北师大1.3.1集合的基本运算-----交集与并集导学案

合集下载

高中数学 1.1.3 集合的基本运算(1)导学案 北师大版必修1

高中数学 1.1.3 集合的基本运算(1)导学案 北师大版必修1

高中数学北师大版必修一导学案:1.1.3 集合的基本运算(1)学习目标1. 理解交集与并集的概念,掌握交集与并集的区别与联系;2. 会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3. 能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.学习过程一、课前准备(预习教材P8~ P9,找出疑惑之处)复习1:用适当符号填空.0 {0}; 0 ∅;∅ {x|x2+1=0,x∈R};{0} {x|x<3且x>5};{x|x>-3} {x|x>2};{x|x>6} {x|x<-2或x>5}.复习2:已知A={1,2,3}, S={1, 2,3,4,5},则A S, {x|x∈S且x∉A}= .思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※学习探究探究:设集合{4,5,6,8}A=,{3,5,7,8}B=.(1)试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?②类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(union set),记作:A B,读作:A并B,用描述法表示是:或.=∈∈{|,}A B x x A x BVenn图如右表示.BA试试: (1)A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ;(2)设A ={等腰三角形},B ={直角三角形},则A ∩B = ;(3)A ={x |x >3},B ={x |x <6},则A ∪B = ,A ∩B = .(4)分别指出A 、B 两个集合下列五种情况的交集部分、并集部分.反思:(1)A ∩B 与A 、B 、B ∩A 有什么关系?(2)A ∪B 与集合A 、B 、B ∪A 有什么关系?(3)A ∩A = ;A ∪A = .A ∩∅= ;A ∪∅= .※ 典型例题例1 设{|18}A x x =-<<,{|45}B x x x =><-或,求A ∩B 、A ∪B .变式:若A ={x |-5≤x ≤8},{|45}B x x x =><-或,则A ∩B = ;A ∪B = .小结:有关不等式解集的运算可以借助数轴来研究.例2 设{(,)|46}A x y x y =+=,{(,)|327}B x yx y =+=,求A ∩B .A变式:(1)若{(,)|46};=+=,则A B=B x y x y=+=,{(,)|43}A x y x y(2)若{(,)|46}.B x y x y=+=,则A B=A x y x y=+=,{(,)|8212}反思:例2及变式的结论说明了什么几何意义?※动手试试练1. 设集合{|23},{|12}=-<<=<<.求A∩B、A∪B.A x xB x x练 2. 学校里开运动会,设A={x|x是参加跳高的同学},B={x|x是参加跳远的同学},C={x|x是参加投掷的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释A B与B C的含义.三、总结提升※学习小结1. 交集与并集的概念、符号、图示、性质;2. 求交集、并集的两种方法:数轴、Venn图.※知识拓展()()(),=A B C A B A C()()(),=A B C A B A C()(),=A B C A B C()(),A B C A B C=(),().A AB A A A B A==你能结合Venn图,分析出上述集合运算的性质吗?2. 已知集合M ={(x , y )|x +y =2},N ={(x , y )|x -y =4},那么集合M ∩N 为( ).A. x =3, y =-1B. (3,-1)12(2)12L L =∅ ;(3)1212L L L L == .2. 若关于x 的方程3x 2+px -7=0的解集为A ,方程3x 2-7x +q =0的解集为B ,且A ∩B ={13-},求A B .。

新教材1.3集合的基本运算 1.3.1交集与并集 教案

新教材1.3集合的基本运算 1.3.1交集与并集 教案

第一章集合与常用逻辑用语1.3集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算) 4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集”“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、V enn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.1.3.1 并集与交集必备知识·探新知基础知识(3)A⊆B(4)B⊆A(5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集.思考1:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或”的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∪A或x∪B”包含三种情形:∪x∪A,但x∪B;∪x∪B,但x∪A;∪x∪A且x∪B.知识点二交集(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∪)(3)A⊆B,则A∩B=A(4)B⊆A,则A∩B=B(5)A=B,A∩B=B=A提示:集合运算中的“且”与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∪A,且x∪B”表示元素x属于集合A,同时属于集合B.知识点三并集与交集的性质(1)___A∩A=A___,A∩∪=∪.(2)____A∪A=A____,A∪∪=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B 呢?提示:(1)(A∩B)∪A,A∪(A∪B).(2)A∩B=A∪A∪B=B∪A∪B.基础自测1.(2019·全国卷∪理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A) A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}[解析]∪B={x|x2≤1}={x|-1≤x≤1},∪A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D) A.{0,1,2}B.{2}C.{2,4}D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5<x<3},N={x|-4<x<5},则M∩N=(A)A.{x|-4<x<3}B.{x|-5<x<-4}C.{x|3<x<5}D.{x|-5<x<5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∪R},则A∩B=____{1,6}________.[解析]A∩B={-1,0,1,6}∩{x|x>0,x∪R}={1,6}.5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=___3__.[解析]因为A∩B={2,3},所以3∪B.所以m=3.关键能力·攻重难题型探究题型一并集运算例1(1)设集合A={1,2,3},B={2,3,4,5},求A∪B;(2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.[分析]第(1)题由定义直接求解,第(2)题借助数轴求很方便.[解析](1)A∪B={1,2,3}∪{2,3,4,5}={1,2,3,4,5}.(2)画出数轴如图所示:∪A∪B={x|-3<x≤5}∪{x|2<x≤6}={x|-3<x≤6}.[归纳提升]并集运算应注意的问题(1)对于描述法给出的集合,应先看集合的代表元素是什么,弄清是数集,还是点集……,然后将集合化简,再按定义求解.(2)求两个集合的并集时要注意利用集合元素的互异性这一属性,重复的元素只能算一个.(3)对于元素个数无限的集合进行并集运算时,可借助数轴,利用数轴分析法求解,但要注意端点的值能否取到.【对点练习】∪ (1)已知集合A ={0,2,4},B ={0,1,2,3,5},则A∪B =__{0,1,2,3,4,5}__. (2)若集合A ={x|x>-1},B ={x|-2<x<2},则A∪B =__{x|x>-2}___. [解析] (1)A∪B ={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}. (2)画出数轴如图所示,故A∪B ={x|x>-2}.题型二 交集运算例2 (1)设集合M ={-1,0,1},N ={x|x2=x}则M∩N =( B ) A .{-1,0,1} B .{0,1} C .{1}D .{0}(2)若集合A ={x|-2≤x≤3},B ={x|x<-1或x>4},则集合A∩B 等于( D ) A .{x|x≤3或x>4} B .{x|-1<x≤3} C .{x|3≤x<4}D .{x|-2≤x<-1}(3)已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},则A∩B =___{(1,2)}__. [分析] (1)先求出集合N 中的元素再求M 、N 的交集.(2)借助数轴求A ∩B .(3)集合A和B 的元素是有序实数对(x ,y ),A 、B 的交集即为方程组⎩⎪⎨⎪⎧4x +y =63x +2y =7的解集.[解析] (1)N ={x|x2=x}={0,1},∪M∩N ={0,1},故选B .(2)将集合A 、B 表示在数轴上,由数轴可得A∩B ={x|-2≤x<-1},故选D .(3)A ∩B ={(x ,y )|4x +y =6}∩{(x ,y )|3x +2y =7}=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =63x +2y =7={(1,2)}. [归纳提升] 求集合A∩B 的方法与步骤 (1)步骤∪首先要搞清集合A 、B 的代表元素是什么.∪把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.∪把化简后的集合A、B的所有公共元素都写出来即可(若无公共元素则所求交集为∪).(2)方法∪若A、B的代表元素是方程的根,则应先解方程,求出方程的根后,再求两集合的交集;若集合的代表元素是有序数对,则A∩B是指两个方程组成的方程组的解集,解集是点集.∪若A、B是无限数集,可以利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心点表示.【对点练习】∪ (1)(2020·天津和平区高一期中测试)设集合A={1,2,3,4},B={y|y=2x -1,x∪A},则A∩B等于(A)A.{1,3}B.{2,4}C.{2,4,5,7}D.{1,2,3,4,5,7}(2)(2020·广州荔湾区高一期末测试)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则集合B=(D)A.{-3,1}B.{0,1}C.{1,5}D.{1,3}[解析](1)∪A={1,2,3,4},B={y|y=2x-1,x∪A},∪B={1,3,5,7},∪A∩B={1,3},故选A.(2)∪A∩B={1},∪1∪B,∪1是方程x2-4x+m=0的根,∪1-4+m=0,∪m=3.∪B={x|x2-4x+3=0}={x|(x-1)(x-3)=0}={1,3}.题型三集合的交集、并集性质的应用例3(1)设集合M={x|-2<x<5},N={x|2-t<x<2t+1,t∪R},若M∪N=M,则实数t的取值范围为___________.(2)设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.∪若A∩B=B,求a的取值范围;∪若A∪B=B,求a的取值.[分析](1)把M∪N=M转化为N∪M,利用数轴表示出两个集合,建立端点间的不等关系式求解.(2)先化简集合A,B,再由已知条件得A∩B=B和A∪B=B,转化为集合A、B的包含关系,分类讨论求a的值或取值范围.[解析] (1)由M ∪N =M 得N ∪M ,当N =∪时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∪时,由数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.缩上可知,实数t 的取值范围是{t |t ≤2}. (2)由x 2-2x =0,得x =0或x =2.∪A ={0,2}. ∪∪A ∩B =B ,∪B ∪A ,B =∪,{0},{2},{0,2}. 当B =∪时,Δ=4a 2-4(a 2-a )=4a <0,∪a <0;当B ={0}时,⎩⎪⎨⎪⎧a 2-a =0,Δ=4a =0,∪a =0;当B ={2}时,⎩⎪⎨⎪⎧4-4a +a 2-a =0,Δ=4a =0,无解;当B ={0,2}时,⎩⎪⎨⎪⎧2a =2,Δ=4a >0,a 2-a =0,得a =1.综上所述,得a 的取值范围是{a |a =1或a ≤0}. ∪∪A ∪B =B ,∪A ∪B .∪A ={0,2},而B 中方程至多有两个根, ∪A =B ,由∪知a =1.[归纳提升] 利用交、并集运算求参数的思路(1)涉及A ∩B =B 或A ∪B =A 的问题,可利用集合的运算性质,转化为相关集合之间的关系求解,要注意空集的特殊性.(2)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则可用观察法得到不同集合中元素之间的关系,要注意集合中元素的互异性;与不等式有关的集合,则可利用数轴得到不同集合之间的关系.【对点练习】∪ 已知集合M ={x|2x -4=0},集合N ={x|x2-3x +m =0}, (1)当m =2时,求M∩N ,M∪N ; (2)当M∩N =M 时,求实数m 的值. [解析] (1)由题意得M ={2}.当m =2时,N ={x|x2-3x +2=0}={1,2}, ∪M∩N ={2},M∪N ={1,2}.(2)∪M∩N =M ,∪M∪N ,∪M ={2},∪2∪N ,∪2是关于x 的方程x2-3x +m =0的解,即4-6+m =0,解得m =2.课堂检测·固双基1.设集合A ={x ∈N *|-1≤x ≤2},B ={2,3},则A ∪B =( B ) A .{-1,0,1,2,3} B .{1,2,3} C .{-1,2}D .{-1,3}[解析] 集合A ={1,2},B ={2,3},则A ∪B ={1,2,3}. 2.已知集合A ={x |-3<x <3},B ={x |x <1},则A ∩B =( C ) A .{x |x <1} B .{x |x <3} C .{x |-3<x <1}D .{x |-3<x <3}[解析] A ∩B ={x |-3<x <3}∩{x |x <1}={x |-3<x <1}.故选C .3.设集合A ={2,4,6},B ={1,3,6},则如图中阴影部分表示的集合是( C )A .{2,4,6}B .{1,3,6}C .{1,2,3,4,6}D .{6}[解析] 图中阴影表示A ∪B ,又因为A ={2,4,6},B ={1,3,6},所以A ∪B ={1,2,3,4,6},故选C .4.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是__a ≤1__. [解析] 利用数轴画图解题.要使A ∪B =R ,则a ≤1.5.已知集合A ={x |m -2<x <m +1},B ={x |1<x <5}. (1)若m =1,求A ∪B ;(2)若A ∩B =A ,求实数m 的取值范围. [解析] (1)由m =1,得A ={x |-1<x <2}, ∴A ∪B ={x |-1<x <5}.(2)∵A ∩B =A ,∴A ⊆B .显然A ≠∅.故有⎩⎪⎨⎪⎧m -2≥1,m +1≤5,解得3≤m ≤4.∴实数m 的取值范围为[3,4].素养作业·提技能A 组·素养自测一、选择题1.已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( B ) A .∅ B .{2} C .{0}D .{-2}[解析] 因为B ={-1,2},所以A ∩B ={2}.2.已知集合M ={x |-3<x ≤5},N ={x |x <-5,或x >4},则M ∪N =( A ) A .{x |x <-5,或x >-3} B .{x |-5<x <4} C .{x |-3<x <4}D .{x |x <-3,或x >5}[解析] 在数轴上分别表示集合M 和N ,如图所示,则M ∪N ={x |x <-5,或x >-3}.3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于( D ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}[解析] ∵M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}.4.若A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( A )A .{2}B .{3}C .{-3,2}D .{-2,3}[解析] A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分为A ∩B ,A ∩B ={2}.5.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( D ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}[解析] A ∩B ={1,2},(A ∩B )∪C ={1,2,3,4},故选D .6.(2019·武汉市高一调研)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( D )A .{a |-1<a ≤2}B .{a |a >2}C .{a |a ≥-1}D .{a |a >-1}[解析] 因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1. 二、填空题7.已知集合A ={2,3},B ={2,6,8},C ={6,8},则(C ∪A )∩B =__{2,6,8}__. [解析] ∵A ∪C ={2,3}∪{6,8}={2,3,6,8}, ∴(C ∪A )∩B ={2,3,6,8}∩{2,6,8}={2,6,8}.8.若集合A ={x |3ax -1=0},B ={x |x 2-5x +4=0},且A ∪B =B ,则a 的值是__0,13,112__. [解析] 由题意知,B ={1,4},A ∪B =B ,∴A ⊆B .当a =0时,A =∅,符合题意;当a ≠0时,A =⎩⎨⎧⎭⎬⎫13a ,∴13a =1或13a =4, ∴a =13或a =112.综上,a =0,13,112.9.已知集合A ={x |x <1,或x >5},B ={x |a ≤x ≤b },且A ∪B =R ,A ∩B ={x |5<x ≤6},则2a -b =__-4__.[解析] 如图所示,可知a =1,b =6,2a -b =-4.三、解答题10.已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .[解析] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}.解不等式3>2m -1,得m <2,则B ={m |m <2}.用数轴表示集合A和B,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.11.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a 的值.[解析]∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴a-3=-3或2a-1=-3.①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3}.综上可知a=-1.B组·素养提升一、选择题1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(D)A.{x|2≤x≤3}B.{x|x≤2或x≥3}C.{x|x≥3}D.{x|0<x≤2或x≥3}[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.2.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于(D)A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}[解析]因为A∩B={2},所以2∈A,2∈B,所以a+1=2,所以a=1,b=2,即A={1,2},B={2,5},所以A∪B={1,2,5},故选D.3.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为(AD) A.{1,2,5}B.{2,3,5}C.{0,1,5}D.{1,2,3,4,5}[解析] 集合A ={2,3,4},A ∪B ={1,2,3,4,5},则B 中必有元素1和5,且有元素2,3,4中的0个,1个,2个或3个都可以,AD 符合.B 、C 错误,故选AD .4.(多选题)已知集合A ={2,4,x 2},B ={2,x },A ∪B =A ,则x 的值可以为( ABC )A .4B .0C .1D .2 [解析] ∵A ∪B =A ,∴B ⊆A .∴x ∈A ,∴x =4或x 2=x ,由x 2=x 解得x =0或1,当x =0时,A ={2,4,0},B ={2,0},满足题意.当x =1时,A ={2,4,1},B ={2,1},满足题意.当x =4时,A ={2,4,16},B ={2,4},满足题意.故选ABC .二、填空题5.已知集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},若A ∩B 有3个真子集,则a 的取值范围是__1≤a <2__.[解析] ∵A ∩B 有3个真子集,∴A ∩B 中有2个元素,又∵A ={x |0≤x ≤a ,a >0}, ∴1≤a <2.6.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∩N =N ,则实数t 的取值范围为__t ≤2__.[解析] 当2t +1≤2-t 即t ≤13时,N =∅.满足M ∩N =N ; 当2t +1>2-t 即t >13时,若M ∩N =N 应满足⎩⎪⎨⎪⎧2-t ≥-22t +1≤5,解得t ≤2.∴13<t ≤2.综上可知,实数t 的取值范围是t ≤2.7.(2019·枣庄市第八中学考试)设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则使A ⊆(A ∩B )成立的a 的取值集合为__{a |a ≤9}__.[解析] 由A ⊆(A ∩B ),得A ⊆B ,则(1)当A =∅时,2a +1>3a -5,解得a <6.(2)当A ≠∅时,⎩⎪⎨⎪⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综合(1)(2)可知,使A ⊆(A ∩B )成立的a 的取值集合为{a |a ≤9}.三、解答题8.已知集合M ={x |2x +6=0},集合N ={x |x 2-3x +m =0}.(1)当m=-4时,求M∩N,M∪N;(2)当M∩N=M时,求实数m的值.[解析](1)M={-3}.当m=-4时,N={x|x2-3x-4=0}={-1,4},则M∩N={-3}∩{-1,4}=∅,M∪N={-3}∪{-1,4}={-3,-1,4}.(2)∵M∩N=M,∴M⊆N.由于M={-3},则-3∈N,∴-3是关于x的方程x2-3x+m=0的解,∴(-3)2-3×(-3)+m=0,解得m=-18.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?[解析]设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。

1.1.3《集合的基本运算(1)》导学案

1.1.3《集合的基本运算(1)》导学案

1.1.3《集合的基本运算(1)》导学案姓名: 班级: 组别: 组名:【学习目标】1、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.2、能用韦恩图表达集合的运算,体会直观图示对理解抽象概念的作用.【重点难点】▲重点:集合的交集与并集的概念▲难点:集合的交集与并集运算的综合应用【知识链接】班主任为了了解班级中最近一段时间的学习情况,把班级中在中考中取得数学与英语单科成绩均在全校前200名的同学集合起来开座谈会。

如果把班级中在中考中取得数学或英语单科成绩在全校前200名的同学集合起来开座谈会。

若数学单科成绩列全校前200名的同学构成一个集合A ,英语单科成绩列全校前200名的同学构成一个集合B ,那么前面提到的两个座谈会的召集分别相当于集合间的什么运算?【学习过程】阅读课本第8页到第9页的并集部分的内容,尝试回答以下问题:知识点一 并集问题1、你是怎样理解并集定义中的“或”这个词的?问题2、集合A 与集合B 的并集用什么符号来表示?问题3、根据Venn 图(又称韦恩图),回答A B 与B A 有什么关系?问题4、例4中集合A 与集合B 都含有元素5、8,答案能否写成}{4,5,6,8,3,5,7,8AB =?问题5、根据韦恩图1.1-2,填空:(1)若A B ⊆,则A B =________;(2)A _____A B ;(3)B_____A B ;(4)∅_____A B .问题6、下列关系式成立吗?(1)A A A = (2)AA ∅=问题7、典例解析例1、集合A={06|2=--x x x },B={03|2=-x x x },试求A B .阅读课本第9页到10页交集部分的内容,尝试回答以下问题:知识点二 交集问题1、你是怎样理解交集定义中的“且”和“所有”这两个词的?问题2、集合A 与集合B 的交集用什么符号来表示?问题3、当集合A 与集合B 没有公共元素时,A B =________.问题4、根据韦恩图1.1-4,回答A B 与B A 有什么关系?问题5、根据韦恩图1.1-4,填空:(1)若A B ⊆,则A B =________;(2)A B _____A(3)A B _____ B(4)∅_____A B问题6:在平面直角坐标系中,第二象限内的点构成的集合为(){},x y 问题7、下列关系式成立吗?(1)A A A = (2)A∅=∅问题8、典例解析例2、已知集合A={-4,2a-1,2a },B={a-5,1-a,9},分别试求适合下列条件的a 的值.(1)9B A ∈; (2){9}=B A【基础达标】A1、设}{3,5,6,8A =,}{4,5,7,8B =,求A B ,A B .A2、设}{2450A x x x =--=,}{21B x x ==,求A B ,A B .B4、设}{A x x =是小于9的正整数,}{1,2,3B =,}{3,4,5,6C =,求A B ,A C , ()A B C ,()A B C ,)()(C A B A ,)()(C A B A .思考:从本题的结果你能发现什么规律?C5、已知集合A={1,2},集合B 满足}2,1{=B A ,则集合B 有______个,分别是________.D6、若集合A={1,3,x},B={1,2x },},3,1{x B A = ,则满足条件的实数x 有______个.【小结】A1、已知集合}32|{≤≤-=x x A ,}41|{>-<=x x x B 或,则集合B A 等于( )A 、{x |x ≤3或x >4}B 、{x |-1<x ≤3}C 、{x |3≤x <4}D 、{x |-2≤x <-1}B2、设集合}{24A x x =≤<,}{3782B x x x =-≥-,求AB ,A B .【课后反思】本节课我最大的收获是 我还存在的疑惑是 我对导学案的建议是。

高中数学 1.3.1 集合的基本运算教案 北师大版必修1

高中数学 1.3.1 集合的基本运算教案 北师大版必修1

1.3.1 集合的基本运算教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课 型:新授课教学重点:集合的交集与并集、补集的概念;教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;第一课时:教学过程:一、 引入课题我们两个实数之间可以进行运算,比如加法运算,那么两个集合之间存在运算吗? 实例1:A=﹛高一(9)班女生﹜ B=﹛高一(9)班团员﹜C=﹛高一(9)班女团员﹜,我们发现集合C 中的元素是集合A 和集合B 的公共元素。

实例2:学校的某次运动会要求各班选出数名篮球队员和足球队员假设A=﹛高一(9)班的篮球队员﹜B=﹛高一(9)班的足球队员﹜C=﹛高一(9)班的运动员﹜,我们发现集合C 的元素是由集合A 和集合B 的元素共同构成的。

我们发现集合之间是存在一定运算的。

二、 新课教学1.交集(如实例1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B 读作:“A 交B ”即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

则上例中C=A ∩B 。

练习:1.A=﹛3,5,7 ﹜,B=﹛1,2,3,4﹜ 则A ∩B ;2.{}{}.,0,1B A x x B x x A ⋂<=>=则说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集2. 并集(如实例2)一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )记作:A ∪B 读作:“A 并B ”即: A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:说明:与B 的所有元素组成的集合(重复元素只看成一个元素)。

北师大版数学高一教案 交集与并集

北师大版数学高一教案 交集与并集

1.3.1交集与并集一. 教学目标:1. 知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(3)能利用数轴或Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点重点:交集与并集难点:理解交集与并集的概念.符号之间的区别与联系.教学过程一、引入新课通过提问的方式,请学生列举上节课所学的关于集合A,B的基本关系,并采用类比思想,在集合之间关系和实数之间关系相似的情况下,联想实数的基本运算,引导学生发现问题:集合是否也能进行基本运算?从而激发学生思维的主动性,且加强新旧知识的联系.然后观察以下实例,探索集合C与集合A.B之间的关系:(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={2,4,6,8,10},B={3,5,8,12},C={8}.【师生活动】教师引导:老师提出从集合元素的角度出发,要求学生根据其共同特征,归纳概括并集与交集的定义.学生分析(1),教师可以再举几个例子,可通过引导和补充等启发式教学方法带引学生进行突破.【设计意图】通过具体问题引入并集的定义,引出本课题.【设计说明】在分析(1)(2)的关系以后,便板书并集定义,步步为营!二、探究新知 (一)归纳定义 1.并集—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集.记作:A ∪B. 读作:A 并B.师:为了加深同学们对定义的认识,给出定义之后,及时提出问题:怎样将这个定义理解透彻?让学生分析定义.师:指出需要抓住定义的重点,比如关键词:并集定义中的“或”字,它与平常生活中大家所理解的意思有一定区别?因此有必要结合V enn 图讲解“或”字在数学中的特殊含义,避免学生在定义的理解上走入误区.用V enn 图表示如下:师:如何用符号语言表述并集定义? 学生:其含义用符号表示为:{|,}A B x x A x B =∈∈或师:在同学们掌握定义之后,对定义中的集合A 和集合B 做一些调整,列出特例——当集合B 为空集或集合B 等于集合A 时,请同学们思考此情况下的A ∪B..B AA A(B)ABB A ① ② ③ ④ ⑤A BA旨在培养学生的思维灵活性,使他们的思维不囿于固定程式或模式,能对具体问题作具体分析,灵活地记忆和运用所学的数学知识.此特例还说明V enn 图是表示集合的很好的工具,但定义中的V enn 图只是一般形式,并不是唯一的.集合的形态多样,集合的并与交会随着集合内容的变化而作出相应的改变.[设计意图] 旨在培养学生的思维灵活性,使他们的思维不囿于固定程式或模式,能对具体问题作具体分析,灵活地记忆和运用所学的数学知识.此特例还说明V enn 图是表示集合的很好的工具,但定义中的V enn 图只是一般形式,并不是唯一的.集合的形态多样,集合的并与交会随着集合内容的变化而作出 相应的改变. 2.交集(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A.B 与集合C 之间有什么关系? ①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义; 师:板书交集定义一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A∩B. 读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用V enn 图表示交集运算.师:如何区别交集与并集?仿照并集的情况把上面的图形分别写出其交集。

§ 1.3.1 集合的基本运算------交集与并集 教学设计

§ 1.3.1 集合的基本运算------交集与并集 教学设计

§ 1.3.1 集合的基本运算------交集与并集一:教学内容分析本节课选自《普通高中课程标准实验教科书北师大版数学必修一》的第一章1.3.1集合的基本运算---交集和并集。

本节课安排了两个课时,一课时是本节课所要讲解的交集与并集,另一课时是补集。

本节课的概念比较抽象,学习生在学习和理解的过程当中会感觉比较困难,教材中通过学生所熟悉的两个事例进行了导入,是抽象的问题具体化、形象化、直观化,符合高一新生的认知特点,这样处理教材就容易让学生理解。

因为高一的新生刚从初中的学习中过渡过来,他们对知识的理解还停留在直观化、具体化的层面。

另外教材中通过图形即Venn 图和数轴把概念进行了直观的描述,体现了数形结合的思想,也培养了学生学习数学时注重文字(自然)语言和数学语言相互转化的意识。

本节课的学习方法也为下节课学习补集打下了基础,如果这节课学好了,下节课学习补集的运算就比较简单易懂了。

二:学情分析学生在前面两节课刚刚学习了集合的概念和集合的基本关系,对集合有了初步的认识和理解,对于集合之间关系的表示也掌握了用Venn图和数轴的表示方法,高一的学生的求知欲学习数学的积极性都比较高,这都对于本节课的学习起到了积极地作用。

这是学生的有利因素。

但是高一学生刚从初中阶段的过渡过来了,对问题的理解还停留在初中阶段的直观性、具体化、形象化的认知阶段,还没有完全适应高中的学习方式,对于抽象的概念理解起来很困难,这是学生的不利因素,这也是学生学习本节课的不足之处。

三:教法分析1.教学过程中坚持“以学生为主体,以教师为主导”的原则。

坚持“以学生活动为主,教师讲述为辅,学生开展活动在前,教师点拨归纳评价总结在后“的原则。

很好的利用学生的最近发展区。

2.鉴于学生的不利因素,鉴于本节课的概念比较抽象,学生在学习的过程当中理解起来比较困难,所以在课题导入的时候应该通过学生所熟悉的具体事例进行导入,采用从特殊到一般的分析问题的方法。

北师大版1.3.1 交集与并集导学案

北师大版1.3.1 交集与并集导学案

课题:3.1并集、交集(集合的基本运算)自主备课一、学习目标1、熟练掌握交集、并集的概念及其性质。

2、注意用数轴、韦恩图来解决交集、并集问题。

3、体会数学语言的简洁性与明确性,并运用它解决问题的能力。

二、教学过程【导学释疑】:1、交集:一般地,由所有属于A 又属于B 的元素所组成的集合,叫做A,B 的 .记作 ,即 (强调“且”)2、并集: 一般地,对于给定的两个集合A,B 把它们所有的元素并在一起所组成的集合,叫做A,B 的 .记作 ,即 (强调“或”,相同的元素按一个计算,这与元素的互异性吻合。

)3、用韦恩图表示两个集合的交集与并集。

4、交集和并集的结果是5、交集的性质:(1);(2)______;(3)___(4)_____;(5)_____A B B A A B A A B B A A A A ⋂⋂⋂⋂⋂⋂∅=___ 6、并集的性质:(1);(2)____;(3)___(4)___;(5)___;(6)___A B B A A B A A B B A A A A A B A B⋃⋃⋃⋃⋃⋃∅=⋂⋃___ 【做一做】1、在数轴上如何表示集合A={x|-1<x<2}?2、一次函数y=2x+3和y=3x+1图像的交点坐标是3、二次函数y=x 2+1中y 的取值范围是4、设A={x|x 是等腰三角形},B={x|x 是直角三角形},求A ∩B.5、设A={x|x 是锐角三角形},B={x|x 是钝角三角形},求A ∪B.【例题讲解】例1、某校所有男生组成集合A,一年级的所有学生组成集合B,一年级的所有男生组成集合C ,一年级的所有女生组成集合D 。

求A ∩B,C ∪D.例2.设A={x/x是不大于10的正奇数},B={x/x是12的正约数}。

求A∩B,A∪B.例3.设A={x|-1<x<2},B={x|1<x<3},求A∪B.练习:已知A={x|x2-px+15=0},B={x|x2-ax-b=0},且A∪B={2,3,5},A∩B={3},求p,a,b的值。

北师大版高中必修13.1交集与并集教学设计

北师大版高中必修13.1交集与并集教学设计

北师大版高中必修13.1交集与并集教学设计一、教学目的通过本节课的学习,让学生掌握交集与并集的基本概念,理解其在实际生活中的应用,能够正确地进行集合的交集与并集运算。

二、教学重点1.掌握集合的交集与并集的定义2.学会对集合进行交集与并集运算3.能够做到在实际问题中正确运用集合的交集与并集三、教学难点1.理解交集与并集的概念的区别2.在实际问题中正确应用交集与并集四、教学内容及方法1.教学内容1.集合的概念2.集合的元素3.集合的描述方法4.交集的概念与运算5.并集的概念与运算2.教学方法1.引入法2.演示法3.提问法4.实践法3.教学流程(1)导入环节教师将一张图片放在课堂上方的大屏幕上,图片中包含多个水果,如苹果、梨、香蕉、葡萄等等,并问学生:“大家看到这张图片后,这些水果有什么共同之处呢?”引出集合的概念。

(2)概念讲解教师给出集合的定义、元素、描述方法等内容的讲解,重点指出一些常用的集合及其描述方法,如自然数集合、整数集合、偶数集合等等。

(3)交集与并集的概念讲解教师给出交集和并集的定义与例子,让学生明确两者之间的差异,引导学生理解交集与并集的概念。

(4)交集与并集的运算通过提问法、演示法等多种教学方法介绍交集与并集的运算,包括在实际问题中如何运用交集与并集解决问题。

(5)巩固练习教师设计多个小组互动形式的练习,如通过实际问题引导学生运用交集与并集解决问题。

(6)板书总结教师对本节课涉及到的重点内容进行板书总结,并讲解进行概念卡片的制作,鼓励学生制作概念卡片复习本课内容。

五、教学评估本节课的教学评估将采用观察法、提问法与随堂测验相结合的方式进行。

教师可以通过观察学生的课堂表现、答题速度和答题正确率等指标来对学生进行初步评估。

六、教学资源准备1.课件及多媒体设备2.大屏幕及投影仪3.交叉点、并集点等教学工具七、教学后记本次课堂教学针对高一学生,课程设置合理,内容易懂,教学方法多样,应用实例充足,学生们的参与积极性很高,达到了预期的教学目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安边中学高一年级1 学期 数学 学科导学稿 执笔人: 邹英 总第3课时
备课组长签字: 包级领导签字: 学生: 上课时间:2013.8.30 集体备课 个人空间
一、课题:1.3.1集合的基本运算-----交集与并集
二、学习目标
1. 理解两个集合的并集与交集的的含义;
2. 会用文字语言、符号语言、图形语言表示两个集合的并集与交集;
3.会求两个简单集合的并集与交集;
三、教学过程
【温故知新】
问题1、集合的基本关系有哪些?
问题2、空集与任何集合有怎样的关系?
问题3、做一做
(1)集合},,,,,,{k j e d c b a A =与集合},,,{k c d b B =它们有什么关系,
表示一下,并用Venn 图画一画;
(2)写出集合}0)2)(1({=-+=x x x A 的所有子集。

【导学释疑】
1、阅读课本P 11完成下表
名称 交集 并集
定义(文
字语言)
符号语言
图形语言(一般情况)
问题1、想一想,交集中的“且”与并集中的“或”有什么不同? 问题2、议一议,下面的空怎么填?
(1)A ∪A = ________ A ∪φ =_______ A ∪B=________ (2 )A ∩A =_______ A ∩φ = ________ A ∩B _______ B ∩A
(3)A ∩B ____ A A ∩B ____ B A _____ A ∪B B ____ A ∪B
(4) 若A ∩B=A,则A ___ B 反之亦然,若A ∪B=A,则A___B 反之亦然
(5)(A ∩B )∩C A ∩(B ∩C), (A ∪B )∪C A ∪(B ∪C)
3、做一做:我校所有学生组成集合A ,高一年级所有学生组成集合B ,高一年级所有男生组成集合C ,高一年级所有女生组成集合D 。

求B A ⋂,D C ⋃。

【巩固提升】
例1、设集合A ={x|2≤x<4},B ={x|3x+7≥8+2x},求A ∩B 与A ∪B 。

【检测反馈】
1、已知集合A={1,2,3,4,5},B={4,5,6,7}求A ∩B 与A ∪B 。

2、已知集合A={x|x 是等腰三角形},B={x|x 是直角三角形},C={x|x 是锐角三角形},则
A ∩
B , B ∩C= 。

3、设A={x|-1<x<2},B={x|1<x<3},求A ∪B 。

4、举例验证P 12思考交流;
选做题:
设集合A={}2
,12,4a a --,B={}a a --1,5,9,已知A ∩B={}9, 求实数a 的值

思栏。

相关文档
最新文档