小型变电站的总体设计思路
变电站工程设计方案

变电站工程设计方案一、项目背景近年来,随着城市化进程的加快和工业化水平的提升,电力需求不断增加。
为了满足城市电力供应的需求,新建变电站的需求日益迫切。
本项目为了满足城市新能源的建设需求,设计了一座变电站工程。
二、项目概况项目位置: 本项目位于城市郊区,地理位置得天独厚,周边没有明显的工业区域,环境较为清洁,适合进行变电站的建设。
建设规模: 变电站总占地面积约5000平方米,总建筑面积约2000平方米。
变电站预期容量为200MVA。
建设内容: 主要包括主变压器、配电设备、控制设备等。
三、项目特点1. 环保性强: 本项目采用了环保材料和科学设计,变电站排放的废气、废水等均符合国家相关标准。
2. 安全性高: 变电站内部采用多层次安全措施,确保变电站设备和工作人员的安全。
3. 经济效益明显: 本项目引进最新的电力技术,提高了变电站的有效利用率,降低了运营成本。
四、设计方案1. 变电站选址选择了城市郊区的一块空地用于变电站的建设。
该地理位置便利,周边环境清洁,便于进行工程建设。
2. 建筑设计变电站建筑面积约2000平方米,主要包括变电设备房、控制室、办公室、仓库等。
建筑设计充分考虑了变电站的使用功能和环境要求,注重建筑结构的稳固和美观。
3. 变电设备选型主变压器采用进口变压器,具有高效率、低损耗、稳定性好等特点。
配电设备选用国内知名品牌,保证了供电的稳定性和可靠性。
4. 安全措施在变电站的设计过程中,设置了多层次的安全措施,包括防火设施、泄露预防设施、紧急疏散通道等,确保了变电站的安全运行。
5. 环保设施在变电站设计中,考虑了环境保护设施,包括废水处理设备、废气处理设备等,使变电站运行不会对周围环境造成污染。
六、施工方案1. 建设时间安排本项目预计总工期为18个月,其中包括设计、施工、验收等环节。
2. 施工过程控制在建设过程中,需对变电站进行多次验收和检测,确保设备和建筑的质量符合国家相关标准。
3. 安全施工在施工过程中,要注重施工安全,严格按照相关法规要求进行操作,保证员工的安全施工。
浅谈35KV小型化变电站的设计

科学技术2010.894浅谈35KV 小型化变电站的设计卢其炳电白县新源农电有限公司 广东 电白 54001、引言随着经济的稳定持续发展,农村电网的建设及改造也在加大力度,以适应经济发展的要求。
针对35KV 变电站建设工程项目资金少、建设周期短的特点,加上我们建设35KV 小型化变电站时积累的经验,结合现在变电站运行的新要求,确立了有自己特色的设计方案。
以我县2002年35KV 观珠站扩建工程的设计为例,阐述其特点如下。
2、35KV 观珠站扩建工程设计方案 2.1 设计规模35KV 观珠站是用电的末端变电站,只有35KV 进线一回,设计容量为终期两台主变:6300KVA×2及六回10KV 出线,本期先上一台主变。
所以需配套建设的设备有母线、站用变、电压互感器、避雷器、无功补偿设备及综合自动化系统、微机五防系统等。
为了缩小规模,减少投资,我们把本变电站设计成小型化变电站,最终采用的规模为建设35KV 进线间隔1个、主变高压侧间隔2个、站用变间隔1个、母线避雷器间隔1个及35KV 母线间隔1个;10KV 主变低压侧间隔2个、出线间隔6个、电容间隔1个、母线电压互感器间隔1个、母线避雷器间隔1个及10KV 母线间隔1个。
2.2 一次电气主结线35KV 及10KV 都采用单母线不分段的结线方式;35KV 进线不设断路器,用一组隔离开关,装在35KV 一端母线架的下面;为了方便站内全部停电的情况下有可靠的控制及检修电源,站用变装于35KV 另一端母线架的下面;2个主变高压侧间隔夹着35KV 母线避雷器间隔等分在母线旁边;2个主变低压侧间隔及2个电容器间隔分布在10KV 母线的一旁;另一旁为6回10KV 出线;10KV 母线电压互感器间隔及母线避雷器间隔则分别装在10KV 母线构架的两端。
这样的结线方式能方便一次设备的最小规模布置。
2.3 总平面布置一次设备采用全户外布置,配电装置为户外敞开式,35KV 及10KV 设备均采用半高型布置,分别置于变电区两端;进站道路设在35KV 及10KV 配电装置之间,且路宽不小于4米,便于各种设备的运输;主变与10KV 配电装置一起布置在道路的同一侧,以便于设备的检修与维护;为了配合节约的原则,建一4000×8000二层楼房作控制室和工具室用,布置在站用变的旁边;全站防雷保护采用2根30米的避雷针,分别置于站区的对角区域;按以上布置,全站总占地面积约1400M 2。
小型变电站的总体设计思路

小型变电站的总体设计思路摘要:变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。
电力系统是由发电机,变压器,输电线路,用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
关键词:变电站总体设计一、变电站构成变电站由一次回路和二次回路构成。
一次回路:配电系统中承担输送和分配电能任务的电路,称为一次回路,也称为主电路或主接线。
一次电路中所有的设备称为一次设备,如变压器、断路器、互感器等。
(1)变换设备。
按电力系统的要求,改变电压或电流大小的设备,如变压器、断路器、互感器等。
(2)控制设备。
用来控制一次电路通断的设备,如高低压断路器、开关等。
(3)保护设备。
用来对电力系统进行过电流和过电压保护的设备,如熔断器、避雷器等。
(4)补偿设备。
用来补偿电力系统中无功功率以提高功率因数的设备。
如并联电容器等。
(5)成套设备。
为了节省空间,按一次电路接线方案的要求,将有关的一次设备及其二次设备组合成一体的电气装置,如高低压开关柜、低压配电箱等。
二次回路:凡用到来控制、指示、监测和保护一次设备运行的电路,称为二次回路,也叫二次接线。
二次回路中所有的电气设备称为二次设备,如仪表、继电器、操作电源等。
二、变电站的分类变电所根据它在系统中的地位,可分为下列几类:(1)枢纽变电所位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330~500kV的变电所,称为枢纽变电所。
小型变电站设计方案

小型变电站设计方案第一章前言随着改革的不断深化,经济的迅速发展。
煤矿对变电所设计水平的要求将越来越高。
现在所设计的常规变电所最突出的问题是设备落后,结构不合理,占地多,投资大,损耗高,效率低,尤其是在一次开关和二次设备造型问题上,基本停留在50—60年代的水平上,从发展的观点来看,将越来越不适应煤矿发展的要求。
随着煤矿不断发展,对电力能源需求也不断增大,致使变电所数量增加,电压等级提高,供电围扩大及输配电容量增大,采用传统的变电站一次及二次设备已越来越难以满足变电站安全及经济运行,少人值班或者无人值班的要求。
现在已经大多采用了微机保护。
分级保护和常规保护相比,增加了人机对话功能,自控功能,通信功能和实时时钟等功能,因此如果通过电力监控综合自动化系统,可以使变电站值班人员或调度中心的人员及时掌握变电站的运行情况,直接对设备进行操作,及时了解故障情况,并迅速进行处理,达到供电系统的管理科学化、规化、并且还可以做到与其他自动化系统互换数据,充分发挥整体优势,进行全系统的信息综合管理。
第二章负荷统计和计算2.1负荷计算的意义计算负荷是根据已知的工厂的用电设备安装容量确定的、预期不变的最大假想负荷。
它是设计时作为选择工厂电力系统供电线路的导线截面、变压器容量、开关电器及互感器等的额定参数的重要依据。
负荷计算的目的是为了掌握用电情况,合理选择配电系统的设备和元件,如导线、电缆、变压器、开关等。
负荷计算过小,则依此选用的设备和载流部分有过热危险,轻者使线路和配电设备寿命降低,重者影响供电系统的安全运行。
负荷计算偏大,则造成设备的浪费和投资的增大。
为此,正确进行负荷计算是供电设计的前提,经济运行的必要手段。
2.2负荷计算方法目前负荷计算常用需要系数法、二项式法、和利用系数法,前二种方法在国设计单位的使用最为普遍。
此外还有一些尚未推广的方法如单位产品耗电法、单位面积功率法、变值系数法和ABC法等。
常采用需用系数法计算用电设备组的负荷时,应将性质相同的用电设备划作一组,并根据该组用电设备的类别,查出相K,然后按照上述公式求出该组用电设备的计算负荷。
35KV户外简易变电所设计

35KV全户外小型化简易变电所设计摘要:本文针对农网改造中对35KV全户外小型化简易变电所从电气主接线、设备选择、电气平面布置、继电保护和二次回路的设计,以及建设周期、投资方面作出对比分析,对35KV全户外小型化简易变电所的设计方案、出发点进行了详细阐述。
关键词:全户外布置小型化简易变电所主接线设备选型1、引言近年来,农网改造中出现了许多农村35KV简易变电所,以往35KV常规变电所设计二次回路采用直流操作,变压器高低压侧均采用断路器,保护设计复杂,设备安装、调试、维护工作量大,10KV采用开关柜户内布置,需建设10KV配电室,土建施工周期长,已不能适应农网建设周期短、资金紧的需要以及农村变电所的一些特点。
目前,在我单位已经建设并投运了4座农村简易变电站,结合以上变电所的设计特点,比较总结出农村小型化全户外布置变电所的推荐方案,以适应农村用电的特点,满足农村经济发展的需要。
2、全户外布置小型化变电所设计的特点2.1电气主接线设计2.1.1、主接线设计的基本要求电气主接线设计是变电所设计的主体,它直接关系着全厂电气设备的选择,配电装置的布置、继电保护和自动装置的确定。
电气主接线表明了变压器、断路器和线路等电气设备的数量、规格、连接方式以及可能的运行方式,是变电站电气部分投资大小的决定性因素。
对于农村小型化全户外简易变电所来说,要满足以下电气主接线的基本要求:A、根据用户的特点,保证必要的供电可靠性和电能质量;B、运行、维护灵活、方便;C、简单明了,经济合理;D 、具有将来发展和扩建的可能性;2.2、电气主接线设计农村农村小型化全户外简易变电所一般为用电末端变电所,35KV 进线一回,主变单台容量不大于3000KVA ,设计规模为1台或2台主变,由于单母线接线简单、清晰,需要投资的电气设备少,配电装置的建造费用低,操作方便,所以,35KV 、10KV 母线宜采用单母线方式,设计10KV 出线4回,备用1回。
变电站工程开发方案设计

变电站工程开发方案设计一、工程概述变电站是电力系统的重要组成部分,主要用于将输送来的高压电能转换为低压电能,以满足城市和工业生产的用电需求。
本方案设计的变电站工程位于XX省XX市,占地面积约XX平方米,总投资约XX万元。
变电站的建设旨在提升该地区的电力供应能力,缓解供电紧张局面,促进当地经济的稳步发展。
二、工程需求1. 电能输送需求:根据当地电力负荷特点和发展规划,变电站需满足每天高峰期的用电需求,保障正常生活和生产用电;2. 安全稳定需求:变电站需具备良好的电网连接性和安全可靠性,保障电能输送过程中的安全性和稳定性;3. 环保节能需求:变电站工程要求体现绿色低碳理念,采用高效节能的设备和技术,减少对环境的影响。
三、设计方案1. 变电站选址:根据当地的地质条件和用地规划,变电站选址在XX市郊区,远离城市中心,避免对居民生活和环境造成不必要的影响;2. 变电站规模:变电站工程设计总容量为XX兆瓦,包括两个110KV高压配电装置和两个10KV低压配电装置,满足当地日常用电需求;3. 设备选型:变电站选用国内外知名品牌的变压器、断路器、隔离开关等设备,确保电能转换和输送过程的安全可靠;4. 环保节能设计:变电站采用先进的环保设备和技术,进行排放治理和能耗管理,减少对环境的影响,并提升设备的整体能效;5. 安全防护设计:变电站围墙、安全标志和防火设施等都符合国家标准,保障安全生产和用电过程中的人身安全。
四、工程实施1. 前期准备:项目开工前,需获得相关审批和批准文件,开展选址清理和地基工程准备;2. 设备采购:根据设计方案的要求,选购符合条件的变电设备,并进行验收和入库管理;3. 设备安装:根据设计方案,实施设备的安装和调试工作,保证设备正常运行;4. 环保治理:设备投运后,进行环保治理和能耗管理工作,确保变电站的安全和环保达标;5. 竣工验收:变电站工程竣工后,进行验收和交付手续,确定变电站正常运行。
变电站总体布置要求

1 总平面布置1.1一般规定1。
1。
1 变电站总平面布置应按最终规模进行规划设计,根据系统负荷发展要求,不宜堵死扩建的可能,并使站区总平面布置尽量规整。
1.1.2变电站总平面布置应满足总体规划要求,并使站内工艺布置合理,功能分区明确,交通便利,节约用地。
1。
1。
3站区总平面宜将近期建设的建(构)筑物集中布置,以利分期建设和节约用地.城市地下(户内)变电站土建工程可按最终规模一次建设。
1.1.4变电站的主要生产及辅助(附属)建筑宜集中或联合布置。
当与换流站合并建设时,可根据辅助(附属)建筑的性质、使用功能要求分类集中或联合布置在站前区.1.1.5在兼顾出线规划顺畅、工艺布置合理的前提下,变电站应结合自然地形布置,尽量减少土(石)方量。
当站区地形高差较大时,可采用台阶式布置。
山区变电站的主要生产建(构)筑物、设备构支架,当靠近边坡布置时,建(构)筑物距坡顶和坡脚的安全距离应按第2。
3.4条确定。
1。
1.6城市地下(户内)变电站与站外相邻建筑物之间应留有消防通道.消防车道的净宽度和净高度要满足GB50016《建筑设计防火规范》的相关规定.1。
1.7主控通信楼(室)、户内配电装置楼(室)、大型变电构架等重要建(构)筑物以及GIS组合电器、主变电器、高压电抗器、电容器等大型设备宜布置在土质均匀、地基可靠的地段。
1.1.8位于膨胀土地区的变电站,对变形有严格要求的建(构)筑物,宜布置在膨胀土埋藏较深、胀缩等级较低或地形较平坦的地段;位于湿陷性黄土地区的变电站,主要建(构)筑物宜布置在地基湿陷等级低的地段.1。
1.9扩建、改建的变电站宜充分利用原有建(构)筑物和设施,尽量减少拆迁,避免施工对已建设施的影响。
1。
2主要建(构)筑物1。
2.1主控通信楼(室)宜布置在便于运行人员巡视检查、观察户外设备、减少电缆长度、避开噪声影响和方便连接进站大门的地段.主控通信楼(室)宜有较好的朝向,并使主控制室方便同时观察到各个配电装置区域。
1.变电站通用设计、通用设备总体情况

23
二、通用设备
(一)为什么研究 通用设备?
对设备制造商:减少不同类型、 不同参数、不同性能要求的设备重复 研发,可集中精力投入到通用设备对 应的产品优化和提高质量上来,针对 性更强。
对运行单位:可以减少备品备件 数量,减少仓储管理;紧急情况时, 可以进行不同变电站、不同厂家间的 设备调换;对运行人员的要求更简单。
表半户内站;B代表HGIS方案;C代表瓷柱式断路器站;D代表罐 式断路器方案;E代表户内开关柜方案,E1代表预制舱变电站, E2代表全户内站,E3代表半户内站。
第三字段“方案序列号”:用1、2、3…..表示。
11
一、变电站通用设计
(二)成果体系
2.通用设计方案
(3)方案适用范围 户外GIS和HGIS变电站方案(A、A1、B),适
27
二、通用设备
(二)怎么实现预 期目标?
2、规范接口
工作原则: 在适应大多数厂家设备的前提下,
尽量统一;兼顾需求标准化和厂家差 异化,对于不能完全一致的情况,可 先统一关键接口。
28
(二)怎么实现预 期目标?
二、通用设备
2、规范接口
例如:主变压器,由于技术流派不同,不同 厂家变压器各侧套管位置(三个维度)、外形尺 寸有所不同,怎么满足设计、施工要求?可以明 确相对位置或定位范围(如110kV变电站低压侧套 管),可以明确外轮廓的最大限值。
19
一、变电站通用设计
(三)应用要求
3.建设 管理单位
要了解自己在通用设计应用中的 角色!
了解省公司常用通用设计方案; 掌握并执行公司通用设计应用要 求; 监督设计单位落实应用要求; 评价应用情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小型变电站的总体设计思路
发表时间:2018-08-13T09:34:45.207Z 来源:《基层建设》2018年第21期作者:陈帅
[导读] 摘要:变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。
河南中分仪器股份有限公司河南商丘 476000
摘要:变电所是接受电能、变换电压、分配电能的环节,是供配电系统的重要组成部分,它直接影响整个电力系统的安全与经济运行。
电力系统是由发电机,变压器,输电线路,用电设备(负荷)组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机),变换(变压器,整流器,逆变器),输送和分配(电力传输线,配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。
电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
关键词:变电站总体设计
一、变电站构成
变电站由一次回路和二次回路构成。
一次回路:配电系统中承担输送和分配电能任务的电路,称为一次回路,也称为主电路或主接线。
一次电路中所有的设备称为一次设备,如变压器、断路器、互感器等。
(1)变换设备。
按电力系统的要求,改变电压或电流大小的设备,如变压器、断路器、互感器等。
(2)控制设备。
用来控制一次电路通断的设备,如高低压断路器、开关等。
(3)保护设备。
用来对电力系统进行过电流和过电压保护的设备,如熔断器、避雷器等。
(4)补偿设备。
用来补偿电力系统中无功功率以提高功率因数的设备。
如并联电容器等。
(5)成套设备。
为了节省空间,按一次电路接线方案的要求,将有关的一次设备及其二次设备组合成一体的电气装置,如高低压开关柜、低压配电箱等。
二次回路:凡用到来控制、指示、监测和保护一次设备运行的电路,称为二次回路,也叫二次接线。
二次回路中所有的电气设备称为二次设备,如仪表、继电器、操作电源等。
二、变电站的分类
变电所根据它在系统中的地位,可分为下列几类:
(1)枢纽变电所
位于电力系统的枢纽点,连接电力系统高压和中压的几个部分,汇集多个电源,电压为330~500kV的变电所,称为枢纽变电所。
全所停电后,将引起系统解列,甚至出现瘫痪。
(2)中间变电所
高压侧以交换潮流为主,起系统交换功率的作用,或使长距离输电线路分段,一般汇集2~3个电源,电压为220~330kV,同时又降压供当地用电,这样的变电所起中间环节的作用,所以叫中间变电所。
全所停电后,将引起区域电网解列。
(3)地区变电所
高压侧一般为110~220kV,向地区用户供电为主的变电所,这是一个地区或城市的主要变电所。
全所停电后,仅使该地区中供电。
(4)终端变电所
在输电线路的终端,接近负荷点,高压侧电压为110kV,经降压后直接向用户供电的变电所,即为终端变电所。
全所停电后,只是用户受到损失。
三、变电站主变压器的选择
电力变压器(power transformation文字符号T或TM),是变电所中最关键的一次设备,其功能是将电力系统中的电能电压升高或降低,以利于电能的合理输送和分配。
(一)主变台数的选择
正确选择变压器的台数,对实现系统安全经济和合理供电具有重要意义。
选择主变压器台数时应考虑原则是:(1)应满足用电负荷对供电可靠性的要求。
对供有大量一二级负荷的变电所,应采用两台变压器,以便一台变压器发生故障或检修时,另一台变压器能对一、二级负荷继续供电。
对只有二级负荷而无一级负荷的变电所,也可以只采用一台变压器,但必须在低压侧敷设与其他变电所相连的联络线作为备用电源,或另有自备电源。
(2)对季节性负荷或负荷变动较大而宜于采用经济运行方式的变电所,可以考虑采用两台变压器。
(3)除上述两种情况外,一般车间变电所宜采用一台变压器。
但是负荷集中而容量相当大的变电所,虽为三级负荷,也可采用两台或多台变压器。
(4)在确定变电所主变压器台数时,应适当考虑负荷的发展,留有一定的余地。
变压器的运行可靠性高,发生故障的几率很小,检修周期长,损耗低,所以在选择时一般不考虑主变压器的备用。
同时,随着技术的进步,便器呀的容量可以做得很大,由于单位容量的造价岁单台容量的增加而下降,因此,减少变压器的台数,提高变压器容量,可以降低变压器的本体投资。
因此,在中小型水电站,变电站中,一般主变压器的台数取1-2台为宜。
在本变电站设计中,具有2个电压等级,由于本变电站企业变电站,所以主变台数选择2台,运行时,两台同时运行,互为备用。
(二)绕组数量及连接方式确定
变压器绕组的连接方式必须和系统电压相一致,否则不能并列运行,本变电所有35kV、10kV两个电压等级,根据设计规程规定,“具有两个电压等级的变电所中,首先考虑双绕组变压器。
电力系统采用的绕组连接方式只有星形三角形,高、中、低三侧绕组如何组合要根据具体工程来确定。
我国110KV及以上电压,变压器绕组都采用星形连接,35KV亦采用星形连接,其中性点多通过消弧线圈接地,35KV以下电压,变压器绕组都采用三角形连接。
由于35KV采用星形连接方式与220KV、110KV系统的线电压相位角为零度(相位12点),这样当电压为220\110\35KV,高、中压为自耦连接时,变压器的第三绕组加接线方式就不能三角形连接,否则就不能与现有35KV系统并网。
因而就出现所谓三个或两个绕组全星形连接的变压器。
变压器采用绕组连接方式有D和Y,我国35KV采用Y连接,35KV以下电压的变压器有国标Y/d11、Y/Y0等变电所选用主变的连接组别为Y/d11连接方式。
故本次设计的变电所选用主变的连接组别为YN/d11型。
(三)冷却方式的选择
主变压器一般采用的冷却方式有自然风冷却,强迫油循环风冷却,强迫油循环水冷却。
本次设计选择的是小容量变压器,故采用自然风冷却。
(四)调压方式的选择
变压器的电压调整是用分接开关切换变压器的分接头,从而改变变压器变比来实现的。
切换方式有两种:无激励调压,调整范围通常在±5%以内;另一种是有载调压,调整范围可达30%,设置有载调压的原则如下: 1、对于220KV及以上的降压变压器,反在电网电压可能有较大变化的情况下,采用有载调压方式,一般不宜采用。
当电力系统运行确有需要时,在降压变电所亦可装设单独的调压变压器或串联变压器。
2、对于110KV及以上的变压器,宜考虑至少有一级电压的变压器采用有载调压方式。
3、接于出力变化大的发电厂的主变压器,或接于时而为送端,时而为受端母线上的发电厂联络变压器,一般采用有载调压方式。
四、结束语
随着国民经济的快速稳定发展,电能需求迅速增长,我国电网的规模日益扩大。
做好供配电工作,对促进工业生产、降低产品成本、实现生产自动化和工业现代化有着十分重要的意义,供配电系统的安全运行。
供电的中断将使生产停顿,生活混乱,甚至危及人身和设备安全,形成十分严重的后果。
停电给国民经济造成的损失远远超过电力系统本身的损失。
因此,电力系统运行设计首先要满足可靠,持续供电的要求。
参考文献:
1、水利电力部西北电力设计院编. 《电力工程电气设计手册(第一册)电气一次部分. 》北京:中国电力出版社,1996重印
2、肖艳萍主编. 《发电厂变电站电气设备》.北京:中国电力出版社,2008.
3、李海燕主编. 《电力系统》.北京:中国电力出版社,2006.
4、施怀瑾主编. 《电力系统继电保护(第二版)》.重庆大学出版社.2005。