《2.3.2抛物线的简单几何性质》教学案2

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《抛物线的简单几何性质》教学案

教学目的:

1.掌握抛物线的范围、对称性、顶点、离心率等几何性质;

2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形;

3.在对抛物线几何性质的讨论中,注意数与形的结合与转化.

教学重点:

抛物线的几何性质及其运用.

教学难点:

抛物线几何性质的运用.

教学过程:

一、复习引入: 1.抛物线定义:

平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线

2.抛物线的标准方程:

)

焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的

4

1

,即2

42p p =

不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号

二、讲解新课: 抛物线的几何性质 1.范围

因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.

2.对称性

以-y 代y ,方程()022

>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线

的对称轴叫做抛物线的轴.

3.顶点

抛物线和它的轴的交点叫做抛物线的顶点.在方程()022

>=p px y 中,当y =0时,

x =0,因此抛物线()022

>=p px y 的顶点就是坐标原点.

4.离心率

抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e =1.

对于其它几种形式的方程,列表如下:

py

2py

抛物线不是双曲线的一支,抛物线不存在渐近线

通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率

附:抛物线不存在渐近线的证明.(反证法) 假设抛物线y 2

=2px 存在渐近线y =mx +n ,A (x ,y )为抛

物线上一点,

A 0(x ,y 1)为渐近线上与A 横坐标相同的点如图, 则有px y 2±=和y 1=mx +n . ∴ px n mx y y 21

+=-

x

p

x n

m x 2 +

⋅= 当m ≠0时,若x →+∞,则+∞→-y y 1 当m =0时,px n y y 21

=-,当x →+∞,则+∞→-y y 1

这与y =mx +n 是抛物线y 2

=2px 的渐近线矛盾,所以抛物线不存在渐近线

三、讲解范例:

例1 已知抛物线关于x 轴为对称,它的顶点在坐标原点,并且经过点)22,2(-M ,求它的标准方程,并用描点法画出图形.

分析:首先由已知点坐标代入方程,求参数p .

解:由题意,可设抛物线方程为px y 22

=,因为它过点)22,2(-M , 所以 22)22(2⋅=-p ,即 2=p

因此,所求的抛物线方程为x y 42=.

将已知方程变形为x y 2±=,根据x y 2=计算抛物线在0≥x 的范围内几个点的坐标,得

点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样无限地接近于某一直线,也就是说,抛物线没有渐近线.

例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm ,灯深为40cm ,求抛物线的标准方程和焦点位置.

分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p 值.

解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于灯口直径.

设抛物线的标准方程是px y 22

= (p >0).

由已知条件可得点A 的坐标是(40,30),代入方程,得402302

⨯=p ,

即4

45=

p 所求的抛物线标准方程为x y 2

45

2

=. 例3 过抛物线px y 22

=的焦点F 任作一条直线m ,交这抛物线于A 、B 两点,

求证:以AB 为直径的圆和这抛物线的准线相切.

分析:运用抛物线的定义和平面几何知识来证比较简捷.

证明:如图.设AB 的中点为E ,过A 、E 、B 分别向准线l 引垂线AD ,EH ,BC ,垂足为D 、H 、C ,则

|AF |=|AD |,|BF |=|BC |

∴|AB |=|AF |+|BF |=|AD |+|BC |=2|EH |

所以EH 是以AB 为直径的圆E 的半径,且EH ⊥l ,因而圆E 和准线l 相切. 四、课堂练习:

1.过抛物线x y 42

=的焦点作直线交抛物线于()11,y x A ,()22,y x B 两点,如果

相关文档
最新文档