解一元一次不等式

合集下载

解一元一次不等式的六个技巧

解一元一次不等式的六个技巧

解一元一次不等式的六个技巧解一元一次不等式的基本方法是五步法:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.但,怎样才能正确而迅速地解一元一次不等式呢同学们可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧.现撷取几例介绍,供大家参考:一、巧抵消例1、 解不等式53x —23-x >9+426x - 解析:由于426x -=-23-x ,原不等式可变为:53x —23-x >9-23-x 则:53x >9,所以x >15 评注:把原不等式中相关的式子变形,然后进行抵消,使解题过程变得简捷.其中蕴含着整体思想.二 、巧凑整例2 、解不等式25.0125.05.2x x +-<-. 两边同乘以4得 x x 2210--<-.移项、合并同类项得 x<-12.评注:本题若两边同乘以2,直接去分母,也可以解决问题.但,考虑到分子中的小数,由不等式的性质,不等式两边同乘以一个适当的数“2”,可将小数转化为整数,这样,为下面的运算提供了方便.三、巧拆分例3、 解不等式13965401072814+-<---x x x . 由不等式变形得 132)82(42+-<---x x x .去括号、移项、合并同类项得 8x<4.则x<21 评注:当分子里包含的各项系数能被分母整除时,可以把它拆开,这样省去了去分母这一步骤,也就简化了运算过程,这样还能少犯运算错误,直可谓是一举两得.四、巧分配例4、 解不等式x x ---]21432[23)(>-1 解析:注意到13223=⨯,采用乘法分配律去括号时,可由外往里, 则有:x x ---314>-1,所以43x ->3,故,x <-4. 评注:去括号一般是内到外,也就是,按小、中、大括号的顺序进行.但,有时可反其道而行之,即由外到内去括号,这往往能另辟捷径.五、巧合并例5、 解不等式 )2()1(41)2(3)1(43--->---x x x x . 由不等式变形得 )2()2(3)1(41)1(43--->-+-x x x x . 去括号、移项、合并同类项得 -x>-3.∴x<3.评注:直接去括号较繁,注意到左边各项均含有因式(x-1) 、(x-2),根据不等式括号内代数式的特征把 (x-1) 、(x-2) 看作一个整体,先带括号进行移项、合并同类项运算就会简便得多.六、巧整合例6、 解不等式 3{2x-1-[2(2x-1)+3]}>-3.解析: 把2x-1看作一个整体,则有: 3{(2x-1)-[2(2x-1)+3]}>-3. 大、中括号得,3(2x-1)-6(2x-1)-9>-3,整体合并,得-3(2x-1)>6,所以有,x <21-. 评注:本题如果按照常规解法,也是可行的,但运算量较大.这种方法中,把2x-1看作一个整体,去括号、合并同类项后,再解不等式,就显得轻松多了.可见得,在解题过程中,若恰当运用整体思想,则大有收益,妙不可言.。

《一元一次不等式组的解法》PPT

《一元一次不等式组的解法》PPT

推论法实例
通过思考问题、总结经验和按照 经验解题,我们将找到一元一次 不等式组的解集。
检验题
选择题
通过选择题的方式检验你对一 元一次不等式组解法的理解。
计算题
通过计算题的方式巩固你的解 法技巧。
解答题
通过解答题的方式进一步运用 你的解题能力。
数学思维:从解题到应用
提高解题能力
学习一元一次不等式组的解法,提高你的解题能力, 培养数学思维。
1. 求出各个不等式的解析式。 2. 对解析式进行分类讨论。 3. 求出不等式考问题:仔细思考问题的条件和要求。 2. 总结经验:总结类似问题的解法经验。 3. 按照经验解题:根据经验解决问题。
一元一次不等式组的解法选择
适合图像法的情况
当不等式组的不等式比较简单 且数量较少时,图像法是一个 快速且直观的解法选择。
1
图像法
通过绘制不等式的图像来确定交点,从而获得解集。
2
代数法
通过求解不等式的解析式,对解进行分类讨论,从而获得解集。
3
推论法
通过思考问题,总结经验,并按照经验解题,从而获得解集。
图像法的具体步骤
1. 画图:绘制不等式的图像。 2. 判断交点:确定图像的交点。 3. 说明解集:给出交点的解集。
代数法的具体步骤
提高应用能力
了解一元一次不等式组的应用场景,提高你的应用 能力,解决实际问题。
总结
一元一次不等式组解法回顾
通过本PPT,你已经了解了一元一次不等式组的三种解法:图像法、代数法和推论法。
解题技巧总结
掌握了各种解法的具体步骤和选择条件,你能更好地解决一元一次不等式组问题。
知识拓展
继续学习数学知识,拓展你的数学思维和解题能力。

一元一次不等式解法步骤

一元一次不等式解法步骤

一元一次不等式解法步骤一元一次不等式是数学中常见的一种不等式类型,解决一元一次不等式可以帮助我们找到满足不等式条件的变量取值范围。

下面将介绍一元一次不等式的解法步骤。

1. 理解一元一次不等式的基本形式一元一次不等式的基本形式为ax + b > c(或ax + b < c),其中a、b、c是已知实数,x是未知数。

不等式中的符号可以是大于号(>)或小于号(<),表示不等式的方向。

2. 移项化简首先将不等式中的常数项移至一边,即将b移到不等式的另一边。

这样可以使得不等式的右边为0,简化后续计算。

3. 解一元一次方程将一元一次不等式中的等号去掉,得到对应的一元一次方程。

然后解这个方程,找到方程的根。

这个根将不等式分割成两个区间,分别是满足不等式和不满足不等式的区间。

4. 判断不等号方向根据一元一次不等式的不等号方向,判断满足不等式的区间。

如果不等号是大于号(>),则满足不等式的区间在方程的根的右侧;如果不等号是小于号(<),则满足不等式的区间在方程的根的左侧。

5. 表示解集将满足不等式的区间以符号形式表示出来。

如果不等号是大于号(>),则解集可以表示为x > 根;如果不等号是小于号(<),则解集可以表示为x < 根。

6. 检验解集将解集代入原始的一元一次不等式中,检验解集的准确性。

如果解集中的数值满足原始不等式,那么解集是正确的;如果不满足原始不等式,则需要重新检查解集的求解过程。

通过以上的步骤,我们可以解决一元一次不等式,并得到满足不等式条件的变量取值范围。

在实际应用中,一元一次不等式可以用于解决各种问题,例如线性规划、优化等。

因此,掌握一元一次不等式的解法步骤对于数学学习和实际问题求解都是非常重要的。

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。

其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。

111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。

方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。

1.2一元一次不等式(组)解法

1.2一元一次不等式(组)解法
一元一次不等式 (组)及解法
基本概念
1、同解不等式: 如果两个不等式的解集相等,那么 这两个不等式就叫做同解不等式。 2、同解变形: 一个不等式变形为另一个不等式时, 如果这两个不等式是同解不等式,那么 这种变形叫做不等式的同解变形。
一元一次不等式的解法:
任何一个一元一次不等式,经过不等式的同解变形 后。都可以化成
例7 : 解不等式组 4 + 2 x > 7 x + 3 3 x + 6 > 4 x + 5 2 x − 3 < 3x − 5 (1) (2) (3)
x+ y =3 x > 0 例8 : 方程组 的解满Байду номын сангаас x − 2 y = −3 + a y > 0 求a的取值范围
解:两边都乘以6,得
12( x + 1) + 2( x − 2) > 21x − 6
14 x + 8 > 21x − 6
移项,整理后,得
− 7 x > −14
两边除以-7,得解集
{x | x < 2}
例2 : 求不等式21 − 4 x > 5的非负整数解;
例3 : k取什么值时 , 1 2 代数式 (1 − 5k ) − k的值为非负数 ; 2 3
2 3 x + 25 例4 : 关于x的方程 − ( x + m) = + 1的解是正数; 3 3 那么m的取值范围是什么?
例5 : 解不等式组 4 x − 3 > 2( x + 1) 4 x − 2 ≤ −1 1 x + 6 5 5 (1) (2)
例6 : 解不等式

一元一次不等式组的解法经典例题透析

一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。

思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。

解析:解不等式①,得x≥-;解不等式②,得x<1。

所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。

总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。

有等号画实心圆点,无等号画空心圆圈。

举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。

解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。

即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。

所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。

思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。

一元一次不等式的解法

一元一次不等式的解法

一元一次不等式的解法在代数学中,一元一次不等式是一个包含一个未知数的一次多项式不等式。

解一元一次不等式是找到使得不等式成立的未知数的取值范围。

本文将介绍常见的一元一次不等式的解法。

一、一元一次不等式的基本形式一元一次不等式的基本形式如下:ax + b > 0 (或ax + b ≥ 0)其中,a和b是已知实数,x是未知数。

二、两种基本解法解一元一次不等式有两种基本的解法:图解法和代数解法。

1. 图解法图解法是通过在数轴上绘制函数图像来找到不等式的解。

首先,我们将不等式中的等号改为等号,并根据系数a的正负性质判断函数图像的开口方向。

如果a > 0,函数图像开口向上;如果a < 0,函数图像开口向下。

然后,根据b的正负性质确定函数图像与x轴的交点。

如果b > 0,交点在x轴上方;如果b < 0,交点在x轴下方。

最后,确定不等式的解集。

如果不等式是大于号(>),解集为交点右侧的所有实数;如果不等式是大于等于号(≥),解集为交点及其右侧的所有实数。

图解法直观明了,可以直接观察出解集的范围。

2. 代数解法代数解法是通过对不等式进行变形和运算来找到不等式的解。

首先,根据不等式的形式,确定变式的目标。

如果目标是求x的取值范围,则可以将不等式进行变形,以消去a的系数。

然后,进行变形和运算,使得不等式的形式简化。

例如,可以根据a的正负性质将不等式改写为:x > -b/a 或x ≥ -b/a。

最后,根据不等式的形式确定解集的范围,并将解集用集合的符号表示出来。

代数解法较为繁琐,但可以精确得出解集的范围。

三、示例解析现以一个具体的例子来说明一元一次不等式的解法。

例:2x + 3 > 51. 图解法根据不等式的形式,将等号改为等号,得到2x + 3 ≥ 5。

由于a > 0,函数图像开口向上。

由于b > 0,交点在x轴上方。

解集为交点右侧的所有实数:x > 1。

一元一次不等式

一元一次不等式

一元一次不等式一元一次不等式是初中数学中的一个重要概念。

它是一种用来描述数之间大小关系的数学式子,由一个未知数和一个或多个常数构成。

本文将从基本概念、求解方法和应用场景三个方面介绍一元一次不等式的相关知识。

1. 基本概念一元一次不等式是指由一个未知数和一个或多个常数构成的不等式。

一元一次不等式的一般形式为Ax + B > 0(或< 0),其中A和B为实数,且A ≠ 0。

在求解一元一次不等式时,需要注意以下几个基本规则:- 若A > 0,则不等式两端同时乘以正数(或正数的等价形式)不改变不等式的方向。

- 若A < 0,则不等式两端同时乘以负数(或负数的等价形式)会改变不等式的方向。

- 不等式两端同时加(或减)同一个数值,不等式的方向不变。

2. 求解方法对于一元一次不等式的求解,我们可以采用图像法、试值法或代数法等不同方法。

2.1 图像法图像法是一种直观的方法,通过绘制函数图像来确定不等式的解。

对于一元一次不等式Ax + B > 0(或< 0),我们可以绘制出函数y = Ax + B 的图像,并根据图像在数轴上的位置来确定不等式的解集。

2.2 试值法试值法是一种简单有效的方法,在不等式两边选择一些特定的数值进行代入,然后判断不等式的成立情况。

通过不断尝试,最终找到满足不等式的解集。

2.3 代数法代数法是一种更为精确的方法,它基于等价变形和性质运算对不等式进行求解。

通过将一元一次不等式进行等价变形,将未知数的系数化为1,从而得到不等式的解集。

3. 应用场景一元一次不等式在实际问题中有着广泛的应用。

以下是两个常见的应用场景:3.1 财务管理在财务管理中,一元一次不等式可以用来描述投资、贷款或收入等方面的问题。

例如,假设一个人每月的收入为x元,他将其中的40%用于生活费,那么可以通过不等式0.4x > 1000 来计算他每月的最低收入。

3.2 生产与销售在生产与销售中,一元一次不等式可以用来描述成本、销售量和利润等关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次不等式
班级 姓名:
学习目标:会判断什么是一元一次不等式;会解一元一次不等式,并会在数轴上
表示不等式的解集。

学习重点:解一元一次不等式的步骤(会解一元一次不等式)。

学习难点:解不等式每个步骤中要注意的问题。

学习过程: 1、复习加新课 不等式的解集x
不等式的解集x
(3)x>3 用数轴表示:
(4) x ≤ 5 用数轴表示:
2、一元一次不等式的概念
前面的学习遇到的不等式有一个共同的特点:它们都只含有一个未知数,且含未知数的式子是整式,未知数的次数是1。

像这样的不等式叫做
3、判断下列式子是否一元一次不等式:(是的打√,否的打╳) (1)7>4 (2) 3x ≥ 2x+1 (3)
02>x
(4) x+y>1 (5)x 2
+3>2x 二、分层练习(A 层)
1、解下列的一元一次不等式(并在数轴上表示出来,自己画数轴) (1)x -5<0 (2)x+3 ≥ 4
(3) 3x > 2x+1 (4) -2x+3 >-3x+1
2、 解下列的一元一次不等式 (前面两题在数轴上表示出来)
(1) 2x > 1 (2) –2x ≤ 1 (3) 2x > -1 (4)232>x (5) 2->-x (6)23
2
>-x
3、解下列的一元一次不等式
(1)2(x+3)<7 (2) 3x -2(x+1)>0
(3) 3x -2(x -1)>0 (4) -(x -1)>0
4、下列的一元一次不等式
(1)3
2x
x > (2)1213>++
x x
(3)123>-x x (4)13
2212>--+x x
三、分层练习(B 层)
1、解下列不等式
(1) 21->-x (2) 2)1(->+-x (3)23
2
>-x +x
(4) 2)1(32->+-x (5)13
221->--+x x
(6)23
3
212>---+x x (7)3
32x -->
2
2
3x --
四、分层练习(C 层)
已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

相关文档
最新文档