二阶常系数非齐次线性微分方程解法及例题
合集下载
二阶常系数非齐次微分方程

f ( x) ex[P cosx P sinx] 利用欧拉公式
l
n
ex [Pl
eix eix
2
Pn
eix eix 2i
]
( Pl Pn)e( i) x ( Pl Pn)e(i) x
2 2i
2 2i
P( x)e(i)x P ( x)e(i) x ,
设 y py qy P(x)e( i)x ,
y* 2ixeix 2 x sin x (2 x cos x)i,
所求非齐方程特解为 y 2 x cos x, (取虚部)
原方程通解为 y C1 cos x C2 sin x 2 x cos x.
例3 求方程 y y x cos 2 x 的通解.
解 对应齐方通解 Y C1 cos x C2 sin x, 作辅助方程 y y xe2ix ,
设 y c1 ( x)cos x c2 ( x)sin x,
w( x) 1,
c1( x) c2( x)
sin x cos x
ln sec C2
x
tan
x
C1 ,
原方程通解为
y C1 cos x C2 sin x cos x ln sec x tan x .
三、小 结
(待定系数法)
y xk Q e(i)x ,
1
m
设 y py qy P( x)e(i)x ,
y
xkex[Q eix m
ix
Qme
]
y2
x kQ e(i) x m
,
xkex[R(1) ( x)cosx R(2) ( x)sinx],
m
m
其中 Rm(1) ( x), Rm(2) ( x)是m次多项式, m maxl,n
二阶常系数非齐次线性微分方程解法及例题

例2 求微分方程y′′−5y′+6y=xe2x的通解. 解 齐次方程y′′−5y′+6y=0的特征方程为r2−5r +6=0, 其根为r1=2, r2=3. 因为f(x)=Pm(x)eλx=xe2x, λ=2是特征方程的单根, 所以非齐次方程的特解应设为 y*=x(b0x+b1)e2x. 把它代入所给方程, 得 >>> −2b0x+2b0−b1=x. 比较系数, 得b0 =− 1 , b1=−1, 故 y*= x(− 1 x−1 e2x . ) 2 2 提示: −2b0=1, 2b0−b1=0. 齐次方程y′′−5y′+6y=0的通解为Y=C1e2x+C2e3x .
首页 上页 返回 下页 结束 铃
一、 f(x)=Pm(x)eλx 型
设方程y′′+py′+qy=Pm(x)eλx 特解形式为y*=Q(x)eλx, 则得 Q′′(x)+(2λ+p)Q′(x)+(λ2+pλ+q)Q(x)=Pm(x). ——(*)
提示:
y*′′+py*′+qy* =[Q(x)eλx]′′+[Q(x)eλx]′+q[Q(x)eλx] =[Q′′(x)+2λQ′(x)+λ2Q(x)]eλx+p[Q′(x)+λQ(x)]eλx+qQ(x)eλx =[Q′′(x)+(2λ+p)Q′(x)+(λ2+pλ+q)Q(x)]eλx.
提示: 此时λ2+pλ+q≠0. 要使(*)式成立, Q(x)应设为m次多项式: Qm(x)=b0xm+b1xm−1+ ⋅ ⋅ ⋅ +bm−1x+bm.
高数二阶常系数非齐次线性微分方程解法及例题详解

其根为r12 r23 因为f(x)Pm(x)exxe2x 2是特征方程的单根 所以非齐次方程的特解应设为 y*x(b0x+b1)e2x 把它代入所给方程 得
2b0x+2b0b1x
比较系数 得 b0 1 b1 1 故 y* x( 1 x 1)e 2 x 2 2
2b0x+2b0b1x
比较系数 得 b0 1 b1 1 故 y* x( 1 x 1)e 2 x 2 2
提示 2b01 2b0b10 齐次方程y5y+6y0的通解为YC1e2x+C2e3x
特解形式
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60
首页 上页 返回 下页 结束 铃
一、 f(x)Pm(x)ex 型 设方程y+py+qyP (x)e 特解形式为y*Q(x)e
m x
则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
提示
y*+py*+qy* [Q(x)ex]+[Q(x)ex]+q[Q(x)ex] [Q(x)+2Q(x)+2Q(x)]ex+p[Q(x)+Q(x)]ex+qQ(x)ex [Q(x)+(2+p)Q(x)+(2+p+q)Q(x)]ex
下页
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得 Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*) (1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex
第六节 二阶常系数非齐次线性微分方程的解法

非齐次特解形式: x = asin pt + bcos pt h , b=0 代入④可得: a = 2 2 k −p 因此原方程④之解为
o
x
x
17
h sin pt x = Asin ( k t +ϕ ) + 2 2 k −p
自由振动 强迫振动
当干扰力的角频率 p ≈固有频率 k 时,
h 振 幅 2 将 大! 很 k − p2 • 当 p = k 时, 非齐次特解形式:
而 2r + a ≠ 0 , 则令 Q ( x ) = x Qm ( x ) , 即
y = xQm ( x)e
∗
rxБайду номын сангаас
5
′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x) Q
情形3 情形3
(*)
是特征方程的二重 二重根 若 r 是特征方程的二重根, 即 r 2 + ar + b = 0 ,
3x
1 3 3x + x e . 6
10
3x 的通解. 例6 求微分方程 y′′ − 6 y′ + 9 y = x e 的通解.
解
特征方程 λ2 − 6λ + 9 = 0 , 特征根 λ1, 2 = 3 ,
对应齐次方程通解 Y = (C1 + C 2 x ) e 3 x .
是二重特征根, 因为 r = 3 是二重特征根,
y′′ + ay′ + by = f (x) 对应齐次方程 y′′ + ay′ + by = 0
(1) (2)
是方程(1) 的一个特解, (1)的一个特解 定理2 定理2 设 y ∗ ( x ) 是方程 (1) 的一个特解,
o
x
x
17
h sin pt x = Asin ( k t +ϕ ) + 2 2 k −p
自由振动 强迫振动
当干扰力的角频率 p ≈固有频率 k 时,
h 振 幅 2 将 大! 很 k − p2 • 当 p = k 时, 非齐次特解形式:
而 2r + a ≠ 0 , 则令 Q ( x ) = x Qm ( x ) , 即
y = xQm ( x)e
∗
rxБайду номын сангаас
5
′′ + (2r + a)Q′ + (r 2 + ar + b)Q = Pm ( x) Q
情形3 情形3
(*)
是特征方程的二重 二重根 若 r 是特征方程的二重根, 即 r 2 + ar + b = 0 ,
3x
1 3 3x + x e . 6
10
3x 的通解. 例6 求微分方程 y′′ − 6 y′ + 9 y = x e 的通解.
解
特征方程 λ2 − 6λ + 9 = 0 , 特征根 λ1, 2 = 3 ,
对应齐次方程通解 Y = (C1 + C 2 x ) e 3 x .
是二重特征根, 因为 r = 3 是二重特征根,
y′′ + ay′ + by = f (x) 对应齐次方程 y′′ + ay′ + by = 0
(1) (2)
是方程(1) 的一个特解, (1)的一个特解 定理2 定理2 设 y ∗ ( x ) 是方程 (1) 的一个特解,
二阶常系数非齐次线性微分方程的解法及例题详解

y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次 升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方 程的一个特解y(x)。
微分算子法:
微分算子法是求解不同类型常系数非齐次线性 微分方程特解的有效方法,使用微分算子法求 解二阶常系数非齐次线性微分方程的特解记忆 较为方便,计算难度也可降低。引入微分算子 d/dx=D,d^2/dx^2=D^2,
则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x), 令F(D)=D^2+pD+q,称为算子多项式, F(D)=D^2+pD+q即为F(D)y=f(x),其特解为 y=f(x)/F(D) 。
降阶法:
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an…… y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)! y^(n+2)+py^(n+1)+qy^(n)=a0n! 令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由
y*= xQk (x) ex
其中Q(x)是与p(x)同次的多项式,k按α不是特 征根、是单特征根或二重特征根,依次取0,1 或2.
将y*代入方程,比较方程两边x的同次幂的系 数(待定系数法),就可确定出Q(x)的系数而 得特解y*。
微分算子法:
微分算子法是求解不同类型常系数非齐次线性 微分方程特解的有效方法,使用微分算子法求 解二阶常系数非齐次线性微分方程的特解记忆 较为方便,计算难度也可降低。引入微分算子 d/dx=D,d^2/dx^2=D^2,
则有 y'=dy/dx=Dy,y''=d^2y/dx^2=D^2y
于是y''+p(x)y'+q(x)y=f(x)可化为(D^2+pD+q)y=f(x), 令F(D)=D^2+pD+q,称为算子多项式, F(D)=D^2+pD+q即为F(D)y=f(x),其特解为 y=f(x)/F(D) 。
降阶法:
y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an…… y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)! y^(n+2)+py^(n+1)+qy^(n)=a0n! 令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由
y*= xQk (x) ex
其中Q(x)是与p(x)同次的多项式,k按α不是特 征根、是单特征根或二重特征根,依次取0,1 或2.
将y*代入方程,比较方程两边x的同次幂的系 数(待定系数法),就可确定出Q(x)的系数而 得特解y*。
二阶常系数非齐次线性微分方程解法及例题

Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex
提示
此时2+p+q0 但2+p0
要使(*)式成立 Q(x)应设为m+1次多项式 Q(x)xQm(x)
其中Qm(x)b0xm +b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex (3)如果是特征方程r2+pr+q0的重根 则 y*x2Qm(x)ex
方程的根、是特征方程的单根或是特征方程的的重根依次取
为0、1或2
首页
上页
返回
下页
结束
铃
例1 求微分方程y2y3y3x+1的一个特解
解 齐次方程y2y3y0的特征方程为r22r30
因为f(x)Pm(x)ex3x+1 0不是特征方程的根
所以非齐次方程的特解应设为
y*b0x+b1 把它代入所给方程 得
3b0x2b03b13x+1
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex
提示
此时2+p+q0 但2+p0
要使(*)式成立 Q(x)应设为m+1次多项式 Q(x)xQm(x)
其中Qm(x)b0xm +b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex (3)如果是特征方程r2+pr+q0的重根 则 y*x2Qm(x)ex
方程的根、是特征方程的单根或是特征方程的的重根依次取
为0、1或2
首页
上页
返回
下页
结束
铃
例1 求微分方程y2y3y3x+1的一个特解
解 齐次方程y2y3y0的特征方程为r22r30
因为f(x)Pm(x)ex3x+1 0不是特征方程的根
所以非齐次方程的特解应设为
y*b0x+b1 把它代入所给方程 得
3b0x2b03b13x+1
6.7二阶常系数非齐次线性微分方程

x x
2
e Pm ( x )
Pm ( x ) 为 m 次多项式 . 设特解为
其中
x
Q( x )
Q( x )
为待定多项式,
p y* e
y* e
[ p Q ( x ) p Q ( x )]
[ Q ( x ) 2 Q ( x ) Q ( x )]
②
代入原方程① , 得 (1) 若 不是特征方程的根, 则取 Q (x)为 m 次多项式 系数由②式确定, 从而得到 特解的形式为
(3). 上述结论也可推广到高阶方程的情形.
1
21
作业 36页习题6-7
1.(1),(3), 2. 4. 6.
作业本写上班级姓名
22
x x x (1 a b ) x e c e (2 a ) e (1 a b) e x x 对应齐次方程通解: Y C e C e x
1 2 x x
原方程通解为 y C 1 e C 2 e e x e 1 a1 b (0 C ex C 2 1) e x x e x 比较系数得 2 a cx x x y C e C e x e 即 1 1 a b0 2 其中 ( C 2 C 2 1)
是特征方程的根。 不是特征方程的根。 不是特征方程的根。
18
例9. 求微分方程 (其中 为实数 ) .
2
e
x
的通解
解: 特征方程 r 4r 4 0, 特征根: r1 对应齐次方程通解:
e
x
2 x
r2 2
1) 2 时, 令 y A e
1 , 代入原方程得 A ( 2)2
2 p 0 ,
2
e Pm ( x )
Pm ( x ) 为 m 次多项式 . 设特解为
其中
x
Q( x )
Q( x )
为待定多项式,
p y* e
y* e
[ p Q ( x ) p Q ( x )]
[ Q ( x ) 2 Q ( x ) Q ( x )]
②
代入原方程① , 得 (1) 若 不是特征方程的根, 则取 Q (x)为 m 次多项式 系数由②式确定, 从而得到 特解的形式为
(3). 上述结论也可推广到高阶方程的情形.
1
21
作业 36页习题6-7
1.(1),(3), 2. 4. 6.
作业本写上班级姓名
22
x x x (1 a b ) x e c e (2 a ) e (1 a b) e x x 对应齐次方程通解: Y C e C e x
1 2 x x
原方程通解为 y C 1 e C 2 e e x e 1 a1 b (0 C ex C 2 1) e x x e x 比较系数得 2 a cx x x y C e C e x e 即 1 1 a b0 2 其中 ( C 2 C 2 1)
是特征方程的根。 不是特征方程的根。 不是特征方程的根。
18
例9. 求微分方程 (其中 为实数 ) .
2
e
x
的通解
解: 特征方程 r 4r 4 0, 特征根: r1 对应齐次方程通解:
e
x
2 x
r2 2
1) 2 时, 令 y A e
1 , 代入原方程得 A ( 2)2
2 p 0 ,
3.非齐次微分方程

有根
x ( d cos x k sin x )
目录 上页 下页 返回 结束
例7. 第六节例1 (P323)中, 若设物体只受弹性恢复力 f 和铅直干扰力 F h sin pt 的作用 , 求物体的运动规律. 解: 问题归结为求解无阻尼强迫振动方程
d x dt
2 2
k
2
x h sin p t
目录 上页 下页 返回 结束
Q ( x )
( p q ) Q ( x ) Pm ( x )
2
(2) 若 是特征方程的单根 , 即 为m 次多项式, 故特解形式为 (3) 若 是特征方程的重根 , 即
2 p 0 ,
则 Q ( x ) 是 m 次多项式, 故特解形式为 y * x Q m ( x ) e
于是求得一个特解
目录 上页 下页 返回 结束
例5. 解: 特征方程为 r 2 9 0 , 其根为
对应齐次方程的通解为
的通解.
为特征方程的单根 , 因此设非齐次方程特解为 代入方程:
6 b cos 3 x 6 a sin 3 x
比较系数, 得 因此特解为 y * x ( 5 cos 3 x 3 sin 3 x )
y* x
k
e
x
~ [ R m ( x ) cos x R m ( x ) sin x ]
3. 上述结论也可推广到高阶方程的情形.
目录 上页 下页 返回 结束
思考与练习
1 . (填空) 设
时可设特解为
y * x ( a x b ) cos x ( cx d ) sin x
Pm ( x ) e
( i ) x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程的根、是特征方程的单根或是特征方程的的重根依次取
为0、1或2
首页
上页
返回
下页
结束
铃
例1 求微分方程y2y3y3x+1的一个特解 解 齐次方程y2y3y0的特征方程为r22r30
因为f(x)Pm(x)ex3x+1 0不是特征方程的根
所以非齐次方程的特解应设为
y*b0x+b1 把它代入所给方程 得
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex
提示
此时2+p+q0 但2+p0
要使(*)式成立 Q(x)应设为m+1次多项式 Q(x)xQm(x)
其中Qm(x)b0xm +b1xm1+ +bm1x+bm
首页
[Q(x)+(2+p)Q(x)+(2+p+q)Q(x)]ex
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex
提示
此时2+p+q0
要使(*)式成立 Q(x)应设为m次多项式
Qm(x)b0xm+b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
•
3、越是没有本领的就越加自命不凡。 20.12.1 004:51: 3804:5 1Dec-20 10-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 04:51:3 804:51: 3804:5 1Thursday, December 10, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 020.12. 1004:5 1:3804: 51:38D ecembe r 10, 2020
上页
返回
下页
结束
铃
例3 求微分方程y+yxcos2x的一个特解 解 齐次方程y+y0的特征方程为r2+10
因为f(x)ex[Pl(x)coswx+Pn(x)sinwx]xcos2x +iw2i不是
特征方程的根 所以所给方程的特解应设为
y*(ax+b)cos2x+(cx+d)sin2x 把它代入所给方程 得 >>>
提示
此时2+p+q0 2+p0
要使(*)式成立 Q(x)应设为m+2次多项式 Q(x)x2Qm(x)
其中Qm(x)b0xm+b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
❖结论
二阶常系数非齐次线性微分方程
有形如
y+py+qyPm(x)ex
y*xkQm(x)ex
的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex (3)如果是特征方程r2+pr+q0的重根 则 y*x2Qm(x)ex
3b0x2b03b13x+1
提示 [b30bx0+b31]2[b0x+b1]3[b0x+b1] 2b03b0x3b1
2b30b0x3b21b10 3b1
特解形式
首页
上页
返回
下页
结束
铃
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60
其根为r12 r23
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为 y*x(b0x+b1)e2x
把它代入所给方程 得 2b0x+2b0b1x
因此所给方程的通解为
特解形式
首页
上页
返回
下页
结束
铃
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
❖结论
二阶常系数非齐次线性微分方程
§12.9 二阶常系数非齐次线性微分方程
一、 f(x)Pm(x)ex型
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
y+py+qyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数
二阶常系数非齐次线性微分方程的通解是对应 的齐次方程的通解yY(x)与非齐次方程本身的一个 特解yy*(x)之和
yY(x)+y*(x)
首页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
提示 y*+py*+qy* [Q(x)ex]+[Q(x)ex]+q[Q(x)ex]
[Q(x)+2Q(x)+2Q(x)]ex+p[Q(x)+Q(x)]ex+qQ(x)ex
有形如
y+py+qyex[Pl(x)coswx+Pn(x)sinwx]
y*xkex[R(1)m(x)coswx+R(2)m(x)sinwx]
的特解 其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k
按+iw(或iw)不是特征方程的根或是特征方程的单根依次
取0或1 >>>
首页
(3ax3b+4c)cos2x(3cx+4a+3d)sin2xxcos2x >>>
特解形式
首页
上页
返回
下页
结束
铃
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1020. 12.10Thursday, December 10, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。04:5 1:3804: 51:3804 :5112/ 10/2020 4:51:38 AM
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为
y*x(b0x+b1)e2x 把它代入所给方程 得 >>>
2b0x+2b0b1x
提示 2b01
齐2b次0方b1程0y5y+6y0的通解为YC1e2x+C2e3x
特解形式
首页
上页
返回
下页
结束
铃
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60 其根为r12 r23
为0、1或2
首页
上页
返回
下页
结束
铃
例1 求微分方程y2y3y3x+1的一个特解 解 齐次方程y2y3y0的特征方程为r22r30
因为f(x)Pm(x)ex3x+1 0不是特征方程的根
所以非齐次方程的特解应设为
y*b0x+b1 把它代入所给方程 得
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex
提示
此时2+p+q0 但2+p0
要使(*)式成立 Q(x)应设为m+1次多项式 Q(x)xQm(x)
其中Qm(x)b0xm +b1xm1+ +bm1x+bm
首页
[Q(x)+(2+p)Q(x)+(2+p+q)Q(x)]ex
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex
提示
此时2+p+q0
要使(*)式成立 Q(x)应设为m次多项式
Qm(x)b0xm+b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
•
3、越是没有本领的就越加自命不凡。 20.12.1 004:51: 3804:5 1Dec-20 10-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 04:51:3 804:51: 3804:5 1Thursday, December 10, 2020
•
5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 020.12. 1004:5 1:3804: 51:38D ecembe r 10, 2020
上页
返回
下页
结束
铃
例3 求微分方程y+yxcos2x的一个特解 解 齐次方程y+y0的特征方程为r2+10
因为f(x)ex[Pl(x)coswx+Pn(x)sinwx]xcos2x +iw2i不是
特征方程的根 所以所给方程的特解应设为
y*(ax+b)cos2x+(cx+d)sin2x 把它代入所给方程 得 >>>
提示
此时2+p+q0 2+p0
要使(*)式成立 Q(x)应设为m+2次多项式 Q(x)x2Qm(x)
其中Qm(x)b0xm+b1xm1+ +bm1x+bm
首页
上页
返回
下页
结束
铃
❖结论
二阶常系数非齐次线性微分方程
有形如
y+py+qyPm(x)ex
y*xkQm(x)ex
的特解 其中Qm(x)是与Pm(x)同次的多项式 而k按不是特征
上页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
(1)如果不是特征方程r2+pr+q0的根 则 y*Qm(x)ex (2)如果是特征方程r2+pr+q0的单根 则 y*xQm(x)ex (3)如果是特征方程r2+pr+q0的重根 则 y*x2Qm(x)ex
3b0x2b03b13x+1
提示 [b30bx0+b31]2[b0x+b1]3[b0x+b1] 2b03b0x3b1
2b30b0x3b21b10 3b1
特解形式
首页
上页
返回
下页
结束
铃
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60
其根为r12 r23
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为 y*x(b0x+b1)e2x
把它代入所给方程 得 2b0x+2b0b1x
因此所给方程的通解为
特解形式
首页
上页
返回
下页
结束
铃
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
❖结论
二阶常系数非齐次线性微分方程
§12.9 二阶常系数非齐次线性微分方程
一、 f(x)Pm(x)ex型
二、f(x)ex[Pl(x)coswx+Pn(x)sinwx]型
y+py+qyf(x)称为二阶常系数非齐次线性微分方程 其中p、q是常数
二阶常系数非齐次线性微分方程的通解是对应 的齐次方程的通解yY(x)与非齐次方程本身的一个 特解yy*(x)之和
yY(x)+y*(x)
首页
返回
下页
结束
铃
一、 f(x)Pm(x)ex 型
设方程y+py+qyPm(x)ex 特解形式为y*Q(x)ex 则得
Q(x)+(2+p)Q(x)+(2+p+q)Q(x)Pm(x) ——(*)
提示 y*+py*+qy* [Q(x)ex]+[Q(x)ex]+q[Q(x)ex]
[Q(x)+2Q(x)+2Q(x)]ex+p[Q(x)+Q(x)]ex+qQ(x)ex
有形如
y+py+qyex[Pl(x)coswx+Pn(x)sinwx]
y*xkex[R(1)m(x)coswx+R(2)m(x)sinwx]
的特解 其中R(1)m(x)、R(2)m(x)是m次多项式 mmax{l n} 而k
按+iw(或iw)不是特征方程的根或是特征方程的单根依次
取0或1 >>>
首页
(3ax3b+4c)cos2x(3cx+4a+3d)sin2xxcos2x >>>
特解形式
首页
上页
返回
下页
结束
铃
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1020. 12.10Thursday, December 10, 2020
•
2、阅读一切好书如同和过去最杰出的 人谈话 。04:5 1:3804: 51:3804 :5112/ 10/2020 4:51:38 AM
因为f(x)Pm(x)exxe2x 2是特征方程的单根
所以非齐次方程的特解应设为
y*x(b0x+b1)e2x 把它代入所给方程 得 >>>
2b0x+2b0b1x
提示 2b01
齐2b次0方b1程0y5y+6y0的通解为YC1e2x+C2e3x
特解形式
首页
上页
返回
下页
结束
铃
例2 求微分方程y5y+6yxe2x的通解 解 齐次方程y5y+6y0的特征方程为r25r +60 其根为r12 r23