性质与计算 (学生版)

2020年中考数学压轴专题12 圆的有关性质与计算 (学生版)

决胜2020中考数学压轴题全揭秘精品专题12 圆的有关性质与计算【典例分析】【考点1】垂径定理【例1】(2019·湖北中考真题)如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是¶AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【变式1-1】(2019·四川中考真题)如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A.25B.4 C.213D.4.8【变式1-2】(2019·四川中考真题)如图,Oe的直径AB垂直于弦CD,垂足是点E,22.5∠=o,CAOOC=,则CD的长为( )6A.62B.32C.6 D.12【考点2】弧、弦、圆心角之间的关系【例2】(2019·四川自贡中考真题)如图,⊙O中,弦AB与CD相交于点E,AB CD、.=,连接AD BC求证:⑴»»AD BC=;=.⑵AE CE【变式2-1】(2018·黑龙江中考真题)如图,在⊙O中,,AD⊥OC于D.求证:AB=2AD.【变式2-2】(2019·江苏中考真题)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证PA=PC.【考点3】圆周角定理及其推论【例3】(2019·陕西中考真题)如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【变式3-1】(2019·北京中考真题)已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作»PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交»PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD【变式3-2】(2019·湖北中考真题)如图,点A,B,C均在⊙O上,当40∠=︒时,AOBC∠的度数是()A.50︒B.55︒C.60︒D.65︒【考点4】圆内接四边形【例4】(2019·贵州中考真题)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为_______;【变式4-1】(2019·甘肃中考真题)如图,四边形ABCD内接于Oe,若40∠=︒,则CA∠=()A.110︒B.120︒C.135︒D.140︒【变式4-2】(2019·四川中考真题)如图,正五边形ABCDE内接于⊙O,P为»DE上的一点(点P不与∠的度数为()点D重合),则CPDA.30°B.36︒C.60︒D.72︒【考点5】正多边形和圆【例5】(2019·山东中考真题)如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.【变式5-1】(2019·山东中考真题)若正六边形的内切圆半径为2,则其外接圆半径为__________. 【变式5-2】(2019·陕西中考真题)若正六边形的边长为3,则其较长的一条对角线长为___.【考点6】弧长和扇形的面积计算(含阴影部分面积计算)【例6】(2019·广西中考真题)如图,ABC ∆是O e 的内接三角形,AB 为O e 直径,6AB =,AD 平分BAC ∠,交BC 于点E ,交O e 于点D ,连接BD . (1)求证:BAD CBD ∠=∠;(2)若125AEB ∠=︒,求»BD 的长(结果保留π).【变式6-1】(2019·湖北中考真题)如图,等边三角形ABC 的边长为2,以A 为圆心,1为半径作圆分别交AB ,AC 边于D ,E ,再以点C 为圆心,CD 长为半径作圆交BC 边于F ,连接E ,F ,那么图中阴影部分的面积为________.【变式6-2】(2019·四川中考真题)如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90o 后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .A .2πB .2πC .178π D .198π 【考点7】与圆锥有关的计算【例7】(2019·湖南中考真题)如图,在等腰ABC △中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .【变式7-1】(2019·广西中考真题)已知圆锥的底面半径是115角是_____度.【变式7-2】(2019·辽宁中考真题)圆锥侧面展开图的圆心角的度数为216︒,母线长为5,该圆锥的底面半径为________.【变式7-3】(2019·西藏中考真题)如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm【达标训练】一、单选题1.(2019·山东中考真题)如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.(2019·广西中考真题)如图,,,,A B C D 是⊙O 上的点,则图中与A ∠相等的角是( )A .B Ð B .C ∠C .DEB ∠D .D ∠3.(2019·吉林中考真题)如图,在O e 中,»AB 所对的圆周角050ACB ∠=,若P 为»AB 上一点,055AOP ∠=,则POB ∠的度数为( )A .30°B .45°C .55°D .60°4.(2019·山东中考真题)如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒5.(2019·贵州中考真题)如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .2 D .226.(2019·甘肃中考真题)如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =( )A .54°B .64°C .27°D .37°7.(2018·贵州中考真题)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125°8.(2019·浙江中考真题)如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为( )A .1B .2C .3D .29.(2019·浙江中考真题)如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒10.(2019·宁夏中考真题)如图,正六边形ABCDEF 的边长为2,分别以点,A D 为圆心,以,AB DC 为半径作扇形ABF ,扇形DCE .则图中阴影部分的面积是( )A .4633π-B .8633π-C .41233π-D .41233π-11.(2019·江苏中考真题)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .63πB .632πC .63πD .632π12.(2019·山东中考真题)如图,在边长为4的正方形ABCD 中,以点B 为圆心,AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是(结果保留π)( )A .8π-B .162π-C .82π-D .182π-13.(2019·浙江中考真题)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A .32π B .2π C .3π D .6π14.(2019·湖南中考真题)一个扇形的半径为6,圆心角为120°,则该扇形的面积是( ) A .2πB .4πC .12πD .24π15.(2019·浙江中考真题)如图,ABC △内接于圆O ,65B ∠=︒,70C ∠=︒,若22BC =,则弧BC 的长为( )A .πB .2πC .2πD .22π16.(2019·山东中考真题)如图,点A 、B ,C ,D 在⊙O 上,AB =AC ,∠A =40°,BD ∥AC ,若⊙O 的半径为2.则图中阴影部分的面积是( )A .23π3B .23π3C .43π3D .43π2 二、填空题17.(2019·广西中考真题)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道1AB=尺(1尺=10寸),则该圆材的直径为______寸.18.(2019·江苏中考真题)如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为_______.19.(2019·安徽中考真题)如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为_____20.(2019·辽宁中考真题)如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则»BC的长为____.21.(2019·湖南中考真题)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB 时,OC平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.22.(2019·江苏中考真题)如图,点A 、B 、C 、D 、E 在O e 上,且弧AB 为50︒,则E C ∠+∠=________.23.(2019·甘肃中考真题)如图,在平面直角坐标系中,已知D e 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,23),OC 与D e 交于点C ,30OCA ∠=︒,则圆中阴影部分的面积为_____.24.(2019·湖北中考真题)刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积1S 来近似估计O e 的面积S ,设O e 的半径为1,则1S S -=__________.25.(2019·江苏中考真题)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=____ .26.(2019·重庆中考真题)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为______.(结果保留π)27.(2019·浙江中考真题)如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于______2cm (计算结果精确到个位).28.(2019·山东中考真题)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC=3,AC=3.则图中阴影部分的面积是_____.三、解答题29.(2019·天津中考真题)已知PA ,PB 分别与O e 相切于点A ,B ,80APB ︒∠=,C 为O e 上一点.(Ⅰ)如图①,求ACB ∠的大小;(Ⅱ)如图②,AE 为O e 的直径,AE 与BC 相交于点D ,若AB AD =,求EAC ∠的大小.30.(2019·黑龙江中考真题)图1.2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上;(1)在图1中画出以AC 为底边的等腰直角ABC △,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰ACD V ,点D 在小正方形的顶点上,且ACD V 的面积为8.31.(2019·河南中考真题)如图,在ABC ∆中,BA BC =,90ABC ︒∠=,以AB 为直径的半圆O 交AC于点D ,点E 是¶BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:ADF BDG ∆≅∆; (2)填空:①若=4AB ,且点E 是¶BD的中点,则DF 的长为 ; ②取¶AE的中点H ,当EAB ∠的度数为 时,四边形OBEH 为菱形.32.(2019·江苏中考真题)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=1,以边AC 上一点O 为圆心,OA 为半径的⊙O 经过点B .(1)求⊙O 的半径;(2)点P 为»AB 中点,作PQ ⊥AC ,垂足为Q ,求OQ 的长; (3)在(2)的条件下,连接PC ,求tan ∠PCA 的值.33.(2019·广西中考真题)如图,五边形ABCDE 内接于O e ,CF 与O e 相切于点C ,交AB 延长线于点F .(1)若,AE DC E BCD =∠=∠,求证:DE BC =; (2)若2,,45OB AB BD DA F ===∠=︒,求CF 的长.34.(2019·辽宁中考真题)如图1,四边形ABCD 内接于圆O ,AC 是圆O 的直径,过点A 的切线与CD 的延长线相交于点P .且APC BCP ∠=∠ (1)求证:2BAC ACD ∠=∠;(2)过图1中的点D 作DE AC ⊥,垂足为E (如图2),当6BC =,2AE =时,求圆O 的半径.35.(2019·内蒙古中考真题)如图,在⊙O 中,B 是⊙O 上的一点,120ABC ∠=o ,弦23AC =弦BM 平分ABC ∠交AC 于点D ,连接,MA MC . (1)求⊙O 半径的长;(2)求证:AB BC BM +=.36.(2019·江苏中考真题)如图,AB 是⊙O 的弦,过点O 作OC ⊥OA ,OC 交于AB 于P ,且CP=CB . (1)求证:BC 是⊙O 的切线;(2)已知∠BAO=25°,点Q 是弧A m B 上的一点. ①求∠AQB 的度数; ②若OA=18,求弧A m B 的长.37.(2019·江苏中考真题)(材料阅读):地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O e ).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的. (实际应用):观测点A 在图1所示的O e 上,现在利用这个工具尺在点A 处测得α为31︒,在点A 所在子午线往北的另一个观测点B ,用同样的工具尺测得α为67︒.PQ 是O e 的直径,PQ ON ⊥.(1)求POB ∠的度数;(2)已知6400OP =km ,求这两个观测点之间的距离即O e 上»AB 的长.(π取3.1) 38.(2019·湖北中考真题)如图,点E 是ABC ∆的内心,AE 的延长线和ABC ∆的外接圆圆O 相交于点D ,过D 作直线//DG BC . (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧·BAC 的长.39.(2019·湖南中考真题)如图,AB 为O e 的直径,且3AB =C 是¶AB 上的一动点(不与A ,B 重合),过点B 作O e 的切线交AC 的延长线于点D ,点E 是BD 的中点,连接EC . (1)求证:EC 是O e 的切线;(2)当30D ︒∠=时,求阴影部分面积.40.(2019·贵州中考真题)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=23,求图中阴影部分的面积.41.(2019·广东中考真题)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,∆的三个顶点均在格点上,以点A为圆心的»EF与BC相切于点D,分别交AB、AC于点E、F. ABC∆三边的长;(1)求ABC(2)求图中由线段EB、BC、CF及»FE所围成的阴影部分的面积.。

专题12 家用电器类电学综合计算专题(原卷版)-决胜2021年中考物理压轴题全揭秘

专题12 家用电器类电学综合计算专题(原卷版)-决胜2021年中考物理压轴题全揭秘

专题12—家用电器类电学综合计算专题考点01:电热类电学综合计算:对于电热类家电如:电饭煲,电热水壶,饮水机等发热家电应注意电阻丝或发热电阻的串、并联情况的变化会对电热器的功率产生影响,即应注意“高”、“低”,“中”不同的档位时电路中的电流,电压的分配,及电阻的发热功率情况。

另外应注意保温与正常发热情况下电路中不同的连结方式;一般来说电路中串联的电阻越多,电路中电流越小,此时的总功率越小通常此时为保温状态,而串联电路中连入电阻越少时,电路中总电流越大,此时电路中的总功率越大,此时通常为加热状态。

【帮你归纳】对于多挡位电热器,判断电热器的挡位时,应根据P=U2/R,电源电压通常为220V,当多个电热丝串联时,电路中电阻最大,此时电路的总功率最小,此时通常为“低温挡”,或处于电热器的“保温状态”;当多个电热丝并联时,电路中的总电阻最小,电路中的总功率最大,所以此时通常电路为“高温挡”工作状态或处于“加热状态”,当只有一个电阻丝工作时,电路中的总功率即不是最大值也不是最小值,此时通常为“中温挡”工作状态。

例1:(2020·四川南充)市面上的电热水壶大多具有加热和保温功能。

下图是某电热水壶的电路简图,开关K接通后,开关S自动与触点a、b接通,热水壶开始烧水;当壶内水温达到100o C时,温控开关S自动与a、b断开,并立即与触点c接通,水壶进入保温状态。

已知电源电压为220V,电阻R1=50Ω,这种水壶的加热功率P加热是保温功率P保温的5倍,水的比热容c=4.2x103J/(kg.o C),R1、R2电阻不受温度影响。

求:(1)将1kg初温为35o C的水加热到100o C需要吸收多少热量?(2)电阻R2的阻值。

(3)在晚上用电高峰期将1kg初温为35o C的水加热到100o C需用时300s,若加热效率为91%,则晚上用电高峰期的实际电压为多少?【变式1-1】(2019湖北荆州中考)随州的冬季不像北方有集中供暖,所以本地居民常选用一些小型电暖器越冬。

2020年中考数学压轴解答题12 有关函数的计算说理类综合问题(学生版)

2020年中考数学压轴解答题12 有关函数的计算说理类综合问题(学生版)

备战2020中考数学之解密压轴解答题命题规律专题12 有关函数的计算说理类综合问题【类型综述】计算说理是通过计算得到结论;说理计算侧重说理,说理之后进行代入求值. 压轴题中的代数计算题,主要是函数类题.函数计算题必考的是待定系数法求函数的解析式,按照设、列、解、验、答五步完成,一般来说,解析式中待定几个字母,就要代入几个点的坐标.还有一类计算题,就是从特殊到一般,通过计算寻找规律.【典例分析】【例1】在平面直角坐标系xOy 中,抛物线22y x mx n =-++经过点()0,2A ,()3,4B -.(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有一个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.【例2】如图,在平面直角坐标系中,边长为4的等边OAB ∆的边OB 在x 轴的负半轴上,反比例函数()0ky x x=<的图象经过AB 边的中点C ,且与OA 边交于点D .(1)求k 的值;(2)连接OC ,CD ,求OCD ∆的面积;(3)若直线y mx n =+与直线CD 平行,且与OAB ∆的边有交点,直接写出n 的取值范围.【例3】如图1 ,等腰直角三角形 ABC 中,∠ACB =90°,CB =CA,直线 DE 经过点 C,过 A 作 AD ⊥DE 于点 D,过 B 作 BE ⊥DE 于点 E,则△BEC ≌△CDA,我们称这种全等模型为 “K 型全等”.(不需要证明)(模型应用)若一次函数 y=kx+4(k≠0)的图像与 x 轴、y 轴分别交于 A 、B 两点.(1)如图 2,当 k=-1 时,若点 B 到经过原点的直线 l 的距离 BE 的长为 3,求点 A 到直线 l 的距离 AD 的长;(2)如图 3,当 k=- 43时,点 M 在第一象限内,若△ABM 是等腰直角三角形,求点 M 的坐标;(3)当k 的取值变化时,点 A 随之在x 轴上运动,将线段BA 绕点 B 逆时针旋转90°得到BQ,连接OQ,求OQ 长的最小值.【例4】如图,在平面直角坐标系中,直线l1:16 2y x=-+分别与x轴、y轴交于点B、C,且与直线l2:1 2y x=交于点A.(1)求出点A的坐标(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【例5】寻找神奇点!每条抛物线内都有一个神奇的点F(也叫焦点),还有一条与之配套的直线!(也叫准线),使得抛物线上的每个点到F的距离等于到直线l的距离.如图,对于抛物线上任意一点D,都有DF=DH.根据以上知识,我们来完成以下问题:(1)因为抛物线是轴对称图形,由对称性可知这个神奇的点F应在抛物线的上,且准线l一定与对称轴垂直即l⊥MN(对称轴).(2)若准线l 与对称轴MN 交于E ,MN 交抛物线于点P ,则PE 、PF 的数量关系是PE PF (填>、=、<),(3)求抛物线y =﹣(x ﹣2)2+4的神奇点(焦点)F 的坐标.【例6】在平面直角坐标系中,已知矩形OABC 中的点()0,4A ,抛物线21y ax bx c =++经过原点O 和点C ,并且有最低点()2,1G -点E ,F 分别在线段OC ,BC 上,且516AEF OABCS S ∆=矩形,1CF =,直线BE 的解析式为2y kx b =+,其图像与抛物线在x 轴下方的图像交于点D .(1)求抛物线的解析式;(2)当120y y <<时,求x 的取值范围; (3)在线段BD 上是否存在点M ,使得14DMC EAF ∠=∠,若存在,请求出点M 的坐标,若不存在,请说明理由.【变式训练】一、单选题1.如图,坐标平面上有一顶点为A 的抛物线,此抛物线与方程式2y =的图形交于B 、C 两点,ABC ∆为正三角形.若A 点坐标为()3,0-,则此抛物线与Y 轴的交点坐标为何?( )A.90,2⎛⎫⎪⎝⎭B.270,2⎛⎫⎪⎝⎭C.()0,9D.()0,192.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )3.如图,直线y=23x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣34,0)B.(﹣12,0)C.(﹣32,0)D.(﹣52,0)4.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD 和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A .2B .﹣2或﹣4C .﹣2D .﹣45.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y=kx(k≠0,x >0)的图象同时经过顶点C,D .若点C 的横坐标为5,BE=3DE,则k 的值为( )A .52B .154C .3D .56.如图,已知直线12y x =与双曲线(0)k y k x =>交于A 、B 两点,点B 坐标为(-4,-2),C 为双曲线(0)ky k x =>上一点,且在第一象限内,若△AOC 面积为6,则点C 坐标为( )A .(4,2)B .(2,3)C .(3,4)D .(2,4)二、填空题7.如图,在平面直角坐标系xOy 中,直角三角形的直角顶点与原点O 重合,顶点A,B 恰好分别落在函数1(0)y x x =-<,4(0)y x x=>的图象上,则tan ∠ABO 的值为___________8.如图,直线y=﹣12x+3与坐标轴分别交于点A 、B,与直线y=x 交于点C,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连接CQ .若△OQC 是等腰直角三角形,则t 的值为_____.9.如图,在平面直角坐标系中,点A 的坐标为(03),,点B 为x 轴上一动点,以AB 为边在AB 的右侧作等腰Rt ABD △,90ABD ∠=︒,连接OD ,则OD AD +的最小值是 __________.10.如图,抛物线y =ax 2+4x +c (a ≠0)与反比例函数y =5x的图象相交于点B ,且点B 的横坐标为5,抛物线与y 轴交于点C (0,6),A 是抛物线的顶点,P 和Q 分别是x 轴和y 轴上的两个动点,则AQ +QP +PB 的最小值为_____.11.如图,已知⊙P 的半径是1,圆心P 在抛物线y =212x -x-12上运动,当⊙P 与x 轴相切时,圆心P 的坐标为_____.12.如图,四边形ABCD 的项点都在坐标轴上,若//,AB CD AOB V 与COD △面积分别为8和18,若双曲线ky x=恰好经过BC 的中点E ,则k 的值为__________.三、解答题13.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++经过点3(2,)A -和点(5,0)B ,顶点为C . (1)求这条抛物线的表达式和顶点C 的坐标;(2)点A 关于抛物线对称轴的对应点为点D ,联结,OD BD ,求ODB ∠的正切值;(3)将抛物线2y x bx c =++向上平移(0)t t >个单位,使顶点C 落在点E 处,点B 落在点F 处,如果BE BF =,求t 的值.14.在平面直角坐标系xOy 中,存在抛物线2y mx 2=+以及两点()A 3,m -和()B 1,m . (1)求该抛物线的顶点坐标;(2)若该抛物线经过点()A 3.m -,求此抛物线的表达式;(3)若该抛物线与线段AB 只有一个公共点,结合图象,求m 的取值范围.15.如图,抛物线的表达式为y=ax2+4ax+4a-1(a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C (点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,22为半径的圆与直线BD相切,求点Q的坐标.16.在平面直角坐标系中,抛物线y=ax2﹣4ax﹣32(a≠0)交x轴于A、B两点,交y轴于点C,这条抛物线的顶点为D.(1)求点D的坐标.(2)过点C作CE∥x轴交抛物线于点E.当CE=2AB时,求点D的坐标.(3)这条抛物线与直线y=﹣x相交,其中一个交点的横坐标为﹣1.过点P(m,0)作x轴的垂线,交这条抛物线于点M,交直线y=﹣x于点N,且点M在点N的下方.当线段MN的长度随m的增大而增大时,求m的取值范围.(4)点Q 在这条抛物线上运动,若在这条抛物线上只存在两个点Q ,满足S △ABQ =3S △ABC ,直接写出a 的取值范围.17.如图1,在平面直角坐标系中,直线y =﹣5x+5与x 轴,y 轴分别交于A,C 两点,抛物线y =x 2+bx+c 经过A,C 两点,与x 轴的另一交点为B .(1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的⊙B 上一动点,连接PC 、PA,当点P 运动到某一位置时,PC+12PA 的值最小,请求出这个最小值,并说明理由.18.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ; (2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.压轴解答题·直面高考精品资源·战胜高考 19.如图,在平面直角坐标系中,直线l 1的解析式为y x =,直线l 2的解析式为132y x =-+,与x 轴、y 轴分别交于点A 、点B,直线l 1与l 2交于点C .(1)求点A 、点B 、点C 的坐标,并求出△COB 的面积;(2)若直线l 2上存在点P (不与B 重合),满足S △COP =S △COB ,请求出点P 的坐标;(3)在y 轴右侧有一动直线平行于y 轴,分别与l 1,l 2交于点M 、N,且点M 在点N 的下方,y 轴上是否存在点Q,使△MNQ 为等腰直角三角形?若存在,请直接写出满足条件的点Q 的坐标;若不存在,请说明理由. 20.如图,已知直线y =12x+b 与y 轴交于点B (0,﹣3),与反比例函数y =k x (x >0)的图象交于点A,与x 轴交于点C,BC =3AC(1)求反比例函数的解析式;(2)若P 是y 轴上一动点,M 是直线AB 上方的反比例函数y =k x(x >0)的图象上一动点,直线MN ⊥x 轴交直线AB 于点N,求△PMN 面积的最大值.。

2023秋季初三AA第12讲几何压轴题

第12讲 几何压轴题模块1 旋转类【经典例题】例1 如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP 绕点A顺时针旋转60°得到AP',连接PP',BP'.(1)用等式表示BP'与CP的数量关系,并证明;(2)当∠BPC=120°时,①直接写出∠P'BP的度数为 _____;②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.例2 如图,在△ABC中,∠BAC=45°,CD⊥AB于点D,AE⊥BC于点E,连接DE.(1)依题意补全图形,猜想∠BAE与∠BCD之间的数量关系并证明;(2)用等式表示线段AE,CE,DE的数量关系;并证明.【专题】图形的全等;推理能力.【答案】(1)∠BAE=∠BCD;(2)AE=CE+DE.模块2 中点类【经典例题】例3 在△ABC中,∠ACB=90°,CA=CB,点D为射线CA上一点,过点D作DE∥CB且DE=CB(点E在点D的右侧),射线ED交射线BA于点F,点H是AF的中点,连接HC,HE.(1)如图1,当点D在线段CA上时,判断线段HE与HC的数量关系及位置关系;(2)当点D在线段CA的延长线上时,依题意补全图2.用等式表示线段CB,CD,CH之间的数量关系,并证明.【专题】图形的全等;运算能力;推理能力.【答案】(1)HE=HC,且HE⊥HC;(2)CB2+CD2=2CH2.例4 在△ABC中,AB=AC,∠BAC=90°,过点A作BC的垂线AD,垂足为D,E为射线DC上一动点 (不与点C重合),连接AE,以点A为中心,将线段AE逆时针旋转90°得到线段AF,连接BF,与直线AD交于点G.(1)如图1,当点E在线段CD上时,①依题意补全图形;②求证:点G为BF的中点.(2)如图2,当点E在线段DC的延长线上时,用等式表示AE,BE,AG之间的数量关系,并证明.【专题】图形的全等;推理能力.【答案】(1)见解答过程;(2)2AE2﹣4AG2=BE2.附加题1 如图1,在△ABC中,∠ACB=90°,CA=CB,点D,E分别在边CA,CB上,CD =CE,连接DE,AE,BD.点F在线段BD上,连接CF交AE于点H.(1)①比较∠CAE与∠CBD的大小,并证明;②若CF⊥AE,求证:AE=2CF;(2)将图1中的△CDE绕点C逆时针旋转α(0°<α<90°),如图2.若F是BD的中点,判断AE=2CF是否仍然成立.如果成立,请证明;如果不成立,请说明理由.附加题2 在等边△ABC中,将线段AB绕点A顺时针旋转α (0°<α<180°)得到线段AD.(1)若线段DA的延长线与线段BC相交于点E(不与点B,C重合),写出满足条件的α的取值范围;(2)在(1)的条件下连接BD,交CA的延长线于点F.①依题意补全图形;②用等式表示线段AE,AF,CE之间的数量关系,并证明.【作业】作业1 △ACB中,∠C=90°,以点A为中心,分别将线段AB,AC逆时针旋转60°得到线段AD,AE,连接DE,延长DE交CB于点F.(1)如图1,若∠A=60°,∠CFE的度数为 ______;(2)如图2,当30°<∠A<60°时,①依题意补全图2;②猜想CF与AC的数量关系,并加以证明.作业2 如图,在△ABC中,∠BAC=90°,AB=AC=1,延长CB,并将射线CB绕点C逆时针旋转90°得到射线l,D为射线l上一动点,点E在线段CB的延长线上,且BE=CD,连接DE,过点A作AM⊥DE于M.(1)依题意补全图,用等式表示线段DM与ME之间的数量关系,并证明;(2)取BE的中点N,连接AN,添加一个条件:CD的长为 __,使得AN=DE成立,并证明.。

2020年中考数学冲刺专题卷专题12 压轴题(解析版)

2020年中考数学冲刺专题卷12 压轴题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2019·江苏中考真题)如图,△ABC 中,AB=AC=2,∠B=30°,△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,''B C 与BC ,AC 分别交于点D ,E.设CD DE x +=,AEC ∆'的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .【答案】B【解析】连接B′C ,作AH ⊥B′C′,垂足为H ,∵AB=AC ,∠B=30°,∴∠C=∠B=30°,∵△ABC 绕点A 逆时针旋转α(0<α<120°)得到AB C ''∆,∴AB′=AB=AC=AC′=2,∠AB′C′=∠C′=30°,∴AH=12AC′=1, ∴223AC AH '-=∴3,∵AB′=AC ,∴∠AB′C=∠ACB′,∵∠AB′D=∠ACD=30°,∴∠AB′C -∠AB′D=∠ACB′-∠ACD ,即∠DB′C=∠DCB′,∴B′D=CD ,∵CD+DE=x ,∴B′D+DE=x ,即B′E=x ,∴C′E=B′C′-B′E=23-x ,∴y=12C E AH 'g =12×(23-x)×1=132x -+, 观察只有B 选项的图象符合题意,故选B.2.(2019·四川中考真题)如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .412C .72D .4 【答案】C【解析】∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中BC=2222345+=+=OC OB∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP 又∵P 在圆C 上,且半径为2,∴当B 、C 、P 共线时BP 最大,即OQ 最大此时BP=BC+CP=7OQ=12BP=72. 3.(2019·山东中考真题)如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到A B C '''∆.若反比例函数k y x=的图象恰好经过A B '的中点D ,则k 的值是( )A .9B .12C .15D .18【答案】C【解析】作A H y '⊥轴于H .∵90AOB A HB ABA ∠=∠'=∠'=︒,∴90ABO A BH ∠+∠'=︒,90ABO BAO ∠+∠=︒,∴BAO A BH ∠=∠',∵BA BA =',∴()AOB BHA AAS 'V V ≌,∴OA BH =,OB A H =',∵点A 的坐标是()2,0-,点B 的坐标是()0,6,∴2OA =,6OB =,∴2BH OA ==,6A H OB '==,∴4OH =,∴()6,4A ',∵BD A D =',∴()3,5D ,∵反比例函数k y x =的图象经过点D , ∴15k =.故选:C .4.(2019·四川中考真题)如图,在四边形ABCD 中,AB DC P ,90ADC ∠=o ,5AB =,3CD AD ==,点E 是线段CD 的三等分点,且靠近点C ,FEG ∠的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若32BG =,45FEG ∠=o ,则HK =( )A .223B .526C .322D .1326【答案】B【解析】∵90ADC ∠=o ,3CD AD ==,∴32AC =∵5AB =,32BG =,∴72AG =, ∵AB DC P ,∴CEK AGK ∆∆:,∴CE CK EK AG AK KG ==, ∴172CK EK AK KG ==,∴27CK EK AK KG ==, ∵32CK AK +=,∴22CK =, 过E 作EM AB ⊥于M ,则四边形ADEM 是矩形,∴3EM AD ==,2AM DE ==,∴32MG =, ∴2235EG EM MG =+=, ∵27EK KG =,∴53EK =, ∵45HEK KCE ∠=∠=o ,EHK CHE ∠=∠,∴HEK HCE ∆∆:,∴55HE EC HK EK ===,∴设3HE x =,5HK x =,∵HEK HCE ∆∆:,∴EH HK HC EH=, ∴532253x x x =+,解得:106x =,∴526HK =, 故选:B .5.(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF ;③2BC CG =﹣1;④HOM HOG S S V V =2﹣2,其中正确的结论是( )A .①②③B .①②④C .①③④D .②③④ 【答案】A【解析】如图,∵四边形ABCD 和四边形CGFE 是正方形,∴BC =CD ,CE =CG ,∠BCE =∠DCG ,在△BCE 和△DCG 中,BC CDBCE DCG CE CG=⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△DCG (SAS ),∴∠BEC =∠BGH ,∵∠BGH+∠CDG =90°,∠CDG =∠HDE ,∴∠BEC+∠HDE =90°,∴GH ⊥BE .故①正确;∵△EHG 是直角三角形,O 为EG 的中点,∴OH =OG =OE ,∴点H 在正方形CGFE 的外接圆上,∵EF =FG ,∴∠FHG =∠EHF =∠EGF =45°,∠HEG =∠HFG ,∴△EHM ∽△GHF ,故②正确;∵△BGH ≌△EGH ,∴BH =EH ,又∵O 是EG 的中点,∴HO ∥BG ,∴△DHN ∽△DGC ,DN HN DC CG∴= 设EC 和OH 相交于点N .设HN =a ,则BC =2a ,设正方形ECGF 的边长是2b ,则NC =b ,CD =2a ,222b a a a b-∴= 即a 2+2ab ﹣b 2=0,解得:a =b =(﹣b ,或a =(﹣1b (舍去),212a b∴=1BC CG∴= 故③正确;∵△BGH ≌△EGH ,∴EG =BG ,∵HO 是△EBG 的中位线,∴HO =12BG , ∴HO =12EG , 设正方形ECGF 的边长是2b ,∴EG =b ,∴HOb ,∵OH ∥BG ,CG ∥EF ,∴OH ∥EF ,∴△MHO △MFE ,∴OM OH EM EF 2b 2===, ∴EMOM ,∴1OM OE ===,∴1HOM HOES S ∆∆= ∵EO =GO ,∴S △HOE =S △HOG ,∴1HOM HOGS S ∆∆= 故④错误,故选:A .6.(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断:①0ab >且0c <;②420a b c -+>;③8>0+a c ;④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【答案】C【解析】 ∵对称轴在y 轴左侧,图象与y 轴交于y 轴正半轴,∴ab>0,c>0,故①错误,∵图象过点(1,0),对称轴为x=-1,∴图象与x 轴的另一个交点为(-3,0),∵抛物线的开口向下, ∴a<0,∴x=-2时,4a-b+c>0,故②正确,∵对称轴x=2b a -=-1, ∴b=2a ,∵x=1时,a+b+c=0,∴3a+c=0,∴8a+c=5a<0,故③错误,∵3a+c=0,∴c=-3a ,∴3a-3b=3a-3×2a=-3a=c ,故④正确, ax 2+bx+c=2x+2,整理得:ax 2+(b-2)x+c-2=0,∵直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,∴x 1+x 2+x 1⋅x 2=2b a --+2c a -=22(3)2a a a-++--=-5,故⑤正确,综上所述:正确的结论为②④⑤,共3个.故选C.7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是A.CE=3DE B.CE=2DEC.CE=3DE D.CE=2DE【答案】B【解析】过点D作DH⊥BC,垂足为H,∵AD=1,BC=2,∴CH=1,根据勾股定理可得DH=AB=2222DC CH-=,∵AD∥BC,∠ABC=90°,∴∠A=90°,∴∠AED+∠ADE=90°,又∵DE⊥CE,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴Rt△ADE∽Rt△BEC,∴AD AE DE BE BC CE==,设BE=x,则AE22x=-,即122xx-=,解得x=2,∴2DECE=,即CE=2DE,故选B.8.(2019·山东中考真题)如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于M、N,连按EN、EF、有以下结论:①AN=EN,②当AE=AF时,BEEC=22,③BE+DF=EF,④存在点E、F,使得NF>DF,其中正确的个数是()A.1 B.2 C.3 D.4 【答案】B【解析】①如图1,∵四边形ABCD是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°,∵∠MAN=∠EBM=45°,∠AMN=∠BME,∴△AMN∽△BME,∴AM MN BM EM,∵∠AMB=∠EMN,∴△AMB∽△NME,∴∠AEN=∠ABD=45°∴∠NAE=∠AEN=45°,∴△AEN是等腰直角三角形,∴AN=EN,故①正确;②在△ABE和△ADF中,∵AB ADABE ADF90AE AF︒=⎧⎪∠=∠=⎨⎪=⎩,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴CE=CF,假设正方形边长为1,设CE=x,则BE=1﹣x,如图2,连接AC,交EF于H,∵AE=AF,CE=CF,∴AC是EF的垂直平分线,∴AC⊥EF,OE=OF,Rt△CEF中,OC=12EF=22x,△EAF中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE,∵AE=AE,∴Rt△ABE≌Rt△AOE(HL),∴AO=AB=1,∴AC2=AO+OC,∴1+22x2,x=22,∴BEEC=1(22)22---=(21)(22)-+=2;故②不正确;③如图3,∴将△ADF绕点A顺时针旋转90°得到△ABH,则AF=AH,∠DAF=∠BAH,∵∠EAF=45°=∠DAF+∠BAE=∠HAE,∵∠ABE=∠ABH=90°,∴H、B、E三点共线,在△AEF和△AEH中,AE AEFAE HAEAF AH=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF,故③正确;④△ADN中,∠FND=∠ADN+∠NAD>45°,∠FDN=45°,∴DF>FN,故存在点E、F,使得NF>DF,故④不正确;故选B.二、填空题(本大题共4个小题,每小题6分,共24分)9.若数a使关于x 的不等式组2122224x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2a y +- 22y-=2有非负数解,则满足条件的整数a 的值是__________. 【答案】-2【解析】解不等式组2122224x x x a -⎧≤-+⎪⎨⎪+>-⎩,可得342x a x ≤⎧⎪⎨+>-⎪⎩,∵不等式组有且仅有四个整数解, ∴-1≤42a +-<0,∴-4<a ≤-2,解分式方程222a y y +--=2,可得y =22a +, 又∵分式方程有非负数解,∴y ≥0,且y ≠2,即22a +≥0,22a +≠2,解得a ≥-2且a ≠2,∴-2≤a ≤3,且a ≠2, ∴满足条件的整数a 的值为-2,故答案为:-2.10.(2019·江苏中考真题)如图,过点C(3,4)的直线2y x b =+交x 轴于点A ,∠ABC=90°,AB=CB ,曲线0k y x x=>()过点B ,将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,则a 的值为________.【答案】4【解析】分别过点B 、点C 作y 轴和x 轴的平行线,两条平行线相交于点M ,与x 轴的交点为N ,则∠M=∠ANB=90°,把C(3,4)代入2y x b =+,得4=6+b ,解得:b=-2,所以y=2x-2,令y=0,则0=2x-2,解得:x=1,所以A(1,0),∵∠ABC=90°,∴∠CBM+∠ABN=90°,∵∠ANB=90°,∴∠BAN+∠ABN=90°,∴∠CBM=∠BAN ,又∵∠M=∠ANB=90°,AB=BC ,∴△ABN ≌△BCM ,∴AN=BM ,BN=CM ,∵C(3,4),∴设AN=m ,CM=n ,则有413m n m n +=⎧⎨+-=⎩,解得31m n =⎧⎨=⎩, ∴ON=3+1=4,BN=1,∴B(4,1),∵曲线0k y x x =>()过点B ,∴k=4,∴4y x=, ∵将点A 沿y 轴正方向平移a 个单位长度恰好落在该曲线上,此时点A 移动后对应点的坐标为(1,a), ∴a=4,故答案为:4.11.(2019·四川中考真题)如图,反比例函数()0k y x x=>的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D 、E .若四边形ODBE 的面积为12,则k 的值为______.【答案】4【解析】∵E 、M 、D 位于反比例函数图象上,∴12OCE S k ∆=,12OAD S k ∆=, 过点M 作MG y ⊥轴于点G ,作MN x ⊥轴于点N ,∴四边形ONMG 是矩形,∴ONMG S k =矩形,∵M 为矩形ABCO 对角线的交点,∴44ABCO ONMG S S k ==矩形矩形,∵函数图象在第一象限,∴0k >,∴ABCO S =矩形OCE S ∆+OAD S ∆+S 四边形ODBE =12422k k k ++=, 解得:4k =.故答案为:412.(2019·辽宁中考真题)如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.【答案】42223n n -. 【解析】在直线113y x =+中,当0x =时,1y =;当0y =时,3x =-; ∴1OA =,3OM =,∴1tan 3AMO ∠=, ∵90OAB OAM ︒∠+∠=,90AMO OAM ︒∠+∠=,∴OAB AMO ∠=∠, ∴1tan 3OB OAB OA ∠==,∴13OB =. ∵正方形ABCA 1中的四个小正方形都与△AOB 全等, ∴第一个阴影正方形的边长为:12133-=, ∴212439S ⎛⎫== ⎪⎝⎭,同理:111tan tan 3B C CBB OAB BC ∠==∠=, ∴11111333B C BC AC AB ===, ∴1143A B AB =, ∴221141639S S S ⎛⎫== ⎪⎝⎭, 同理可得2321161699S S S ⎛⎫== ⎪⎝⎭,3431161699S S S ⎛⎫== ⎪⎝⎭,…,11116164999n n n S S --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭142442422222222222233333n n n n n ----⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:42223n n -. 三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤)13.(2019·山西中考真题)综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【答案】(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(14,0),(14,0)M M M M -. 【解析】 (1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=, 解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x ==∴315(114,)4N +-,415(114,)4N -, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D(3,154), ∴N 1D=4,∴BM 1=N 1D=4,∴OM 1=OB+BM 1=8,∴M 1(8,0), 综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.14.(2019·广东中考模拟)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=3,DH=1,∠OHD=80°,求∠BDE的大小.【答案】(1)详见解析;(2)∠BDE=20°.【解析】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB ,∴∠PBC=∠PCB ,∴PC=PB ;(2)如图2,连接OD ,∵AC 是⊙O 的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC , ∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,3tan ∠ACB=3AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,∴∠DOC=∠DOH ﹣∠NOH=40°,∵OA=OD ,∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°,∵BC ∥DE ,∴∠BDE=∠CBD=20°.15.(2019·广西中考真题)如图1,在正方形ABCD 中,点E 是AB 边上的一个动点(点E 与点,A B 不重合),连接CE ,过点B 作BF CE ⊥于点G ,交AD 于点F .(1)求证:ABF BCE ∆∆≌;(2)如图2,当点E 运动到AB 中点时,连接DG ,求证:DC DG =;(3)如图3,在(2)的条件下,过点C 作CM DG ⊥于点H ,分别交,AD BF 于点,M N ,求MN NH的值.【答案】(1)见解析;(2)见解析;(3)54MN NH =. 【解析】(1)证明:∵BF CE ⊥,∴90CGB ∠=︒,∴90GCB CBG ∠+∠=︒,∵四边形ABCD 是正方形,∴90,CBE A BC AB ∠=︒=∠=,∴90FBA CBG ∠+∠=︒,∴GCB FBA ∠=∠,∴()ABF BCE ASA ∆∆≌;(2)证明:如图2,过点D 作DQ CE ⊥于Q ,设2AB CD BC a ===,∵点E 是AB 的中点, ∴12EA EB AB a ===, ∴5CE a =,在Rt CEB ∆中,根据面积相等,得BG CE CB EB ⋅=⋅, ∴25BG =, ∴2255CG CB BG a =-=, ∵90,90DCE BCE CBF BCE ∠+∠=︒∠+∠=︒, ∴DCE CBF ∠=∠,∵,90CD BC CQD CGB =∠=∠=︒,∴()CQD BGC AAS ∆∆≌,∴25CQ BG ==, ∴55GQ CG CQ a CQ =-==, ∵,90DQ DQ CQD GQD =∠=∠=︒,∴()DGQ DCQ SAS ∆∆≌,∴CD GD =;(3)解:如图3,过点D 作DQ CE ⊥于Q ,1122CDG S CG DQ CH DG ∆=⋅=⋅, ∴85CG DQ CH a DG ⋅==, 在Rt CHD ∆中,2CD a = ,∴2265DH CD CH a =-=, ∵90,90MDH HDC HCD HDC ∠+∠=︒∠+∠=︒, ∴MDH HCD ∠=∠,∴CHD DHM ∆∆∽,∴34DH HM H DH C ==, ∴910HM a =, 在Rt CHG ∆中,458,5CG CH a ==, ∴2245GH CG CH a =-=, ∵90,90NGH CGH HCG CGH ∠+∠=︒∠+∠=︒, ∴NGH HCG ∠=∠,∴NGH GCH ∆∆∽,∴HN HG HG CH=, ∴225HG HN a CH ==, ∴12MN HM HN a =-=,∴152245a MNNH a==。

专题12 三角函数(全题型压轴题)-2024年高考数学压轴专题复习(学生版)


.
6.(2023 春·上海普陀·高一上海市宜川中学校考期中)将函数 y 3sin 2x+ 0 π 的图像向左平移 π 个
6
单位后得到函数 y g x ,若函数 y g x 是 R 上的偶函数,则

③三角函数零点问题(解答题)
1.(2023 春·四川绵阳·高一绵阳南山中学实验学校校考阶段练习)已知函数
4.(2023 春·四川成都·高一统考期末)已知函数 f x 3 sin x cos x 1 sin 4 x cos4 x 1 x R ,函数 2
y f x 的图象向左平移 π 个单位,再向上平移 1 个单位得到 y g x 的图象,
6
h x cos x cos x 3m mmR .
3
sin
x
π 6
0
的图象上相邻两个最高点
的距离为 π .
(1)求函数 f x 的图象的对称轴;
(2)若函数
y
f
x
m

0,
π 2
内有两个零点
x1
,
x2
,求
m
的取值范围及 cos x1
x2
的值.
7.(2023
春·江西·高一统考期末)已知函数
f
x 2cos2xcos cos
2sinxcosxsin
B.
π 2
,
17π 24
C.
7π 24
,
19π 24
D.
7π 24
,
17π 24
5.(2023·海南海口·校考模拟预测)已知定义在
R
上的奇函数
f
(x)
与偶函数
g(x)
满足
f
(x)

专题12三角形内角和定理(原卷版)

2021-2022学年北师大版数学八年级上册压轴题专题精选汇编专题12三角形内角和定理一.选择题1.(2021春•曹县期末)如图,在△ABC中,DF∥AB交AC于点E,交BC于点F,连接DC,∠A=70°,∠D=38°,则∠DCA的度数是()A.42°B.38°C.40°D.32°2.(2021春•仁寿县期末)如图,∠CBA=∠ACB=65°,∠ACE=15°,则∠AEC的度数是()A.35°B.50°C.65°D.80°3.(2021春•济南期中)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠ADE的度数为()A.100°B.110°C.120°D.130°4.(2021春•海陵区校级期末)如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为()A.90°B.100°C.110°D.120°5.(2021春•建平县期末)定义:当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为48°,那么这个“特征角”α的度数为()A.48°B.96°C.88°或48°D.48°或96°或88°6.(2021春•青山区期末)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF 交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题7.(2021春•盘龙区期末)如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,则∠CDF=.8.(2021春•遂宁期末)在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC 交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的是.9.(2021春•沙坪坝区校级期中)如图,在Rt△ABC中,∠B=90°,∠A=60°.将三角形沿EF翻折,使点C与边AB上的D点重合.若∠EFD=2∠AED,则∠AED的度数为.10.(2021春•沙坪坝区校级期中)将一副三角板如图放置,其中∠C=30°,∠D=45°,点E在BC边上,M,N分别为AB,DF上的点,G为三角板外一点,连接GM,GN,若∠G=50°,则∠GMB+∠BED+∠DNG=.11.(2020秋•沙坪坝区校级期末)如图,直线AB⊥OC于点O,∠AOP=40°,三角形EOF其中一个顶点与点O重合,∠EOF=100°,OE平分∠AOP,现将三角形EOF以每秒6°的速度绕点O逆时针旋转至三角形E′OF′,同时直线PQ也以每秒9°的速度绕点O顺时针旋转至P′Q′,设运动时间为m秒(0≤m≤20),当直线P′Q′平分∠E′OF′时,则∠COP′=.12.(2021春•射阳县校级期末)如图,将△ABC沿着DE对折,点A落到A'处,若∠BDA′+∠CEA′=70°,则∠A=°.13.(2021春•淮阳区校级期末)如图,∠B=36°,∠E=48°,∠BAE的平分线与∠BDE的平分线交于点F,则∠F=°.14.(2021春•江都区校级期末)△ABC中,AD是BC边上的高,∠BAD=50°,∠CAD=20°,则∠BAC =.15.(2019春•江汉区期中)如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.16.(2019秋•临安区期中)如图,△ABC中,AD平分∠BAC,EG⊥AD,分别交AB、AD、AC、BC的延长线于E、H、F、G,已知下列四个式子:(1)∠1=(∠2+∠3);(2)∠1=2(∠3﹣∠2);(3)∠4=(∠3﹣∠2);(4)∠4=∠1.其中有两个式子是正确的,它们是和.17.(2018春•靖江市校级期中)如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.三.解答题18.(2021春•朝阳区校级期末)如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=°;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=°;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB 之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.19.(2021春•海陵区校级期末)如图,AD、AE分别是△ABC的高和角平分线,∠B=40°,∠ACB=80°.点F在BC的延长线上,FG⊥AE,垂足为H,FG与AB相交于点G.(1)求∠AGF的度数;(2)求∠EAD的度数.20.(2021春•沙坪坝区校级期中)如图,在Rt△ABC中,∠B=90°.AD为△ABC的角平分线.点E为BC上一点,过点E作射线EF,交AC于点G.(1)若∠C=30°,求∠BAD的度数;(2)若∠FGC+∠BAD=180°,求证:EF∥AD.21.(2021春•大英县期末)在△ABC中,AD⊥BC于点D,AE平分∠BAC.(1)如图1,若∠B=70°,∠C=34°,求∠DAE的度数.(2)探索∠B,∠C,∠DAE之间的数量关系(如图1,∠B>∠C),请证明你的结论.(3)如图2、3,设点F为AE所在直线上一动点,当它在AE上运动,AD变成FD时,探索∠DFE,∠B,∠C之间的数量关系,并证明你的结论.22.(2021春•市中区期末)在△ABC中,∠BCA>∠BAC,三个内角的平分线交于点O.(1)填空:如图1,若∠BAC=36°,则∠BOC的大小为;(2)点D在BA,AC边上运动.①如图2,当点D在BA边上运动时,连接OD,若OD⊥OB.试说明:∠ADO=∠AOC;②如图3,BO的延长线交AC于点E,当点D在AC边上运动(不与点E重合)时,过点D作DP⊥BO,垂足为点P,请在图3中画出符合条件的图形,并探索∠ADP、∠ACB、∠BAC者之间的数量关系.23.(2021春•广陵区校级期末)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=40°,∠BDC=60°,求∠BED的度数;(2)若∠A﹣∠ABD=20°,∠EDC=65°,求∠A的度数.24.(2021春•鼓楼区校级月考)如图,在△ABC中,∠1=100°,∠C=80°,∠2=∠3,BE平分∠ABC 交AD于E,求∠4的度数.25.(2021春•高邮市期末)在一个三角形中,如果一个角是另一个角的2倍,这样的三角形我们称之为“倍角三角形”.如图,△ABC中,∠ACB=90°,点P是线段AB上一点(不与A、B重合),连接CP.(1)当∠B=72°时;①若∠CPB=54°,则△ACP“倍角三角形”(填“是”或“否”);②若△BPC是“倍角三角形”,求∠ACP的度数;(2)当△ABC、△BPC、△ACP都是“倍角三角形”时,求∠BCP的度数.26.(2021春•江阴市校级月考)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.27.(2021春•太康县期末)【问题背景】如图1,在三角形ABC中,直线EF经过点A且EF∥BC,求证:∠BAC+∠B+∠C=180°;【尝试应用】如图2,直线l1与直线l2相交于点O,夹角为α,点B在点O右侧,点C在l1上方,点A 在O点左侧运动,点E在射线CO上运动(不与C、O重合).①当α=60°时,AG平分∠EAB,EF平分∠AEC交直线AG于点G,求∠AGE;【拓展创新】②如图3,点E在线段CO上运动(不与C、O重合),∠AEF=n∠AEC,∠EAG=m∠EAB,m+2n=1,EF交AG于点G,当n为何值时,∠AGE不随∠EAB的变化而变化,并用含α的代数式表示∠AGE的值(写出解答过程).当点E在线段CO的延长线上时,直接写出∠AGE=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 压轴题一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB 于点D.设BP=x,BD=y,则y关于x的函数图象大致是2.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是A.y=–(x+1)2+2 B.y=–(x–1)2+4C.y=–(x–1)2+2 D.y=–(x+1)2+43.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是A.②④⑤⑥B.①③⑤⑥C.②③④⑥D.①③④⑤4.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是A.4.8 B.5C.6 D.7.25.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为A.6 B.C.2 D.6.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(1-,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④若点A(–3,y1)、点B(12-,y2)、点C(72,y3)在该函数图象上,则y1<y3<y2;⑤若方程a(x+1)(x–5)=–3的两根为x1和x2,且x1<x2,则x1<–1<5<x2.其中正确的结论有A.2个B.3个C.4个D.5个7.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是A.CE B.CE DEC.CE=3DE D.CE=2DE8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CADA.4个B.3个C.2个D.1个二、填空题(本大题共4个小题,每小题6分,共24分)9.已知点D为∠ABC的一边BC上一定点,且BD=5,线段PQ在∠ABC另一边AB上移动且PQ=2,若sin∠B=35,则当∠PDQ达到最大值时PD的长为__________.10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x–6上时,线段BC扫过的面积为.11.如图,在等腰直角三角形ABC中,AB=CB=12,∠ABC=90°,点D为AC上一点,tan∠ADB=3,过D作ED ⊥BD,且DE=BD,连接BE,AE,EC,点F为EC中点,连接DF,则DF的长为__________.12.如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .以下结论:①△CMP ∽△BPA ;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线;④线段AM 的最小值为ABP ≌△ADN 时,BP =4.其中正确结论的序号为__________.(写出所有正确结论的序号)三、解答题(本大题共3个小题,每小题12分,共36分. 解答应写出文字说明、证明过程或演算步骤) 13.如图,在平面直角坐标系中,已知抛物线C 1:y =23622x x ++的顶点为M ,与y 轴相交于点N ,先将抛物线C 1沿x 轴翻折,再向右平移p 个单位长度后得到抛物线C 2,直线l :y =kx +b 经过M ,N 两点. (1)结合图象,直接写出不等式23622x x kx b ++<+的解集;(2)若抛物线C 2的顶点与点M 关于原点对称,求p 的值及抛物线C 2的解析式;(3)若直线l 沿y 轴向下平移q 个单位长度后,与(2)中的抛物线C 2存在公共点,求34q -的最大值.14.如图,平面直角坐标系中,O 为菱形ABCD 的对称中心,已知C (2,0),D (0,–1),N 为线段CD 上一点(不与C 、D 重合).(1)求以C 为顶点,且经过点D 的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA= ∠BAC,求当PQ最小时点Q坐标.15.问题探究:在边长为4的正方形ABCD中,对角线AC、BD交于点O.探究1:如图1,若点P是对角线BD上任意一点,则线段AP的长的取值范围是__________;探究2:如图2,若点P是△ABC内任意一点,点M、N分别是AB边和对角线AC上的两个动点,则当AP的值在探究1中的取值范围内变化时,△PMN的周长是否存在最小值?如果存在,请求出△PMN周长的最小值,若不存在,请说明理由;问题解决:如图3,在边长为4的正方形ABCD中,点P是△ABC内任意一点,且AP=4,点M、N分别是AB边和对角线AC上的两个动点,则当△PMN的周长取到最小值时,求四边形AMPN面积的最大值.参考答案 一、选择题 1.【答案】C 2.【答案】B 3.【答案】D 4.【答案】A 5.【答案】D 6.【答案】B 7.【答案】B 8.【答案】B 二、填空题9. 10.【答案】16 11.【答案】2 12.【答案】①②⑤ 三、解答题13.【解析】(1)∵y =23622x x ++=23(2)42x +-,∴M (2-, 4-).(2分)观察函数图象,可以发现:当20x -<<时,抛物线C 1在直线l 的下方, ∴不等式23622x x kx b ++<+的解集为20x -<<.(3分)(3)令y =23622x x ++中x =0,则y =2,∴N (0,2);将M (2-,4-)、N (0,2)代入y =kx +b 中,得242k b b -+=-⎧⎨=⎩,解得32k b =⎧⎨=⎩,∴直线l 的解析式为32y x =+.(8分)∵若直线l 沿y 轴向下平移q 个单位长度后与抛物线C 2存在公共点, ∴方程2362322x x x q -+-=+-有实数根,即236820x x q -+-=有实数根,∴2(6)43(82)60240q q ∆=--⨯⨯-=-+≥,解得:52q ≥.(10分) ∵40-<,∴当q =52时,34q -有最大值,最大值为53431072-⨯=-=-.(12分) 14.【解析】(1)由已知,设抛物线解析式为y =a (x –2)2. 把D (0,–1)代入,得a =–14, ∴y =–14(x –2)2; (2)如图1,连接BN .∵N 1,N 2是N 的对称点,∴BN 1=BN 2=BN ,∠N 1BD =∠NBD ,∠NBC =∠N 2BC ,∴∠N 1BN 2=2∠DBC . ∵四边形ABCD 是菱形,∴AB =BC ,∠ABC =2∠DBC , ∴∠ABC =∠N 1BN 2,1AB BN =2BCBN ,∴△ABC ∽△N 1BN 2; (3)∵点N 是CD 上的动点,根据点到直线的距离,垂线段最短, 得当BN ⊥CD 时,BN 最短. ∵C (2,0),D (0,–1)∴CDBN min=×BD CO CDBN 1min =BN min∵△ABC ∽△N 1BN 2,∴1AB BN =12 AC N N ,∴N 1N 2min =165; (4)如图2,不妨设P (m ,–14(m –2)2),则E (m ,12m +1), ∴PE =14m 2–12m +2,∴当m =1时,PE min =74,∴P (1,–14),∴Q 1(–52,–14).此时,PQ 1最小,最小值为1–(–52)=72,∴PQ 1=PQ 2=72.设Q 2(n ,12n +1),∵P (1,–14),∴PQ 272, ∴n =–52或n =3110,∴Q 2(3110,5120),∴满足条件的Q(–52,–14)或(3110,5120).15.【解析】(1)如图1中,∵四边形ABCD是正方形,边长为4,∴AC⊥BD,AC=BD,∴当P与O重合时,PA的值最小最小值,当P与B或D重合时,PA的值最大,最大值为4,∴≤PA≤4.故答案为≤PA≤4.(2)存在.理由:如图2中,作点P关于AB、AC的对称点E、F,连接EF交AB于M,交AC于N,连接AE、AF、PA.∵PM+MN+PN=EM+MN+NF=EF,∴点P位置确定时,此时△PMN的周长最小,最小值为线段EF的长,∵∠PAM=∠EAM,∠PAN=∠FAN,∠BAC=45°,∴∠EAF=2∠BAC=90°,∵PA =PE =PF ,∴△EAF 是等腰直角三角形,∵PA EF 的最小值为2, ∴△PMN 的周长的最小值为2.∴△AMN 的面积最小时,四边形AMPN 的面积最大,易知当PA ⊥MN 时,△AMN 的面积最小,此时OA ,OM =ON =OP =4–∴MN =8–,∴S △AMN =12×(8––8,∴四边形AMPN 的面积的最大值=8–(–8)=16–.。

相关文档
最新文档