机械原理 连杆机构
机械原理(清华) 3连杆机构

双曲柄机构
以最短杆AB相邻构件AD为机架
曲柄摇杆机构
以最短杆AB相邻构件BC为机架
曲柄摇杆机构
以最短杆AB对面构件CD为机架
双摇杆机构
杆长条件不成立时
双摇杆机构
a+e<b
急回特性:表示回程所用时间小于工作行程所用时间
行程速比系数 K
极位夹角 q(锐角)
t1 1 180 q K t 2 2 180 q
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
低副可逆性
B A
C D
曲柄摇杆机构
双曲柄机构
曲柄摇杆机构
双摇杆机构
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
曲柄摇杆机构
曲柄摇块机构
摆动导杆机构
2.1.2 平面四杆机构的演化
转动副转化为移动副
取不同构件作机架
2.5.3 函数生成机构的设计
已知固定铰链点A、D,设计四杆机构,使得两个连 架杆可以实现三组对应关系
函数生成机构
?
刚体导引机构
d
刚化反转法
以CD杆为机架时看到的四杆机构ABCD的位置相当 于把以AD为机架时观察到的ABCD的位置刚化,以D 轴为中心转过 1 2 得到的。
低副可逆性; 机构在某一瞬时,各构 件相对位置固定不变, 相当于一个刚体,其形 状不会随着参考坐标系 不同而改变。
连杆机构中构件并非一条线,而是代表一个面 刚化反转法一定要理解,熟练使用
机械优化设计方法
设计目标: min [ f( x1, x2,…… ) ] 设计变量: x1, x2,……
约束条件: F1 (x1, x2,…… ) ≤ 0 F2 (x1, x2,…… ) ≤ 0
机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
机械原理第三章平面连杆机构及其设计

b12
C1
B
B2
B1
b. 设计 b12
c12
A
B2
C1
C2
B1
A点所在线
A
D点所在线
D
C C2
D
★ 已知连杆两位置
c23
——无穷解。要唯一解需另加条件 ★ 已知连杆三位置
b23 B3
c23
——唯一解 ★ 已知连杆四位置
——无解 B3
b12 B2 B1
C1 C2
C3
AD
B2 B1
分析图3-20
C2 C1 B4
反平行四边形
车门开闭机构
3)、双摇杆机构
若铰链四杆机构的两连架杆均为摇杆, 则此四杆机构称为双摇杆机构。
双摇杆机构
双摇杆机构的应用 鹤式起重机机构
鹤式起重机
倒置机构:通过更换机架而得到的机构称为原机构的倒置机构。
变化铰链四杆机构的机架
C
B
整转副
2
(<360°)
(0~360°)
3
1
(0~360°)
(1)、取最短构件为机架时,得双曲柄机构。 (2) 、取最短构件的任一相邻构件为机架时,均得曲柄
摇杆机构。 (3)、取最短构件的对面构件为机架时,得双摇杆机构。
判断:所有铰链四杆机构取不同构件为机架时,都能演化成带 曲柄的机构。
例:图示机构尺寸满足杆长条件,当取不同构件为机架时 各得什么机构?
取最短杆相 邻的构件为 机架得曲柄 摇杆机构
最短杆为 机架得双 曲柄机构
取最短杆对 边为机架得 双摇杆机构
特殊情况:
如果铰链四杆机构中两个构件长度相等且均为最短杆 1、若另两个构件长度不相等,则不存在整转副。 2、若另两个构件长度也相等, (1)当两最短构件相邻时,有三个整转副。 (2)当两最短构件相对时,有四个整转副。
机械原理四连杆机构全解

双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天效的回转力矩, 显然Pt越大越好。而P在垂直于vc方向的 分力Pn=Psin则为无效分力,它不仅无 助于从动件的转动,反而增加了从动件 转动时的摩擦阻力矩。因此,希望Pn越 小越好。由此可知,压力角越小,机 构的传力性能越好,理想情况是=0, 所以压力角是反映机构传力效果好坏的 一个重要参数。一般设计机构时都必须 注意控制最大压力角不超过许用值。
死点会使机构的从动件出现卡死或 运动不确定的现象。可以利用回转机构 的惯性或添加辅助机构来克服。如家用 缝纫机中的脚踏机构,图4-3a。 有时死点来实现工作,如图4-6所示 工件夹紧装置,就是利用连杆BC与摇杆 CD形成的死点,这时工件经杆1、杆2传 给杆3的力,通过杆3的传动中心D。此力 不能驱使杆3转动。故当撤去主动外力F 后,工件依然被可靠地夹紧。
图4-3a所示为缝纫机的踏板机构, 图b为其机构运动简图。摇杆3(原动 件)往复摆动,通过连杆2驱动曲柄1 (从动件)做整周转动,再经过带传 动使机头主轴转动。
图4-3 缝纫机的踏板机构
曲柄摇杆机构的主要特性有。
急回 压力与传动角 死点
1.急回运动
如图4-4所示为一曲柄摇杆机构, 其曲柄AB在转动一周的过程中,有两 次与连杆BC共线。在这两个位置,铰 链中心A与C之间的距离AC1和AC2分别 为最短和最长,因而摇杆CD的位置C1D 和C2D分别为其两个极限位置。摇杆在 两极限位置间的夹角称为摇杆的摆角。
机械原理平面连杆机构及其设计

3.3按连杆上任意标志线的三组对应位置设计四杆机构
3.4按给定的行程速比系数K设计四杆机构
湖
南 建
§8-4 平面四杆机构的设计
材
高 专
一、 连杆机构设计的基本问题
专
用
作 机构选型-根据给定的运动要求选择机
者 :
构的类型;
潘
存 云
尺度综合-确定各构件的尺度参数(长度
教 授
尺寸)。
同时要满足其他辅助条件:
K1
湖
南 建
曲柄滑块机构的急回特性
材
高
专
专
用
作 者
θ 180°+作者θ:潘存云教授
:
潘
存
云
教
180°-θ
授
θ 180°+θ
作者:潘存云教授
180°-θ
思考题: 对心曲柄滑块机构的急回特性如何? 导杆机构的急回特性 应用:节省返程时间,如牛头刨、往复式输送机等。
对于需要有急回运动的机构,常常是根据需要的行程速比系数K, 先求出θ ,然后在设计各构件的尺寸。
专
专 用
若∠B1C1D≤90°,则
γ1=∠B1C1D
作 者
∠B2C2D=arccos[b2+c2-(d+a)2]/2bc
: 潘 存
若∠B2C2D>90°,
则
γ2=180°-∠B2C2D
云 教 授
γmin=[∠B1C1D, 180°-∠B2C2D]min
机构的传动角一般在运动链 最终一个从动件上度量。
将以上三式两两相加得:
a≤ b, a≤c, a≤d
AB为最短杆 若设a>d,同理有:
B’
a
b C’ b c
机械原理连杆机构

• 应定期检查和更换轴承。
• 减少摩擦和提差。
• 修复偏差可保证机构正常 运行。
结论和展望
连杆机构是机械工程中的重要构件,可应用于各种应用领域。随着技术的发展,我们可以期待连杆机构在未来继续 发挥更加重要的作用。
传动装置
连杆机构常常和其他机械装置如齿 轮组合使用,进一步发挥作用。
2 平衡设计
在设计连杆机构时,必须确保连杆组件的总质量分布均匀、平衡,避免不必要的震动和 噪音。
3 润滑设计
对于长时间操作的机构,应添加水平和垂直滑动表面以及内置的润滑系统(如油泵)。
故障排除技巧
处理连杆机构故障时,您需要全面了解其原因并确定问题解决方案。
磨损和裂纹
轴承失效
• 可更换状况严重的部件。 • 材料选择确保强度和耐久性。
连杆长度影响
修改连杆长度可调节机构运行的速度和步幅。
固定连杆导向
涉及在连杆机构中添加轴承等零部件以控制连杆方向。
摩擦和能量耗散
分析连杆机构在运动中会损耗多少能量,以便更好地为机构添加适当的润滑和润滑系统。
应用领域
连杆机构可应用于各种机械领域,如机床、静态结构、动态系统以及齿轮系统。它在制造行业中扮演着重要角色。
1
机床设计
用于切削、磨削、钻孔和铰孔等操作。
2
内燃机
用于定义汽车发动机中的气缸、连杆、曲轴等部分。
3
飞机制造
用于转化燃油能量为飞机飞行的动能。
设计要点
在设计连杆机构时,请务必考虑到以下注意事项,以便获得最佳性能和高效率。
1 材料选择
选择适当的材料来保证连杆机构在长期使用和高强度运动状态下不会疲劳和变形。
滑块曲柄机构
将旋转运动转换为直线运动,广泛 用于内燃机活塞机构中。
机械原理第二章 连杆机构(第二版)

B1
D
m 2 / t 2 180 K m 1 / t1
180 180 180
问题:急回运动与K有关,K与什么有关?
极位夹角:作往复运动的从动杆在两极限位置时,原动件在两 对应位置间所夹的锐角。
A B2
B1
D
摆动导杆机构
极限位置1:连杆与曲柄拉伸共线 极限位置2:连杆与曲柄重叠共线
l AC 1 a b l AC 2 b a
H
2.急回、极位夹角、行程速比系数
急回运动 :工作行程 、空回行程
工程中将作往复运动(摆动或移动)的从动杆来回运动时间的 比值称为机构从动杆往复行程时间比系数,简称行程速比系数,用 字母K表示,是机构的基本的运动特征参数。
4、压力角、传动角与 传力特性
通过对机构压力角、传动角分析及与之相关的力学与结构特征 来校核和描述机构的传力特性。 1)压力角与传动角
压力角:从动杆受力点处力的方向与受力点速度方向夹的锐角, 称为机构的压力角。
压力角的余角为机构的传动角,用表示。
+=90
B
C
D
F
连杆机构中连杆与从动杆 夹的锐角为机构的传动角 。
平行四边形机构:双曲柄机构中两对边构件长度相等且平行。 特点:主从动曲柄等速同相转动,连杆作平动。 反平行四边形机构
3.双摇杆机构
在铰链四杆机构中,若两连架杆均为摇杆,则称为双摇杆机构。 实例:鹤式起重机 在双摇杆机构中,如果两摇杆长度相等、则称为等腰梯形机构。 实例:汽车前轮转向机构
二.四杆机构具有转动副和曲柄存在的条件
机械原理四连杆机构分析

图4-6 利用死点夹紧工件的夹具
二、双曲柄机构
两连架杆均为曲柄的铰链四杆机构称 为双曲柄机构。
图4-7 插床双曲柄机构
BD2=l22+l32-2l2l3cosBCD 由此可得
l l l l 2l1l 4 cos cosBCD 2l 2 l3
2 2 2 3 2 1 2 4
当=0和180时,cos=+1和-1, BCD分别最小和最大(见图4-4)。 当BCD为锐角时,传动角=BCD, 是传动角的最小值,也即BCD(min) ;
曲柄摇杆机构 双曲柄机构
双摇杆机构
一、 曲柄摇杆机构
在铰链四杆机构中,若两个连架杆, 一个为曲柄,另一个为摇杆,则此铰链 四杆机构称为曲柄摇杆机构。
图4-2所示为调整雷达天线俯仰角的 曲柄摇杆机构。曲柄1缓慢地匀速转动, 通过连杆2使摇杆3在一定的角度范围内 摇动,从而调整天线俯仰角的大小。
图4-2 雷达天线俯仰角调整机构
第四章 连杆机构
平面连杆机构是将各构件用转动 副或移动副联接而成的平面机构。
最简单的平面连杆机构是由四个 构件组成的,简称平面四杆机构。它 的应用非常广泛,而且是组成多杆机 构的基础。
§4-1 铰链四杆机构的基本形式 和特性
全部用回转副组成的平面四杆机构 称为铰链四杆机构,如图4-1所示。
连杆
机架
连 架 杆
图4-1 铰链四杆机构
图中,机构的固定件4称为机架;与 机架用回转副相联接的杆1和杆3称为连 架杆;不与机架直接联接的杆2称为连杆。 另外,能做整周转动的连架杆,称为曲 柄。仅能在某一角度摆动的连架杆,称 为摇杆。
Байду номын сангаас
对于铰链四杆机构来说,机架和连杆 总是存在的,因此可按照连架杆是曲柄还 是摇杆,将铰链四杆机构分为三种基本型 式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H (a b) 2 e 2 (b a ) 2 e 2
0
,有急回特性。 1 B
A
1
有急回特性。
B1
2
B2
三.平面四杆机构的传动角与死点
(一)压力角与传动角 在不计摩擦力、重力、惯性力的条件下,机构 压力角: 中驱使输出件运动的力的方向线与输出件上受 力点的速度方向线所夹的锐角。 F F cos 1 F2 传动角:压力角的余角。 F F2 F sin C 越小,受力越好。 2 B F1v 越大,受力越好。 c 1 1 3 C min A vB D 4 B
3 以最短杆的对边构件为机架,则此机构为双摇杆机构。
(2)如果最短杆与最长杆的长度之和大于其它两杆长度之和 (不满足杆长和条件),则不论选哪个构件为机架, 都为双摇杆机构。
2.滑块机构有曲柄的条件
B 1 a
A
4 2 b C3
B2
B2 2 b C 3 4
B1
1
b
a a
1
E
D
A
a
F G
b
B2
A
(<360°) 1
(0~360°)
(0~360°)
A
(<360°) D
4 双曲柄机构
D
4 双摇杆机构
B 1 A
B
2
4
2
C 3 1 A
4
C 3
(a)曲柄滑块机构
B 1 A
(b)曲柄转动导杆机构
B
回转导杆机 构
2 4
C 3 A1
2 4
(c)曲柄摇块机构
B
1 A
3
C
(c’)曲柄摆动导杆机构
A 2
摆角 D
摇杆点C的 平均速度
v1 C1C2 / t1
v2 C2 C1 / t 2
2
2
1
(2)输出件的行程速度变化系数K: 空回行程平均速度v2与工作行程平均速度v1之比。
v2 t1 1 180 K v1 t2 2 180
K 1 180 K 1
连杆机构 由低副(转动副、移动副、球面副、圆柱副、及
螺旋副等)联结而成的机构。或称低副机构。
椭圆规机构3
曲柄摇杆机 构 曲柄滑块机构(对心)
机械手
冲床
牛头刨床
牛头刨床 插齿机构
§2-1 连杆机构的特点
根据其构件间的相对运动分为平面或空间连杆机构。 根据构件数目分为四杆机构、五杆机构…。 广泛应用的是平面四杆机构,而且它是构成和研究平面 多杆机构的基础。 本章主要讨论平面四杆机构。 平面连杆机构的主要优点: (1)能够实现多种运动轨迹 曲线和运动规律, (2)低副不易磨损而又易于加工 以及能由本身几何形状保持接触等。 平面连杆机构的主要缺点: (1)连杆机构作变速运动的构件惯性力及惯性力矩难 以完成平衡; (2)连杆机构较难准确地实现预期的运动规律,设计 方法也较复杂。
max
ae arcsin b
3.AB为主动的导杆机构
1
2 B
F vB3
A
1
2
a
3
1
A
0
3 图1 C
C
4
B
F vB3
d
max ?
图2
e
三.平面四杆机构的传动角与死点
(一)压力角与传动角 (二)平面四杆机构的最小传动角位置 (三)机构的死点位置
死点:当机构处于传动角 0 (或压力角
C B2 c vB
90)的机构位置
A
vB B b FB a 1 A
2 3 d 4 画出压力角
B1 FB 脚
D
D
C2
踏板
C1 缝纫机主运动机构
请思考: 下列机构的死点位置在哪里;怎样使机构通过死点位置。 B 2 b 2 B
a
1
C 3 4
1
vc
A
A
死点的利用:
B2 A C
3
D
C2 B1
C1
一. 刚体位移矩阵
§2-5 平面四杆机构的解析法设计
Si
y 1 . 构件在平面上的位置表示 用构件上某点的坐标及通过该点 Qi xi yi 的某一直线与固定坐标系的x轴 y1 i x1' pi Q1' 之夹角来确定。例如 位置1的位置参数: S1 Xp1 、 yp1、 y1 ' P1' 1 1 Q1 Oi 位置i的位置参数: p1 Xpi 、 ypi、 i x x1 OO 2. 刚体位移矩阵 1 式中xOi、 1Oi为动参考系坐标原点在固定坐标系中的位移, xQi 构件S上任一点的运动看成是:随动坐标系绕固定 cos y i sin 1i x pi x p1 cos1i y p1 sin 1i xQ1 y坐标系原点O的转动;及随动坐标系平动的合成运动。 sin 可用已知点p1、pi的坐标表示。sin y cos y xxOi 1i xx pi x p cos xip1 1 1 p1 cos1i y pi 1 1 Qi Q1 Q1 cos1i1 yQsin yip1i sin 1i 1i Q1 1 yy 0 xy sin y cos1 cos 1 1 QOi Q1pi 0 x1i1 sinQ1 1i y1i1 p p (i=2、3…n) 1i
一.平面四杆机构的功能及应用
1 .刚体导引功能 2.函数生成功能 3.轨迹生成功能 轨迹生成功能 是指连杆上某点通过某一 预先给定轨迹 的功能。 连杆
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 3.轨迹生成功能 2.函数生成功能 4.综合功能 O1 D1 上剪刀 D2 下剪刀
上连杆 O3
下连杆
O4 O2
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用 二.运动设计的基本问题与方法
1 .平面四杆机构设计的主要任务: 在型综合的基础上,根据机构所要完成的功能运动而提出 的设计条件(运动条件、几何条件和传力条件等),确定机构 的运动尺寸(一般又称为尺度综合),画出机构运动简图。 2 .设计中应满足的附加条件: (1)要求某连架杆为曲柄; (2)要求机构的运动具有连续性; (3)要求最小传动角在许用传动角范围内,即 min (4)特殊的运动要求,如要求机构输出件有急回特性; (5)足够的运动空间等。 3 . 平面四杆机构运动设计的问题概括成下述两个基本问题 (1)实现已知运动规律问题;(2)实现已知轨迹问题 4 .设计方法 (1)实验法;(2)几何法(作图法);(3)解析法
(b>c) (2b)
'
B
1
a
A
b
c
d
4
D r 3
C b 3 c
a-d
B2
r2
d c a b (2a )
d b a c (2b')
由(1)及(2a' )(2b')可得
d+a
d a , d b, d c
铰链四杆机构的类型与尺寸之间的关系:
在铰链四杆机构中: (1)如果最短杆与最长杆的长度之和小于或等于其它两杆 长度之和 ——满足杆长和条件 且: 1 以最短杆的相邻构件为机架,则此机构为以最短杆 为曲柄的曲柄摇杆机构; 2 以最短杆为机架,则此机构为双曲柄机构;
平面四杆机构具有急回特性的条件: (1)原动件作等速整周转动;
(2)输出件作往复运动;
(3)
0
B2
2.曲柄滑块机构中,原动件AB以 1等速转动 B 2 b B 1 C2 C3 a b 2 1 1 1 a B1 C2 C 3 C1 B1 H AABiblioteka C144H
B2
偏置曲柄滑块机构
对心曲柄滑块机构 H=2a, 0 ,无急回特性。
D
1
B 2 b C 1 a
A
F
A
3
4
vc
F
F
vc 2 1 3 B C 2 B
C
1
A
1
A
1
2 B
F vB3
0
v F 1
0 ??
3 C
B 2 b C 1 a
A
3
3
4
vc
画出压力角
三.平面四杆机构的传动角与死点
(一)压力角与传动角 (二)平面四杆机构的最小传动角位置 1 .铰链四杆机构中,原动件为AB。 F2 B 2 b f 4 d C
地面
飞机起落架机构
四.运动的连续性
遇到的运动不连续问题有: C1 B2 1 A 2 B3 4 C1 C2 C3 B 1 A 2 3 1
C C 2
B1
3
D
4
D
2
C1
C
C2
1.错序不连续
2.错位不连续
§2-4 平面四杆机构运动设计的基本问题与方法
一.平面四杆机构的功能及应用
1 .刚体导引功能 刚体导引 是机构能引导刚体(如连杆)通过一系列给 定位置。
双曲柄机构
二、平面四杆机构的演化 1.转动副转化成移动副的演化
C
B
1 A
2 3 4
C
3
C
D
A B 1
2
3
4
B 1 A
D
B 1 A
2 4
2
4