高分子材料拉伸试验5页
高分子物理实验报告

高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。
拉伸性能的测定修改版(优.选)

拉伸性能的测定修改号0页数第 1 页共12 页拉伸性能的测定1.原理沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。
2.术语和定义2.1标距()试样中间部分两标线之间的初始距离,以mm为单位。
2.2实验速度()在实验过程中,实验机夹具分离速度,以mm/min为单位。
2.3拉伸应力tensil e stress σ在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。
2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。
2.3.2拉伸断裂应力tensile stress at break σB试样断裂时的拉伸应力(见图1)以MPa为单位。
2.3.3拉伸强度tensile strength σM在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。
2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx应变达到规定值x%时的应力以MPa为单位。
适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。
但在任何情况下x 都必须小于拉伸强度所对应的应变。
如土工格栅产品中的2%、5%拉伸力。
此条用于取代92版的“偏置屈服应力”2.4拉伸应变tensile strain ε标距原始单位长度的增量用无量纲的比值或百分数(%)表示。
适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称应变”代替。
2.4.1拉伸屈服应变tensile strain at yield εy屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%拉伸性能的测定修改号0页数第 2 页共12 页表示。
试验1高分子材料拉伸强度及断裂伸长率测定

试验1高分子材料拉伸强度及断裂伸长率测定摘要:本实验旨在测定高分子材料的拉伸强度和断裂伸长率。
通过标准试验方法,采用拉伸试验机对高分子材料进行拉伸变形,测量其断裂前的最大拉伸力和断裂时的伸长率,以评估材料的强度和延展性能。
实验结果显示,高分子材料的拉伸强度和断裂伸长率与其结构和成分密切相关。
关键词:高分子材料、拉伸强度、断裂伸长率、材料性能评估引言:高分子材料具有广泛的应用领域,如塑料、橡胶、纤维等。
对于这些材料而言,其力学性能尤为重要,包括强度和延展性。
拉伸强度和断裂伸长率是评估高分子材料力学性能的重要参数,能够反映材料是否具有足够的强度和延展性。
因此,通过测定高分子材料的拉伸强度和断裂伸长率,可以评估其适用范围和质量。
实验方法:1.实验仪器与试样准备使用标准拉伸试验机,根据国际标准ASTM D638或GB 1040,选择合适的试样尺寸。
将试样制备成矩形条形,宽度为10 mm,厚度为约2 mm。
试样长度根据实际需要确定。
2.实验设定与操作将试样夹持在拉伸试验机上,并调整夹具,使试样处于合适的拉伸状态。
根据试样质量和试验要求,设定拉伸速度,在试验过程中保持恒定。
3.实验数据记录在执行拉伸试验时,使用试验机自带的数据采集系统或外接数据采集设备,记录试验过程中采集到的试样载荷和位移数据。
根据数据计算并记录试验过程中的应力和应变值。
4.数据处理根据试验数据计算最大拉伸力(F_max)和最断裂时的伸长率(ε_rupt)。
拉伸强度(σ_max)= F_max / 初始试样横截面积断裂伸长率(ε_rupt)= (L_rupt - L_0)/ L_0 × 100%其中,L_0为试样的初始长度,L_rupt为试样断裂时的长度。
5.实验重复与数据分析对同一批次的高分子材料进行多次试验,记录多组数据,并计算出平均值和标准差。
根据实验数据进行统计分析,评估材料的拉伸强度和断裂伸长率。
结果与讨论:通过多组实验数据分析,可以得出高分子材料的拉伸强度和断裂伸长率范围。
高分子材料性能测试实验报告

高分子材料性能测试实验报告一、实验目的本实验旨在对常见的高分子材料进行性能测试,以深入了解其物理、化学和机械性能,为材料的选择和应用提供科学依据。
二、实验材料与设备1、实验材料聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)2、实验设备电子万能试验机热重分析仪(TGA)差示扫描量热仪(DSC)硬度计冲击试验机三、实验原理1、拉伸性能测试高分子材料在受到拉伸力作用时,会发生形变。
通过测量材料在拉伸过程中的应力应变曲线,可以得到材料的拉伸强度、断裂伸长率等性能指标。
2、热性能测试TGA 用于测量材料在加热过程中的质量损失,从而分析材料的热稳定性和组成成分。
DSC 则可以测量材料在加热或冷却过程中的热量变化,用于研究材料的相变温度、玻璃化转变温度等。
3、硬度测试硬度是衡量材料抵抗局部变形的能力。
硬度计通过压入材料表面一定深度,测量所施加的力来确定材料的硬度值。
4、冲击性能测试冲击试验机通过施加冲击载荷,测量材料在冲击作用下的吸收能量,评估材料的抗冲击性能。
四、实验步骤1、拉伸性能测试将高分子材料制成标准哑铃状试样。
安装试样到电子万能试验机上,设置拉伸速度和测试温度。
启动试验机,记录应力应变曲线。
2、热性能测试称取一定量的高分子材料样品,放入 TGA 和 DSC 仪器的样品盘中。
设置升温程序和气氛条件,进行测试。
3、硬度测试将试样平稳放置在硬度计工作台上。
选择合适的压头和试验力,进行硬度测量。
4、冲击性能测试制备标准冲击试样。
将试样安装在冲击试验机上,进行冲击试验。
五、实验结果与分析1、拉伸性能聚乙烯(PE):拉伸强度较低,断裂伸长率较高,表现出较好的柔韧性。
聚丙烯(PP):拉伸强度较高,断裂伸长率适中,具有一定的刚性和韧性。
聚苯乙烯(PS):拉伸强度较高,但断裂伸长率较低,脆性较大。
聚氯乙烯(PVC):拉伸强度和断裂伸长率因配方不同而有所差异。
2、热性能TGA 结果显示,不同高分子材料的热分解温度和分解过程有所不同。
高分子材料拉伸试验

高分子材料拉伸试验一、实验目的测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线;观察结晶性高聚物的拉伸特征;掌握高聚物的静载拉伸实验方法。
∙∙∙二、实验原理应力—应变曲线本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。
拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。
结晶性高聚物的应力—应变曲线分三个区域,如图1所示。
(1)OA 段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。
即:σ=Eε式中σ——应力,MPa ;ε——应变,%;Ε——弹性模量,MP 。
A 为屈服点,所对应力屈服应力或屈服强度。
(2)BC 段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。
(3)CD 段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而增大,直到断裂点D ,试样被拉断,D 点的应力称为强度极限,即抗拉强度或断裂强度σ断,是材料重要的质量指标,其计算公式为:σ断=P/(b ×d )(MPa) 式中P ——最大破坏载荷,N ; b ——试样宽度,mm ; d ——试样厚度,mm ;断裂伸长率ε断是试样断裂时的相对伸长率,ε断按下式计算:ε断=(F-G )/G×100%式中G ——试样标线间的距离,mm ; F ——试样断裂时标线间的距离,mm 。
实验设备、用具及试样电子式万能材料试验机WDT-20KN 。
游标卡尺一把聚丙烯(PP )标准试样6条,拉伸样条的形状(双铲型)如图2所示。
西安交通大学材料力学性能试验报告——电子拉力机橡胶拉伸试验

西安交通⼤学材料⼒学性能试验报告——电⼦拉⼒机橡胶拉伸试验西安交通⼤学实验报告成绩第页(共页)课程:⾼分⼦物理实验⽇期:年⽉⽇专业班号材料94 组别交报告⽇期:年⽉⽇姓名李尧学号09021089 报告退发:(订正、重做)同组者教师审批签字:实验名称:电⼦拉⼒机测定聚合物的应⼒-应变曲线⼀.实验⽬的1.掌握拉伸强度的测试原理和测试⽅法,掌握电⼦拉⼒机的使⽤⽅法及共⼯作原理;2.了解橡胶在拉伸应⼒作⽤下的形变⾏为,测试橡胶的应⼒-应变曲线;3.通过应⼒-应变曲线评价材料的⼒学性能(初始模量、拉伸强度、断裂伸长率);4.了解测试条件对测试结果的影响;5.熟悉⾼分⼦材料拉伸性能测试标准条件。
⼆.实验原理随着⾼分⼦材料的⼤量使⽤,⼈们迫切需要了解它的性能。
⽽拉伸性能是⾼分⼦聚合物材料的⼀种基本的⼒学性能指标。
拉伸试验是⼒学性能中⼀种常⽤的测试⽅法,它是在规定的试验温度、湿度和拉伸速度下,试样上沿纵向施加拉伸载荷⾄断裂。
在材料试验机上可以测定材料的屈服强度、断裂强度、拉伸强度、断裂伸长率。
影响⾼聚物实际强度的因素有:1)化学结构。
链刚性增加的因素都有助于增加强度,极性基团过密或取代基过⼤,阻碍链段运动,不能实现强迫⾼弹形变,使材料变脆。
2)相对分⼦质量。
在临界相对分⼦质量之前,相对分⼦质量增加,强度增加,越过后拉伸强度变化不⼤,冲击强度随相对分⼦质量增加⽽增加,没有临界值。
3)⽀化和交联。
交联可以有效增强分⼦链间的联系,使强度提⾼。
分⼦链⽀化程度增加,分⼦间作⽤⼒⼩,拉伸强度降低,⽽冲击强度增加。
4)应⼒集中。
应⼒集中处会成为材料破坏的薄弱环节,断裂⾸先在此发⽣,严重降低材料的强度。
5)添加剂。
增塑剂、填料。
增强剂和增韧剂都可能改变材料的强度。
增塑剂使⼤分⼦间作⽤⼒减少,降低了强度。
⼜由于链段运动能⼒增强,材料的冲击强度增加。
惰性填料只降低成本,强度也随之降低,⽽活性填料有增强作⽤。
6)结晶和取向。
结晶度增加,对提⾼拉伸强度、弯曲强度和弹性模量有好处。
高分子材料静拉伸力学性能

§2.1 引言
§2.2 静拉伸试验
§2.3 弹性变形
§2.4 塑性变形 §2.5 材料的断裂
2.1 前言
1、拉伸性能: 通过拉伸试验可测材料的弹性、强度、延性、应变硬化 和韧度等重要的力学性能指标,它是材料的基本力学性能。 2、拉伸性能的作用、用途: a.在工程应用中,拉伸性能是结构静强度设计的主要依据 之一。 b.提供预测材料的其它力学性能的参量,如抗疲劳、断裂 性能。 (研究新材料,或合理使用现有材料和改善其力学性能时, 都要测定材料的拉伸性能)
对于脆性材料和不形成颈缩的塑性材料,其拉伸 最高载荷就是断裂载荷,因此,其抗拉强度也代表断 裂抗力。 对于形成颈缩的塑性材料,其抗拉强度代表产生 最大均匀变形的抗力,也表示材料在静拉伸条件下的 极限承载能力。
3. 实际断裂强度
拉伸断裂时的载荷除以断口处的真实截面 面积所得的应力值称为实际断裂强度Sk。 在这里采用的时试样断裂时的真实界面面 积,Sk也是真是应力,其意义是表征材料对断 裂的抗力,因此有时也称为断裂真应力。
a.
b. 弹性极限
试样加载后再卸载,以不出现残留的永久变形为 标准,材料能够完全弹性恢复的最高应力值为弹性极 限,用σe表示,超过σe时,即认为材料开始屈服。 上述二定义并非完全相等,有的材料,如高强度 晶须,可以超出应力应变的线性范围,发生较大的弹 性变形。橡胶材料可以超过比例极限发生较大的变形 后仍能完全恢复,而没有任何永久变形。 工程上之所以区分它们,是因为有些设计,如火 炮筒材料,要求有高的比例极限,而弹簧材料则要求 有高的弹性极限。
2.2.5、真应力-真应变曲线
• S=F/A (瞬时真应力) • de =dL/L (应变的微分增量),则试棒自L0伸长 至L后,总的应变量为: e =∫0e de = ∫ L0 L dL/L =InL/ L0 式中的e为真应变。于是,工程应变与真应变之 间的关系为: e =InL/ L0 =In(1+ε) 显然,真应变总小于工程应变,且变形量越大, 二者的差距越大。 假定材料的拉伸变形是等体积变化的,则真应 力与工程应力之间有如下关系:S =σ(1 +ε) 这说明真应力S大于工程应力σ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 微电脑采集控制系统面板主要按键功能:
1)项选左键和项选右键:左右选择16个输入指示灯,指明当前要修改或查看的对象。
班级:
学号:
成绩:
实验名称:高分子材料拉伸试验
实验目的:
1、熟悉高分子材料在不同的实验条件下拉伸过程中的基本特征。
2、了解影响高分子材料力学性能的主要因素。
3、掌握微控拉力机基本原理及使用方法
实验设备:PDL系列微控拉力实验机
测量最大负荷:0——1000000N
系统精度:小于0.8%
材料:聚氯乙烯
聚酯薄膜
1 主机由电子调速系统,传动机构,测力系统和伸长自动跟踪装置等组成。
1)电子调速系统:本机采用无机调速系统,对应拉伸速度为25~500mm/min.
2)传动系统:电机通过带动蜗杆蜗轮-丝杠传动系统使下夹持器以设定的速度运动。试验结束后,利用开合螺母使下夹持器手动快速返回,以提高工作效率。
3)测力系统:在主机机头上装有拉力传感器,其上端通过关节轴承与主机顶部横梁的连接盘相连接,下端与上夹持器连接,关节轴承只承受垂直拉力,不受扭力或侧向力影响,以保证测力精度。试验过程中试样受力情况通过力传感器变为电信号输入微电脑采集控制系统。
2)位选左键和位选右键:左右选择“输入参数显示窗口”的某一烁位,用于对其修改。
3)数选左键和数选右键:大小选择闪烁位数字的大小,注意种类选择也是用此两键进行上下移动选择。
4)单消键(按下1秒):对该键按下1秒就可单个取消当前已做次号的数据,成为未做次号。
5)全消键(按下1秒):对该键按下1秒就可全部取消所有已做次号的数据,全部成为未做次号。
实验条件:试验环境热塑性材料为25±2℃,热固性材料为25±5℃,相对湿度 为65±5﹪。
实验原理图:
图一: 高分子材料的三种载荷—伸长曲线
试样示意图:
图二:L=110;C=25+0.5; b=6.5+0.1; W=25;
R1=14; R2=25; G0=25+0.2; H=76;
实验原理:
相对分子质量大于10000以上的有机化合物称为高分子材料,它是由许多小分子聚合而得到的,故又称为聚合物或高聚物。不同类别的高分子材料在拉伸过程中,其载荷—伸长曲线大致可分为三种类型,见图一。
第二种类型:图一中曲线2,恒速拉伸下载荷随伸长而增加,达到极大值后,试样在产生颈缩,载荷降低。随拉伸变形继续进行,颈缩的处的横截面积逐渐减小,试样在伸长不大的情况下断裂。出现这类曲线的材料有ABS塑料,,聚甲醛(POM)和增强尼龙(GFPA)等。
第二种类型:图一中曲线3,恒速拉伸下载荷随伸长而增加,达到极大值后材料发生脆性断裂。出现这类曲线的材料有聚本乙烯(PS),增强聚碳酸脂(GFPC)。
拉伸强度试验是指在规定的试验温度湿度及试验速度下,沿试样纵轴方向上施加静态拉伸载荷,致使试样破损时单位面积上所承受的最大载荷力来衡量的。通过载荷力和试样受载荷作用下对应的标距间见的变化量,即可求出拉伸强度断裂伸长率和弹性模量的值。
实验设备:
PDL系列微控拉力实验机包括:主机、微电脑采集系统和打印机。
3、操作过程:
1)接通主机电源,打开“电源”开关,预热20分钟。
2)拨动上夹持器制动手柄夹紧挂轴,将试样的一端平正垂直地夹在上夹持器中,将移动座上的开合螺母手柄向上提起,使移动座与丝杠脱开,握住移动座操作纵手柄使其停止上合适位置,将另一断平正地夹在下夹持器中,将伸长自动跟踪夹分别夹在25mm标距线上,再将上夹持器制动手柄恢复原位,使上夹持器能摆动,使其处于自由状态。
实验程序及步骤:
1、试验条件:
1)试验环境热塑性材料为25±2℃,热固性材料为25±5℃,相对湿度为65±5﹪。
2)试验速度 :聚氯乙烯:100mm/min;聚酯薄膜:50mm/min。
2、试样的尺寸的测量:测量模塑和板材试样的宽度和厚度准确至0.05mm,薄片材料厚度准确至0.01mm,薄膜或乳胶膜厚度准确至0.001mm,每个试样在标距内测三点,取算术平均值。
3)估计所测材料的最大强度值,选定传感器量程范围,尽量缩小传感器量程范围(分辨率高)。
4)输入1号试样的厚度、宽度、标距、定伸率1、定伸率2 、停止于X。
5)试验开始先按试验键,然后机械动作拉伸;
6)试验结束时先按停止/清零键,然后停止机械动作。
7)同理可做2、3、4号试样。
8)按打印键可单打或全打。
实验数据及计算结果:
已知试样宽度:6.0mm;标距:25mm
表一:拉伸试验结果
材料
名称
试
样
编
号
试样
厚度
mm
最大
力值
N
最大拉伸强度
Mpa
最大伸长率%
伸长值
mm
断裂
强度
Mpa
屈服点
伸长率
%
屈服点强度
Mpa
聚
氯
乙
烯
1-1
2.085
182.5
14.6
354.0
88.5
14.6
第一种类型:为图一中曲线1,恒速拉伸下载荷随伸长而增加,达到极大值后,试样在产生颈缩(或应力白化区),载荷降低。随拉伸变形继续进行,颈缩(或应力白化区)部位的截面尺寸稳定。颈缩(或应力白化区)沿轴向向试样两端扩展,出现冷变形强化现象。一般当颈缩扩展到试样两端后,载荷随伸长增加又出现增大趋势。呈现这类曲线的材料有聚碳酸脂(PC),聚丙烯(PP)和高抗聚本乙烯(HIPS)等。
6)次号键:当次键即按即放时对次号增1或对次号减1。
7)试验键:按下此键自动清“伸长-时间窗口”的数据为零,清力值为零,实验记录开始。
8)停止/清零键:当正在实验时,按此键停止记录数据,实验记录结束。
9)单打/全打键:此键即按即放仅打印当前已做次号的曲线和数据;次键按下1秒,打印所有已做次号的曲线和数据。
实验报告九
要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。姓名: