连续时间系统的频域分析

合集下载

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告

实验5-连续时间系统的复频域分析报告
本实验的目的是研究连续时间系统的复频域分析。

首先,构建了一个由推力继电器组
成的系统,其模型为图1所示。

再将此系统内建模,得到开环传递函数
G(s)=K/[(s+1)(s+1)(s+2)],其中1为系统参数,s为复频变量。

然后使用MATLAB编程,实现基于Laplace变换计算复频域函数和系统振型,并以一系列频率点绘制系统频率响应
曲线等曲线,从而评估系统性能。

实验结果表明,当系统参数K处于[6.5,9.2]中时,系统的复频响应表现出了各向同
性的性能(图2),表明系统具有更一致的响应特性,并且误差幅值在0.03以内保持稳定,说明系统具有良好的稳定性性能。

此外,系统振型(图3)也说明了系统的稳定性,振型
稳定时间较短,且交叉率较小,说明系统具有良好的稳定性能。

综上,连续时间系统的复频域分析中,MATLAB编程在系统参数K为[6.5,9.2]范围内时,运用Laplace变换和求和函数,成功绘制出系统的复频响应曲线,以及相应的系统振型,从而对系统的复频响应、稳定行为等做出定量性、全面性的评估,为系统运行提供了
可靠的参考。

连续时间信号的时域分析和频域分析

连续时间信号的时域分析和频域分析

时域与频域分析的概述
时域分析
研究信号随时间变化的规律,主 要关注信号的幅度、相位、频率 等参数。
频域分析
将信号从时间域转换到频率域, 研究信号的频率成分和频率变化 规律。
02
连续时间信号的时
域分析
时域信号的定义与表示
定义
时域信号是在时间轴上取值的信号, 通常用 $x(t)$ 表示。
表示
时域信号可以用图形表示,即波形图 ,也可以用数学表达式表示。
05
实际应用案例
音频信号处理
音频信号的时域分析
波形分析:通过观察音频信号的时域波形,可 以初步了解信号的幅度、频率和相位信息。
特征提取:从音频信号中提取出各种特征,如 短时能量、短时过零率等,用于后续的分类或 识别。
音频信号的频域分析
傅里叶变换:将音频信号从时域转换 到频域,便于分析信号的频率成分。
通信系统
在通信系统中,傅里叶变 换用于信号调制和解调, 以及频谱分析和信号恢复。
时频分析方法
01
短时傅里叶变换
通过在时间上滑动窗口来分析信 号的局部特性,能够反映信号的 时频分布。
小波变换
02
03
希尔伯特-黄变换
通过小波基函数的伸缩和平移来 分析信号在不同尺度上的特性, 适用于非平稳信号的分析。
将信号分解成固有模态函数,能 够反映信号的局部特性和包络线 变化。
频域信号的运算
乘法运算
01
在频域中,两个信号的乘积对应于将它们的频域表示
相乘。
卷积运算
02 在频域中,两个信号的卷积对应于将它们的频域表示
相乘后再进行逆傅里叶变换。
滤波器设计
03
在频域中,通过对频域信号进行加权处理,可以设计

连续时间系统的频域分析-资料

连续时间系统的频域分析-资料
对离散时间LTI系统,也有同样的结论。但对线性 相位系统,当相位特性的斜率是整数时,只引起信号 的时域移位。若相位特性的斜率不是整数,由于离散 时间信号的时移量只能是整数,需要采用其他手段实 现,其含义也不再是原始信号的简单移位。
傅里叶变换形式的系统函数
et ht rt

E H R
若e(t) E(), 或E(j)

7

二维傅里叶变换的模
模相同,相位为零
模为1,相位相同

8

相位相同,模为(g)图的
(g)图
4.2 LTI系统频率响应的模和相位表示
The Magnitude-Phase Representation of the Frequency Response of LTI Systems
• LTI系统对输入信号所起的作用包括两个方面: 1.
求 稳 v2 (t)态 响 应
解:
V 1 ( j) j π ( 0 ) ( 奇函0 ) 数
V 2 (j) H (j)V 1 (j)
偶函数
H () j e j ( ) j π ( 0 ) ( 0 )
所 V 2 ( j ) H ( j 0 ) 以 j π ( 0 ) e j ( 0 ) ( 0 ) e j ( 0 )
这说明:一个信号所携带的全部信息分别包含在 其频谱的模和相位中。
因此,导致信号失真的原因有两种: 1.幅度失真:由于频谱的模改变而引起的失真。 2.相位失真:由于频谱的相位改变引起的失真。
在工程实际中,不同的应用场合,对幅度失真 和相位失真有不同的敏感程度,也会有不同的 技术指标要求。
原图像 傅里叶变换的相位
第四章 连续时间系统频域分析 齐开悦

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

连续时间系统的频域分析

连续时间系统的频域分析

d
ln(e2 )
12
d
1
2
2
d
1
1 2
1
d
lim
B
tg 1
B B
lim 2(B tg1B) 2 lim (B )
B
B
2
发散的,物 理不可实现
5.7 希尔伯特变换*(Hilbert)
物理可实现系统的实质是具有因果性 因果系统的实部和虚部之间相互限制 因果系统的模和相角之间相互限制
e
j
2
arctg (
2
)
2 2
V2 ( j )
j
E (1 e j )
j
E (1 e j ) E (1 e j )
j
j
v2 (t) E(1 et )u(t) E(1 e(t ) )u(t )
v2 (t )
t
5.3 周期信号激励下的系统响应*
一、正弦周期信号激励下的系统响应 正弦周期激励信号的傅氏变换
ln H ( j) ln H ( j) j( j)
ln H ( j ) 1 () d
( j ) 1
ln H ( j) d
因果系统的频谱模被已知的相位唯一地确 定,反过来也一样.
5.8 调制与解调
调制:
g(t) 相乘 g(t) cos0t f (t) g(t) cos0t
R( j) [ () 1 ](1 e j )e j t0 j
r(t) 1 R( j)e j t d 2
1
Si[(t
t0
)
Si[(t
t0
)]
Y=处,为Si(y)第一个峰起点, Si()=1.8514.
r(t)
|max

实验四连续时间系统的复频域分析

实验四连续时间系统的复频域分析
理论数据表
根据实验原理和系统设计,计算出理论上的关键数据,并与实验数据进行对比,以验证实验结果的正确性。
结果对比分析பைடு நூலகம்
1 2
波形图对比
将实验波形图与理论波形图进行对比,观察两者 在幅度、频率和相位等方面的差异,并分析产生 差异的原因。
数据对比
将实验数据与理论数据进行对比,计算误差并分 析误差来源,以评估实验结果的准确性和可靠性。
系统函数与传递函数
系统函数
描述系统动态特性的数学表达式,通 常表示为微分方程或差分方程的形式。 系统函数反映了系统对输入信号的响 应特性。
传递函数
在复频域中,传递函数表示系统输入 与输出之间的关系。它是系统函数在 复频域的表示形式,便于分析系统的 频率响应和稳定性。
稳定性分析
稳定性定义
稳定性是指系统在受到扰动后,能够恢复到原来平衡状态的 能力。对于连续时间系统,稳定性通常指系统的输出在有限 时间内有界。
稳定性判据
根据实验结果,可以总结出连续时间系统稳定的充分必要条件是系统函数H(s)的极点全部 位于s平面的左半平面。
收获与体会
理论与实践结合
通过实验操作,加深了对连续时间系统复频 域分析理论的理解,实现了理论与实践的有 机结合。
实验技能提升
在实验过程中,熟练掌握了信号发生器、示波器、 频谱分析仪等实验仪器的使用,提高了实验技能。
系统函数
连续时间系统的系统函数是复频域中 的传递函数,描述了系统的频率响应 特性。
03 复频域分析方法
CHAPTER
傅里叶变换与拉普拉斯变换
傅里叶变换
将时间域信号转换为频域信号,便于 分析信号的频率特性。通过正弦和余 弦函数的叠加来表示信号,实现信号 的时频转换。

[精品]连续时间LTI系统的频率特性及频域分析

[精品]连续时间LTI系统的频率特性及频域分析

[精品]连续时间LTI系统的频率特性及频域分析连续时间LTI系统(Linear Time-Invariant System)是指可用于描述各种物理和工程系统运动规律的动态系统。

它们由一对连续时变系统(如模型、结构和控制)和一对线性运算符构成,其具有因变量(响应)和自变量(输入)之间的线性关联性、时间不变性、结构连续的性质,并且在响应上呈现出定义的平稳性,因而它们在描述众多系统运动规律中被广泛应用。

对于连续时间LTI系统的频域特性的研究,则涉及这些系统的相位特性、幅频特性、切趾特性等。

同时,也要探讨系统中不同频率分量的传输特性,因为有不同频率分量的信号既可以幅频分析也可以相位分析,可以衡量系统不同频率下的相应响应。

由于连续时间LTI系统在有限频率通道内传播信号时发生了部分信号丢失,因此我们引入了频域分析得到系统频响阻抗。

这样一来,它就可以用来测量系统频带上的增益,系统的模态表现,以及系统的传播属性和可控特性。

在频域分析过程中,由于信号可以被分解为离散频率分量,所以对于单个频率分量来说,有关连续时间LTI系统的分析可以比较容易地完成。

一般情况下,每一个频率分量的传播特性由一个线性系数连接,称之为频响函数,可以衡量一个系统的频率响应情况。

总的来说,对于连续时间LTI系统,研究其频率特性及频域分析具有重要的意义。

他可以提供一个系统的相位特性、幅频特性、切趾特性等详细的分析,而且由于信号可以分解为离散频率分量,因此可以很容易地实现频域分析,并衡量一个系统的频率响应情况。

此外,还可以利用频域分析来测量系统的增益,模态表现,以及系统的传播属性和可控特性,进而提高系统的性能,实现性能的优化。

第5章 连续时间信号与系统的频域分析

第5章  连续时间信号与系统的频域分析
❖ (1) f (t) 在一个周期内绝对可积; ❖ (2) f (t) 在一个周期内的断点数是有限的; ❖ (3) f (t) 在一个周期内的极值点数是有限的。由于一
般的周期信号都满足狄里赫利条件,所以以后不再 提及。 ❖ 由以上的讨论可知,任意一个周期信号均可以展开 成以下的傅里叶级数
信号与系统
第5章 连续时间信号与系统的频域分析
n0tdt
T0 2
t0 T0 12 dt T0 t0
信号与系统
第5章 连续时间信号与系统的频域分析
❖ 式中,和均为正整数;0 2/T0 。上式说明三角函数 集是正交函数集。由于三角函数集中的元素有无穷 多个,所以三角函数集是完备正交集。也就是说, 任意一个周期信号 f (t) 均可展开成傅里叶级数,但 前提是必须满足以下的狄里赫利条件:

❖ 所以
第5章 连续时间信号与系统的频域分析
(Cn e jn0t )*
Cn (e jn0t )*
C ejn0t n
(5-22)


f (t) C0 2 Re(Cn e jn0t )
(5-23)
n 1
❖ 2. 由指数函数集的正交性到指数形式的傅里叶级数
❖ 指数函数集 ejn0t n 0,1,2, 的元素为无数个不同角频率的虚
f
(t)
a0 2
N n 1
(ancos n0t
bnsin n0t)
信号与系统
第5章 连续时间信号与系统的频域分析
❖ 【例5-1】 求图5.2所示标准方波信号的傅里叶级数展开式。
❖ 解:由图5.2可以看出,该方波信号的周期为 T0 。在一个
周期内,f (t) 的表达式为
f
(t t T0 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊于
《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学
x=X*exp(j*n'*w1*t)
拉普拉斯变换
在线性时不变系统分析和研究中,Laplace 变换是一 种很常用的变换域分析方法。它把时域中求解响应的问题 通过 Laplace 变换转换成复频域中的问题进行分析;在复 频域中求解后再通过 Laplace 逆变换还原为时间原函数。 它把时域中输入输出之间的卷积运算转化为变换域中的乘 法运算,使运算变得方便、快捷。
0 (s )2 02
11
et cos0t
s (s )2 02
12
t sin 0t
2 0 s (s2 02 )2
13
t cos0t
s2 02 (s2 02 )2
拉普拉斯变换的性质
序号
名称
结论
1
线性性质 a1 f1 t a2 f2 t a1F1 s a2F2 s
Laplace 变换和逆变换定义式为
F (s) f (t)estdt
f (t) 1 j F (s)estds
2 j j
在 Matlab中实现 Laplace 变换可直接调用指令 laplace 和ilaplace 进行;调用时与傅立叶变换函 数调用方法相同。
反变换
f(t)= 1
2

F
(
j
)e
jt
d
傅立叶变换函数
fourier函数 功能:实现信号f(t)的傅立叶变换。 调用格式: F=fourier(f):是符号函数f的傅立叶变换,默认返回 函数F是关于w的函数。 F=fourier(f,v):是符号函数f的傅立叶变换,默认返回 函数F是关于v的函数。 F=fourier(f,u,v):是关于u的函数f的傅立叶变换,返 回函数F是关于v的函数。
0
序号
名称
结论
7 复频域微分 性质
8 复频域积分 性质
9 初值定理
10 终值定理
tf t dF s
ds
(t ) n
f
t

dnF s
dsn
f
t
t



s
F

d
f
0

lim
t 0
f
t
lim sF s s
f lim f t lim sF s
将系统函数的零、极点标在S平面上,并用“ ”
表示零点,用“ ”表示极点,这个图称为系
统函数的零、极点分布图,简称系统的零极点 图。通常零、极点位置就是指H(s)的零点、极 点在S平面上的位置。
roots函数 求多项式的根。 调用格式: r=roots(c) 其中c为多项式的系数向量,r为根向量,求出的根向 量为列向量。
å =
a0 + 2
¥
cn cos(nWt + j
n= 1
n)
å 1 ¥
j (nWt+ j n )
= 2 n= - ? Ane
非周期信号的傅立叶变换
非周期信号不能直接用傅立叶级数表示,但可以
利用傅立叶分析方法导出非周期信号的傅立叶变
换。
正变换
F ( j)

f
(t)e jt dt
已知系统函数:
H (s)

s2
s 1 2s
2
求出该系统的零极点,并画出其零极点分布图。
MATLAB实现: b=[1,-1]; a=[1,2,2]; zs=roots(b); ps=roots(a); plot(real(zs),imag(zs),'o',real(ps),imag(ps),'kx','marker size',12) axis([-2,2,-2,2]); grid; legend('零点','极点');
r=-1/6 -1/2
2/3
p=-3
-1
0
F(s)的展开式:
F(s) 2 / 3 1/ 2 1/ 6 s s 1 s 3
由基本的Laplace变换对可得反变换为
f (t) 2 u(t) 1 etu(t) 1 e3tu(t)
3
2
6
系统函数的零、极点分布与系统的时 域和频域特性
修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.初
二、实验原理
Fourier 级数的理论告诉我们:任何周期信号只要满 足狄里赫利条件就可以分解成指数分量之和(指数 Fourier 级数)或直流分量与正弦、余弦分量之和(三 角 Fourier 级数)如式所示:
å f (t) =
a0 2
+
¥
(an cos nWt +
n= 1
bn sin nWt)
图形曲线。 思考题:连续系统的零极点对系统幅频响应有
何影响?
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到
ifourier函数 功能:实现信号F(jw)的傅立叶逆变换。 调用格式: f=ifourier(F):是函数F的傅立叶逆变换,默认返回是 关于x的函数。 f=ifourier(F,u):返回函数f是u的函数,而不是默认的 x的函数。 f=ifourier(F,v,u):是对关于v的函数F的傅立叶逆变换, 返回关于u的函数f。
连续时间信号用计算机处理时,首先将信号离散化以 及窗口化,才能用MATLAB进行频谱分析。
一般处理方法:将周期信号的一个周期或非周期信号 的非零部分作为窗口显示的内容。然后将一个窗口的 长度看成是一个周期,分成N份。进行频谱分析时, 可以根据傅立叶级数或傅立叶变换公式编写程序。
非周期信号频谱的MATLAB实现
特性曲线。
3
syms t; f=2/3*exp(-3*t)*sym('heaviside(t)'); F=fourier(f); subplot(2,1,1) ezplot(f) subplot(2,1,2) ezplot(abs(F))
用傅立叶分析求解连续时间信号的频谱
Laplace正反变换函数 正变换:F=laplace(f) 反变换:f=ilaplace(F)
利用MATLAB实现Laplace正反变换 求f(t)=e-tsin(at)u(t)的Laplace变换。 MATLAB实现:
f=sym('exp(-t)*sin(a*t)'); F=laplace(f) 有:


2 (
1,


4)
求以上系统的零极点分布图以及系统的冲激响应,并
判断系统的稳定性。

3、已知系统函数为
H (s)
s2
1

2
(
4)
求以上系统的零极点分布图以及系统的冲激响应,并 判断系统的稳定性。
四、实验报告要求
简述实验目的、原理。 写出上机调试通过的实验任务的程序并描述其
求和问题转换为用x(t)行向量乘以列向量来实现:
X=x*exp(-j*t’*w)*dt
x=X*exp(j*w'*t)/pi*dw
周期信号频谱的MATLAB实现
处理方法与非周期信号类似,只是在频谱图上进行分 割时,需要按照谐波次数n来处理。
其变换公式:
X=x*exp(-j*t'*n*w1)*dt/T
试求f(t)=e-2|t|的傅立叶变换,并画出f(t)及 其幅度频谱图
syms t x=exp(-2*abs(t)); F=fourier(x); subplot(2,1,1) ezplot(x) subplot(2,1,2) ezplot(F)
试画出信号 f (t) 2 e3t (t) 的波形及其幅频
t
s0
11
时域卷积定 理
f1 t f2 t F1 s F2 s
12 复频域卷积 定理
f1
t


f2
t


1
2
j
F1
s

F2
s
MATLAB函数
residue函数 留数函数,求部分分式展开系数。 调用格式: [r,p,k]=residue(num,den) 其中num,den分别是分子和分母多项式系数,按降序排 列的行向量。 r:部分分式展开式的系数向量 p:为极点 k:为分式的直流分量
信号的傅立叶变换为:
X () 2 x(t)e jtdt 0
按MATLAB作数值计算的要求,将时间t分成N份,用相 加来代替积分:
N
X () x(tn )e jtn t [x(t1),..., x(tn )][e jt1 ,..., e jtn ]' t n1
一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧
相关文档
最新文档