菱形复习课件
合集下载
人教版中考数学复习《第21讲:矩形、菱形、正方形》课件

BF=3x,由勾股定理得:AF2+BF2=AB2,即x2+(3x)2=22,解得
x=
10
,所以
5
3 10
,即
5
3x=
BF=
3 10
.
5
18
考点梳理自清
考法1
考法2
考题体验感悟
考法互动研析
考法3
3.(2017·江苏徐州)如图,在平行四边形ABCD中,点O是边BC的中点,
连接DO并延长,交AB延长线于点E连接EC.
一半
5
考点梳理自清
考点一
考点二
考点三
考题体验感悟
考法互动研析
考点四
考点三正方形(高频)
正方形
的定义
正方形
的性质
正方形
的判定
有一组邻边相等,且有一个角是直角的平行四边形叫
做正方形
(1)正方形的对边平行
(2)正方形的四条边相等
(3)正方形的四个角都是直角
(4)正方形的对角线相等,互相垂直平分 ,每条对角线
( C )
A.2 5
B.3 5
C.5
D.6
10
考点梳理自清
命题点1
命题点2
考题体验感悟
考法互动研析
命题点3
解析 如图,连接EF交AC于点O,根据菱形性质有FE⊥AC,OG=OH,
易证OA=OC.由四边形ABCD是矩形,得∠B=90°,根据勾股定理得
AC=
4 5
42
+
82 =4
5,OA=2 5,易证△AOE∽△ABC,则
考法3
考法1矩形的相关证明与计算
例1(2017·山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向
x=
10
,所以
5
3 10
,即
5
3x=
BF=
3 10
.
5
18
考点梳理自清
考法1
考法2
考题体验感悟
考法互动研析
考法3
3.(2017·江苏徐州)如图,在平行四边形ABCD中,点O是边BC的中点,
连接DO并延长,交AB延长线于点E连接EC.
一半
5
考点梳理自清
考点一
考点二
考点三
考题体验感悟
考法互动研析
考点四
考点三正方形(高频)
正方形
的定义
正方形
的性质
正方形
的判定
有一组邻边相等,且有一个角是直角的平行四边形叫
做正方形
(1)正方形的对边平行
(2)正方形的四条边相等
(3)正方形的四个角都是直角
(4)正方形的对角线相等,互相垂直平分 ,每条对角线
( C )
A.2 5
B.3 5
C.5
D.6
10
考点梳理自清
命题点1
命题点2
考题体验感悟
考法互动研析
命题点3
解析 如图,连接EF交AC于点O,根据菱形性质有FE⊥AC,OG=OH,
易证OA=OC.由四边形ABCD是矩形,得∠B=90°,根据勾股定理得
AC=
4 5
42
+
82 =4
5,OA=2 5,易证△AOE∽△ABC,则
考法3
考法1矩形的相关证明与计算
例1(2017·山东潍坊)如图,将一张矩形纸片ABCD的边BC斜着向
20-菱形的判定经典课件

矩形的判定:
矩形判定依据1 定义
复习
有一个角是直角的平行四边形是矩形。
矩形判定依据2 对角线相等的平行四边形是矩形。
矩形判定依据3 有三个角是直角的四边形是矩形。
问题1.什么是菱形? 有一组邻边相等的平行四边形是菱形. 问题2.菱形的性质有哪些? 1.菱形的对角相等,邻角互补;
复习
2.菱形的四条边相等,两组对边分别平行; 3.菱形的对角线互相垂直平分,并且每一条 对角线平分一组对角. 问题3.菱形的面积怎么求? 菱形的面积等于两条对角线长的乘积的一半。
E P A B
证明:对角线互相垂直的平行四边形是 菱形。
已知:如图,在 ABCD中,对角线AC、BD相 交于点O,且AC⊥BD. 求证: ABCD是菱形。 A
B C
O
D
当堂清
如图,在△ABC中,AD⊥BC,垂足为D,点 E、F分别是AB、AC的中点.当△ABC满足 什么条件时,四边形AEDF是菱形?请说明 A 理由.
⒋对角线互相垂直平分的四边形是菱形. 对
例题精析
⒈在四边形ABCD中,AD∥BC,对角线 AC的垂直平分线与边AD、BC相交于点E、 F.四边形AFCE是菱形吗?
A 1 E D
O B 2 F C
当堂清
2.如图,菱形ABCD的边长为4cm, 且∠ABC=120°,E是BC的中点, 在BD上求点P,使PC+PE取最小值, 并求这个最小值。 D C
E
F
B
D
C
如图,在△ABC中,∠BAC=90°,AD⊥BC于D, CE平分∠ACB,交AD于G,交AB于E,EF⊥BC 于F,四边形AEFG是菱形吗?
A
E B G C
F D
当堂清
矩形判定依据1 定义
复习
有一个角是直角的平行四边形是矩形。
矩形判定依据2 对角线相等的平行四边形是矩形。
矩形判定依据3 有三个角是直角的四边形是矩形。
问题1.什么是菱形? 有一组邻边相等的平行四边形是菱形. 问题2.菱形的性质有哪些? 1.菱形的对角相等,邻角互补;
复习
2.菱形的四条边相等,两组对边分别平行; 3.菱形的对角线互相垂直平分,并且每一条 对角线平分一组对角. 问题3.菱形的面积怎么求? 菱形的面积等于两条对角线长的乘积的一半。
E P A B
证明:对角线互相垂直的平行四边形是 菱形。
已知:如图,在 ABCD中,对角线AC、BD相 交于点O,且AC⊥BD. 求证: ABCD是菱形。 A
B C
O
D
当堂清
如图,在△ABC中,AD⊥BC,垂足为D,点 E、F分别是AB、AC的中点.当△ABC满足 什么条件时,四边形AEDF是菱形?请说明 A 理由.
⒋对角线互相垂直平分的四边形是菱形. 对
例题精析
⒈在四边形ABCD中,AD∥BC,对角线 AC的垂直平分线与边AD、BC相交于点E、 F.四边形AFCE是菱形吗?
A 1 E D
O B 2 F C
当堂清
2.如图,菱形ABCD的边长为4cm, 且∠ABC=120°,E是BC的中点, 在BD上求点P,使PC+PE取最小值, 并求这个最小值。 D C
E
F
B
D
C
如图,在△ABC中,∠BAC=90°,AD⊥BC于D, CE平分∠ACB,交AD于G,交AB于E,EF⊥BC 于F,四边形AEFG是菱形吗?
A
E B G C
F D
当堂清
湘教版八年级数学下册课件-菱形的判定

∵AC∠B=AB920°B,C2AB=626c8m2, 1B0Cc=m8.cm,
∴AC=DF=AD=CF=10cm, ∴归四纳边形四A边C形FD的是条菱件形中.存在多个关于边的等量关系 时,运用四条边都相等来判定一个四边形是菱形比较 方便.
例3 如图,顺次连接矩形ABCD各边中点,得到四
证一证 已知:如图,四边形ABCD是平行四边形,对角线AC 与BD相交于点O ,AC⊥BD. 求证:□ABCD是菱形.
证明: ∵四边形ABCD是平行四边形.
B
∴OA=OC.
O
又∵AC⊥BD,
A
C
∴BD是线段AC的垂直平分线.
D
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
归纳总结
平行四边形的判定定理:
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
(2)解:∵∠BCF=120°, ∴∠EBC=60°, ∴△EBC是等边三角形, ∴菱形的边长为4,高为 2 3 , ∴菱形的面积为4 2 3 8 3 . 归纳 判定一个四边形是菱形时,要结合条件灵活选 择方法.如果可以证明四条边相等,可直接证出菱形; 如果只能证出一组邻边相等或对角线互相垂直,可以 先尝试证出这个四边形是平行四边形.
B.AC⊥BD
C.AB=CD
D.AB∥CD
三 菱形的性质与判定的综合运用
例6 如图,在△ABC中,D、E分别是AB、AC的中点, BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (1)证明:∵D、E分别是AB、AC的中点, ∴DE∥BC且2DE=BC. 又∵BE=2DE,EF=BE, ∴EF=BC,EF∥BC, ∴四边形BCFE是平行四边形. 又∵EF=BE, ∴四边形BCFE是菱形;
∴AC=DF=AD=CF=10cm, ∴归四纳边形四A边C形FD的是条菱件形中.存在多个关于边的等量关系 时,运用四条边都相等来判定一个四边形是菱形比较 方便.
例3 如图,顺次连接矩形ABCD各边中点,得到四
证一证 已知:如图,四边形ABCD是平行四边形,对角线AC 与BD相交于点O ,AC⊥BD. 求证:□ABCD是菱形.
证明: ∵四边形ABCD是平行四边形.
B
∴OA=OC.
O
又∵AC⊥BD,
A
C
∴BD是线段AC的垂直平分线.
D
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
归纳总结
平行四边形的判定定理:
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
(2)解:∵∠BCF=120°, ∴∠EBC=60°, ∴△EBC是等边三角形, ∴菱形的边长为4,高为 2 3 , ∴菱形的面积为4 2 3 8 3 . 归纳 判定一个四边形是菱形时,要结合条件灵活选 择方法.如果可以证明四条边相等,可直接证出菱形; 如果只能证出一组邻边相等或对角线互相垂直,可以 先尝试证出这个四边形是平行四边形.
B.AC⊥BD
C.AB=CD
D.AB∥CD
三 菱形的性质与判定的综合运用
例6 如图,在△ABC中,D、E分别是AB、AC的中点, BE=2DE,延长DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (1)证明:∵D、E分别是AB、AC的中点, ∴DE∥BC且2DE=BC. 又∵BE=2DE,EF=BE, ∴EF=BC,EF∥BC, ∴四边形BCFE是平行四边形. 又∵EF=BE, ∴四边形BCFE是菱形;
人教版八年级下册18.2.2 菱形 课件(共30张PPT)

D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E F G H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形 ABCD各边中点,得到四边形EFGH是什么四边形?
拓展1 如图,顺次连接平行四边形ABCD各
边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
E
B
A
∵点E、F、G、H为各边中点,
F
E F G H 1 2 B D , F G E H 1 2A C , D
小刚的作法对吗? 猜想:四条边相等的四边形是菱形.
证一证 已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD;
B
∴AB=CD , BC=AD.
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
解:四边形EFGH是菱形.
中考数学总复习第五单元四边形第30课时菱形课件

第 30 课时 菱形
课前考点过关
| 考点自查 | 考点一 菱形的定义
一组邻边相等的 平行四边形 是菱形.
【疑难典析】 菱形的定义是在平行四边形的基础上
定义的.
课前考点过关
考点二 菱形的性质
1.菱形的四条边都① 相等 . 2.菱形的对角线互相② 垂直平分 ,并且每一条对角线平分一组对角. 3.菱形是中心对称图形,它的对称中心是两条对角线的交点;菱形也是轴对称图形,两条对角线所在的 直线是它的对称轴.
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
课前考点过关
考点三 菱形的判定
1.定义法. 2.对角线互相垂直的① 平行四边形 是菱形. 3.四条边都相等的② 四边形 是菱形.
【疑难典析】 在进行菱形判定时,必须转化出满足菱 形的定义或判定定理所需的条件.
课前考点过关
考点四 菱形的面积
1.由于菱形是平行四边形,所以菱形的面积=底×高. 2.因为菱形的对角线互相垂直平分,所以其对角线将菱
图 30-14
课堂互动探究
【答案】(2)菱形 【解析】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE.∵E 是 AD 的中点,∴AE=DE.
∠������������������ = ∠������������������, 在△FAE 和△BDE 中, ∠������������������ = ∠������������������,∴△FAE≌△BDE.∴AF=DB.
课前考点过关
| 考点自查 | 考点一 菱形的定义
一组邻边相等的 平行四边形 是菱形.
【疑难典析】 菱形的定义是在平行四边形的基础上
定义的.
课前考点过关
考点二 菱形的性质
1.菱形的四条边都① 相等 . 2.菱形的对角线互相② 垂直平分 ,并且每一条对角线平分一组对角. 3.菱形是中心对称图形,它的对称中心是两条对角线的交点;菱形也是轴对称图形,两条对角线所在的 直线是它的对称轴.
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
课前考点过关
考点三 菱形的判定
1.定义法. 2.对角线互相垂直的① 平行四边形 是菱形. 3.四条边都相等的② 四边形 是菱形.
【疑难典析】 在进行菱形判定时,必须转化出满足菱 形的定义或判定定理所需的条件.
课前考点过关
考点四 菱形的面积
1.由于菱形是平行四边形,所以菱形的面积=底×高. 2.因为菱形的对角线互相垂直平分,所以其对角线将菱
图 30-14
课堂互动探究
【答案】(2)菱形 【解析】解:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∠FAE=∠BDE.∵E 是 AD 的中点,∴AE=DE.
∠������������������ = ∠������������������, 在△FAE 和△BDE 中, ∠������������������ = ∠������������������,∴△FAE≌△BDE.∴AF=DB.
中考数学一轮复习:第26课时菱形正方形课件

判定 面积 计算
1.边:对边平行,四边都__相___等___ 2.角:四个角_直__角__(__9_0_゚_)__
3.对角线:对角线互相_垂__直__平__分___且相等,每条对角线平分一组对角4.
正方形既是轴对称图形,又是中心对称图形,它有_______4_条对称轴
1.有一组邻边相等,并且有一个角是直角的平__行__四__边__形__是正方形
DE∥AC,CE∥BD.
求证:四边形OCED是矩形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是菱形,
∴AC⊥BD, ∴∠COD=90°.
第2题图
∴四边形OCED是矩形.
No
第26课时 菱形
返回目录
3. (202X宁德5月质检21题8分)如图,点O是菱形ABCD对角线的交点,点E在
(2)解:∵四边形ABCD是菱形,
∴OC= 1 AC= 1×12=6,CD=AB=10.
2
2
在Rt△DCO中,根据勾股定理得,
OD= CD2-OC2= 102-62 =8.
又∵EF垂直平分AB,
∴BF= 1 AB= 1 ×10=5.
2
2
由(1)可知△BEF∽△DCO,
∴ EF=BF ,即EF=5,
OC DO ∴EF= 15 .
(5)若在正方形ABCD的外侧,作等边三角形DCE,如图②,则∠EAC=___3_0_゚___;
No
第26课时 菱形
返回目录
(6)作∠DAC的平分线AF交BC的延长线于点F,如图③,若AC= 2 ,则CF =_____2_____;
例题图③
例题图④
(7)若点G是AD中点,连接BG,交于AC于点H,如图④,则
1.边:对边平行,四边都__相___等___ 2.角:四个角_直__角__(__9_0_゚_)__
3.对角线:对角线互相_垂__直__平__分___且相等,每条对角线平分一组对角4.
正方形既是轴对称图形,又是中心对称图形,它有_______4_条对称轴
1.有一组邻边相等,并且有一个角是直角的平__行__四__边__形__是正方形
DE∥AC,CE∥BD.
求证:四边形OCED是矩形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是菱形,
∴AC⊥BD, ∴∠COD=90°.
第2题图
∴四边形OCED是矩形.
No
第26课时 菱形
返回目录
3. (202X宁德5月质检21题8分)如图,点O是菱形ABCD对角线的交点,点E在
(2)解:∵四边形ABCD是菱形,
∴OC= 1 AC= 1×12=6,CD=AB=10.
2
2
在Rt△DCO中,根据勾股定理得,
OD= CD2-OC2= 102-62 =8.
又∵EF垂直平分AB,
∴BF= 1 AB= 1 ×10=5.
2
2
由(1)可知△BEF∽△DCO,
∴ EF=BF ,即EF=5,
OC DO ∴EF= 15 .
(5)若在正方形ABCD的外侧,作等边三角形DCE,如图②,则∠EAC=___3_0_゚___;
No
第26课时 菱形
返回目录
(6)作∠DAC的平分线AF交BC的延长线于点F,如图③,若AC= 2 ,则CF =_____2_____;
例题图③
例题图④
(7)若点G是AD中点,连接BG,交于AC于点H,如图④,则
中考数学总复习:矩形、菱形、正方形ppt专题课件

第 二 十 二 讲
第 二 十 三 讲
【思路点拨】 (1)证明全等时应避免把对应边找错. (2)因 s i n ∠E D F =
EF DE
第 二 十 四 讲
, 结合(1)求 E F , D E 的长.
复习目标
知识回顾
重点解析
探究拓展
真题演练
【自主解答】 ( 1) 证明: 在矩形 A B C D 中, BC = AD , A D ∥B C , ∠B = 90°. ∴∠D A F = ∠A E B . ∵D F ⊥A E , AE= BC , ∴∠A F D = 90°= ∠B . 又∵A E = A D . ∴△A B E ≌△D F A .
第 二 十 四 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
名 称
定义与判定 1. 有一个角是直角, 一组邻边相等 的 2. 一组邻边相等的 3. 一个角是直角的 4. 对角线相等且 形 的平行四边
性质
第 二 十 二 讲
1. 对角线与边的夹角为 度 2. 面积等于边长的 3. 面积等于对角线
第 二 十 三 讲
第 二 十 四 讲
复习目标
知识回顾
重点解析
探究拓展
真题演练
➡特别提示: 矩形、 菱形、 正方形都是特殊的平行四边形, 它们都具有平行四 边形的性质, 但又有它们独特的性质.
第 二 十 二 讲
【答案】2. 直角 3. 相等 1. 直角 4. 中心对称图形 1. 相等 2. 四边形 3. 平行四边形 2. 平分 3. 一半 4. 轴对称 1. 平行四边形 2. 矩形 3. 菱形 4. 垂直 1. 45 2. 平方 3. 平方的一半
复习目标
中考数学专题复习课件(第23讲_矩形、菱形、正方形)

考 点 训 练
由 F 为 AB 的中点知,∠CFA=90° ,∴ CF∥EA. 在等边三角形 ABC 中,CF= AD. 在等边三角形 ADE 中,AD=EA,∴CF=EA. ∴四边形 AFCE 为平行四边形. 又∵∠CFA=90° ,∴四边形 AFCE 为矩形.
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
(1)(2010· 芜湖 )下列命题中是真命题的是( A.对角线互相垂直且相等的四边形是正方形 B.有两边和一角对应相等的两个三角形全等 C.两条对角线相等的平行四边形是矩形 D.两边相等的平行四边形是菱形
)
(2)(2009· 凉山 )如图,将矩形 ABCD 沿对角线 BD 折叠,
举 一 反 三
使 C 落在 C′处,BC′交 AD 于点 E,则下列结论不一定 成立的是( ... A. AD =BC′ B.∠EBD=∠EDB C.△ ABE∽△ CBD AE D.sin∠ ABE= ED
【点拨】本题综合考查等边三角形的性质和矩形的判定.
【解答】(1)在等边△ABC 中,∵点 D 是 BC 边的中点,∴∠DAC= 30° .又∵△ ADE 是 举 .∴∠CAE=∠DAE-∠DAC=60° -30° =30° . 一 等边三角形,∴∠DAE= 60° 反 (2)由(1)知,∠EAF=90° . 三
举 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
由 F 为 AB 的中点知,∠CFA=90° ,∴ CF∥EA. 在等边三角形 ABC 中,CF= AD. 在等边三角形 ADE 中,AD=EA,∴CF=EA. ∴四边形 AFCE 为平行四边形. 又∵∠CFA=90° ,∴四边形 AFCE 为矩形.
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
(1)(2010· 芜湖 )下列命题中是真命题的是( A.对角线互相垂直且相等的四边形是正方形 B.有两边和一角对应相等的两个三角形全等 C.两条对角线相等的平行四边形是矩形 D.两边相等的平行四边形是菱形
)
(2)(2009· 凉山 )如图,将矩形 ABCD 沿对角线 BD 折叠,
举 一 反 三
使 C 落在 C′处,BC′交 AD 于点 E,则下列结论不一定 成立的是( ... A. AD =BC′ B.∠EBD=∠EDB C.△ ABE∽△ CBD AE D.sin∠ ABE= ED
【点拨】本题综合考查等边三角形的性质和矩形的判定.
【解答】(1)在等边△ABC 中,∵点 D 是 BC 边的中点,∴∠DAC= 30° .又∵△ ADE 是 举 .∴∠CAE=∠DAE-∠DAC=60° -30° =30° . 一 等边三角形,∴∠DAE= 60° 反 (2)由(1)知,∠EAF=90° . 三
举 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析