ASTM-D1238-2010标准试验方法
HDPE物性数据表

①原料描述部分规格级别:电缆绝缘料外观颜色:本色用途概述:用于低、中、高速绝缘生产线备注说明:性能:由乙烯、丁烯集合而成的双峰高密度聚乙烯,并含有适量助剂的本色粒料。
因为其分子量呈双峰分布,所以它具有优异的加工性能、很好的力学性能及良好的电性能。
②原料技术数据性能项目试验条件[状态] 测试方法测试数据数据单位基本性能密度/ / 0.941—0。
959 g/cm3熔体流动速率/ / ≤1。
0 g/10min机械性能拉伸强度/ / ≥19。
0 MPa 断裂伸长率/ / ≥400% 耐环境应力开裂性48h / ≤2/10/电气性能介电常数1MHz / ≤2.40/体积电阻率/ / ≥1×1013Ω?m①原料描述部分规格级别:挤出级外观颜色:-—-用途概述:用途:供水管,工业用管子。
备注说明:特性:电子光谱法,高冲击和高强度。
②原料技术数据性能项目试验条件[状态]测试方法测试数据数据单位基本性能熔体流动速率/ ASTM D-1238 0。
12 g/10min 密度/ ASTM D—1505 0.950 g/cm3机械性能屈服拉伸强度/ ASTM D—638 220 Kg/cm2断裂拉伸强度/ ASTM D-638 390 Kg/cm2最终拉伸率/ ASTM D-638 〉500 %挠曲强度/ ASTM D-747 8,500 Kg/cm2洛氏硬度/ ASTM D-785 50 R冲击强度/ ASTM D-256 30 kg?cm/cm 耐环境应力破裂/ ASTM D-1693 〉1,000 F50hr热性能脆化温度/ ASTM D—746 <—80 ℃熔点/ ASTM D-2117 131 ℃维卡软化点/ ASTM D—1525 122 ℃①原料描述部分规格级别:管材级外观颜色:—-—用途概述:农业排灌管、热水管、支架备注说明: 类型:挤塑②原料技术数据性能项目试验条件[状态] 测试方法测试数据数据单位基本性能熔体流动速率/ / 0.15 g/10min 密度/ / 0.954 g/cm3机械性能拉伸强度/ / 18。
ASTM D 1238-04C熔融指数测定

Designation:D1238–04cStandard Test Method forMelt Flow Rates of Thermoplastics by Extrusion Plastometer1This standard is issued under thefixed designation D1238;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1This test method covers measurement of the rate of extrusion of molten resins through a die of a specified length and diameter under prescribed conditions of temperature,load, and piston position in the barrel as the timed measurement is being made.1.2Procedure A is a manual cutoff operation based on time used for materials havingflow rates that fall generally between 0.15and50g/10min.Procedure B is an automatically timed flow rate measurement used for materials havingflows from 0.50to900g/10min.By both procedures,the piston travel is generally the same during the timed measurement;the piston foot is about46and20.6mm above the parableflow rates have been obtained by these procedures in interlaboratory round-robin measurements of several materials described in 14.1.Provision is made for calculation of melt volume-flow rate as well as melt mass-flow rate.N OTE1—Round-robin testing indicates this test method may be suit-able atflow rates up to1500g/10min if the timing clock resolves the elapsed time to the nearest0.01s.N OTE2—This test method and ISO1133-1991are technically equiva-lent.1.3This standard does not purport to address the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.Specific precautionary statements are given in5.7,10.2.12,and15.1.2.2.Referenced Documents2.1ASTM Standards:2D618Practice for Conditioning Plastics for TestingD883Terminology Relating to PlasticsD3364Test Method for Flow Rates for Poly Vinyl Chloride with Molecular Structural ImplicationsE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method2.2ANSI Standard:B46.1on Surface Texture32.3ISO Standard:ISO1133-1991Determination of the Melt-Mass Flow Rate (MFR)and the Melt V olume-Flow Rate(MVR)of Ther-moplastics33.Terminology3.1General:3.1.1For definition of some of the technical terms used in this test method refer to Terminology D883.4.Significance and Use4.1This test method is particularly useful for quality control tests on thermoplastics.N OTE3—Polymers havingflow rates less than0.15or greater than900 g/10min may be tested by the procedures in this test method;however, precision data have not been developed.4.2This test method serves to indicate the uniformity of the flow rate of the polymer as made by an individual process and, in this case,may be indicative of uniformity of other proper-ties.However,uniformity offlow rate among various polymers as made by various processes does not,in the absence of other tests,indicate uniformity of other properties.4.3Theflow rate obtained with the extrusion plastometer is not a fundamental polymer property.It is an empirically defined parameter critically influenced by the physical proper-ties and molecular structure of the polymer and the conditions of measurement.The rheological characteristics of polymer melts depend on a number of variables.Since the values of these variables occurring in this test may differ substantially from those in large-scale processes,test results may not correlate directly with processing behavior.1This test method is under the jurisdiction of ASTM Committee D20on Plastics and is the direct responsibility of Subcommittee D20.30on Thermal Properties (Section D20.30.08).Current edition approved Dec.1,2004.Published December2004.Originally approved st previous edition approved in2004as D1238-04b.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page on the ASTM website.3Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---4.4The flow rate of a material may be measured under any of the conditions listed for it in 8.2.Additional characterization of a material can be obtained if more than one condition is used.In case two conditions are employed,a Flow Rate Ratio (FRR)may be obtained by dividing the flow rate at one condition by the flow rate at the other condition.5.Apparatus5.1Plastometer :5.1.1The apparatus shall be a dead-weight piston plastom-eter consisting of a thermostatically controlled heated steel cylinder with a die at the lower end and a weighted piston operating within the cylinder.The essential features of the plastometer,illustrated in Figs.1and 2,are described in 5.2-5.8.All dimensional measurements shall be made when the article being measured is at 2365°C.5.1.2Relatively minor changes in the design and arrange-ment of the component parts have been shown to cause differences in results among laboratories.It is important,therefore,for the best interlaboratory agreement that the design adhere closely to the description herein;otherwise,it should be determined that modifications do not influence the results.5.2Cylinder —The steel cylinder shall be 50.8mm in diameter,162mm in length with a smooth,straight hole9.550460.0076mm in diameter,displaced 4.8mm from the cylinder axis.Wells for a thermal sensor (thermoregulator,thermistor,etc.)and thermometer shall be provided as shown in Fig.1.A 3.2-mm plate shall be attached to the bottom of the cylinder to retain the die.A hole in this plate,centered under the die and countersunk from below,allows free passage of the extrudate.The cylinder may be supported by at least two 6.4-mm high-strength screws at the top (radially positioned at right angles to the applied load)or by at least two 10-mm diameter rods screwed into the side of the cylinder for attaching to a vertical support.The essential dimensions of a satisfactory cylinder of this type are shown in Fig.1(Note 4).The cylinder bore should be finished by techniques known to produce approximately 12rms or better in accordance with ANSI B46.1.N OTE 4—Cylinders made of SAE 52100or other equivalent steel heat-hardened to 60–65Rockwell Hardness Scale C give good service when used at temperatures below 200°C.Cylinder liners of cobalt-chromium-tungsten alloy are also satisfactory to 300°C.5.3Die —The outside of the steel die shall be such diameter that it will fall freely to the bottom of the 9.550460.0076mm diameter hole in the cylinder (Note 5).The die shall have a smooth straight bore 2.095560.0051mm in diameter and shall be 8.00060.025mm in length.The bore and its finish are critical.It shall have no visible drill or other tool marks and no detectable eccentricity.The die bore shall be finished by techniques known to produce approximately 12rms or better in accordance with ANSI B46.1.FIG.1General Arrangement of ExtrusionPlastometerFIG.2Details of ExtrusionPlastometerN OTE 5—Recommended die material is tungsten carbide.Also satisfac-tory are steel,synthetic sapphire,and cobalt-chromium-tungsten alloy.5.4Piston :5.4.1The piston shall be made of steel with an insulating bushing at the top as a barrier to heat transfer from the piston to the weight.The land of the piston shall be 9.474260.0076mm in diameter and6.3560.13mm in length.The piston design may incorporate means for land replacement,for example,having threads and flats immediately above the land.Above the land,the piston shall be no larger than 8.915mm in diameter (Note 6).The finish of the piston foot shall be 12rms in accordance with ANSI B46.1.If wear or corrosion is a problem,the piston should be of stainless steel and equipped with a detachable foot for ease of replacement.N OTE 6—To improve standardization it is preferable that the piston be guided with a loose-fitting metal sleeve at the top of the cylinder.N OTE 7—Pistons of SAE 52100steel with the bottom 25mm,including the foot,hardened to a Rockwell hardness,C scale,of 55to 59have been found to give good service when used at temperatures below 200°C.5.4.2The piston shall be scribed with two reference marks 4mm apart in such fashion that when the lower mark coincides with the top of the cylinder or other suitable reference point,the bottom of the piston is 48mm above the top of the die (see Fig.1).5.4.3The combined weight of piston and load shall be within a tolerance of 60.5%of the selected load.5.5Heater :5.5.1The equipment must have a heater capable of heating the apparatus so that the temperature at 10mm above the die can be maintained within 60.2°C of the desired temperatureduring the test.The temperature of the barrel,from 10mm to 75mm above the top of the die,must be maintained within 61%of the set temperature (°C).N OTE 8—At temperatures higher than 200°C this degree of temperature control may be more difficult to obtain.5.5.2Calibrate the temperature-indicating device by means of a light-gage probe-type thermocouple or a platinum-resistance temperature sensor having a short sensing length.4The thermocouple should be encased in a metallic sheath having a diameter of approximately 1.6mm with its hot junction grounded to the end of the sheath.Insert the tempera-ture sensor into the melt from the top of the cylinder so that it is 1061mm above the upper face of the die.The temperature sensors shall be used with a potentiometer having a sensitivity of at least 0.005mV ,or a temperature readout having a sensitivity of at least 0.1°C.Calibration should also be verified at 75mm above the upper face of the die.An alternate technique for calibration is to use a sheathed thermocouple or platinum-resistance temperature sensor with tip diameter of 9.460.1mm for insertion in the bore without material present.An example of this is shown in Fig.3.Calibration of the temperature-indicating device shall be verified at each run temperature.N OTE 9—The response of the temperature sensing device may be affected by immersion level.Take care to ensure adequate insulation of the4Round-robin data showing flow rate and corresponding temperature profile of the melt obtained using probe-type thermocouples and platinum resistance tempera-ture sensors can be obtained from ASTM Headquarters.RequestRR:D20-1094.FIG.3Example of a Temperature Calibration DeviceNote A—Mineral glass insulation or equivalent spacer shall be bonded to tip and SS tube.Bond material shall be low conductivity type,400°C minimum rating.Insulation jacket material shall be low conductivity type (400°C minimum rating preferred,see Note 5).Note B—The RTD shall be inserted into bronze tip and bonded using high conductivity,400°C rated material.Tip of RTD element shall touch the bronze tip.Minimum insertion depth of 11.2mm clearance between RTD and tip wall shall beminimized.--`,,```,,,,````-`-`,,`,,`,`,,`---device sensor and stabilization of the barrel temperature.5.5.3Heat shall be supplied by electric band heater(s) covering the entire length of the cylinder.The heater(s)may be single-or multi-element,depending upon the manufacturer’s control means.The heater(s)plus control system must be capable of maintaining the temperature within the required 60.2°C of the set point.The temperature sensor and readout equipment must be calibrated to a traceable national standard (that is,NIST)at least once per year.The cylinder with the heater(s)shall be lagged with38mm of foamed-glass insula-tion.An insulating plate3.2mm in thickness shall be attached to the bottom of the cylinder to minimize heat loss at this point.5.6Temperature Controller—The type of controller and sensor must be capable of meeting the required control tolerance specified in5.5.1.5.7Thermometer—Thermometers having a range of4°C graduated in0.2°C divisions may be used to indicate tempera-ture.The temperature at this point may not necessarily be the temperature of the material10mm above the die.The thermometer may be used to monitor indirectly the temperature of the material10mm above the die and may be calibrated by reference to a thermocouple or platinum resistance temperature sensor inserted in the material10mm above the die.See5.5.2 for a description of a method for measuring temperature. (Warning—Caution should be observed with the use of a mercury-filled thermometer.Mercury vaporization occurs if the thermometer is broken.Mercury thermometers are not to be used at or above the boiling point of mercury,which is357°C.)5.8Level—Provision shall be made for vertical alignment of the bore of the extrusion plastometer.This is necessary to minimize subtractive loads resulting from rubbing or friction between the piston tip and sidewall.Means of alignment are discussed in Appendix X1.5.9Accessory Equipment—Necessary accessories include equipment for charging samples to the cylinder,a funnel,a die plug,a tool for cutting off the extruded sample,a timer or stop watch,cleaning equipment,go/no-go gages,a balance accurate to60.001g,and,when required,a weight or weight-piston support.N OTE10—Satisfactory operation of the apparatus for polyethylenes can be ascertained by making measurements on NIST Standard Reference Materials(SRMs)certified for meltflow rate.The four SRMs certified under condition190/2.16are SRM1473with aflow rate of1.29g/min, SRM1474with aflow rate of5.03g/10min,SRM1496with aflow rate of0.26g/10min,and SRM1497with aflow rate of0.19g/10min.SRM 1475a is certified under condition190/3.25with aflow rate of2.20g/10 min.56.Test Specimen6.1The test specimen may be in any form that can be introduced into the bore of the cylinder,for example,powder, granules,strips offilm,or molded slugs.It may be desirable to preform or pelletize a powder.7.Conditioning7.1Many thermoplastic materials do not require condition-ing prior to testing.Materials which contain volatile compo-nents,are chemically reactive,or have other special character-istics most probably require appropriate conditioning procedures.Moisture not only affects reproducibility offlow rate measurement but,in some types of materials,degradation is accelerated by moisture at the high temperatures used in testing.Check the applicable material specification for any conditioning requirements before using this test.See Practice D618for appropriate conditioning practices.8.Procedural Conditions8.1Standard conditions of test are given in Table1.Test conditions shall be shown as:Condition___/___,where the temperature in degrees Celsius is shownfirst,followed by the weight in kilograms.For example:Condition190/2.16.8.2The following conditions have been found satisfactory for the material listed:Material Condition Acetals(copolymer and homopolymer)190/2.16190/1.05 Acrylics230/1.2230/3.8 Acrylonitrile-butadiene-styrene200/5.0230/3.8220/10Acrylonitrile/butadiene/styrene/polycarbonate230/3.8250/1.2blends265/3.8265/5.0 Cellulose esters190/0.325190/2.16190/21.60210/2.16 Ethylene-chlorotrifluoroethylene copolymer271.5/2.16Ethylene-tetrafluoroethylene copolymer297/5.0Nylon275/0.325235/1.0235/2.16235/5.0275/5.0Perfluoro(ethylene-propylene)copolymer372/2.16Perfluoroalkoxyalkane372/5.0Polycaprolactone125/2.1680/2.16 Polychlorotrifluorethylene265/12.5Polyether sulfone(PES)380/2.16360/10343/2.16Polyethylene125/0.325125/2.16250/1.2190/0.325190/2.16190/21.60190/10310/12.5Polycarbonate300/1.2Polymonochlorotrifluoroethylene265/21.6265/31.6Polypropylene230/2.16Polyphenyl sulfone(PPSU)365/5.0380/2.16 Polystyrene200/5.0230/1.2230/3.8190/5.0 Polysulfone(PSU)343/2.16360/10 Polyterephthalate250/2.16210/2.16285/2.16Poly(vinyl acetal)150/21.6Poly(vinylidenefluoride)230/21.6230/5.0Poly(phenylene sulfide)315/5.0Styrene acrylonitrile220/10230/10230/3.8Styrenic Thermoplastic Elastomer190/2.16200/5.0 Thermoplastic Elastomer-Ether-Ester190/2.16220/2.16230/2.16240/2.16250/2.16 Thermoplastic elastomers(TEO)230/2.16Vinylidenefluoride copolymers230/21.6230/5.0for T m=100°use120/5.0or21.6N OTE11—Some materials may require special materials of construc-tion or handling for performing this test.Please refer to the material5These standard polyethylenes are available from the National Institute ofStandards and Technology,Office of Standard Reference Materials,Washington,DC20234.--`,,```,,,,````-`-`,,`,,`,`,,`---specification for appropriate recommendations.8.3If more than one condition is used and the material is polyethylene,the determination of Flow Rate Ratio (FRR)has been found to be useful.The FRR is a dimensionless number derived by dividing the flow rate at Condition 190/10by the flow rate at Condition 190/2.16.N OTE 12—When determining such a ratio of flow rates for a material at the same temperature under different loads,it has been found that precision is maximized when one operator uses one Procedure (A or B),the same plastometer,and the same die for both measurements (the die need not be removed from the plastometer between the two determina-tions).9.Procedure A—Manual Operation9.1Select conditions of temperature and load from Table 1in accordance with material specifications such that flow rates will fall between 0.15to 50g/10min.9.2Ensure that the bore of the extrusion plastometer is properly aligned in the vertical direction.(See Appendix X1.)9.3Inspect the apparatus and die for cleanliness.If it is not clean,see 9.11.N OTE 13—The degree of cleanliness can significantly influence the flow rate results,therefore a thorough method of cleaning must be established.It has been found that three swabs of the barrel is satisfactory for most materials and that the die,barrel,and piston are more easily cleaned while hot.9.4Check the die bore diameter with appropriately sized no-go/go gages prior to testing.Make frequent checks to determine whether the die diameter (tested with die at 2365°C)is within the tolerances given in 5.3.N OTE 14—Cleaning and usage can result in a die diameter that is out of specifications.Data has shown that erroneous results will be obtained if the die diameter is not within the appropriate tolerances.9.5Verify that the temperature is stable and within 60.2°C of the appropriate test temperature as specified in 5.5.1.9.6Insert the die and the piston.The temperature of the cylinder with the piston and die in place must be stable at the appropriate test temperature 15min before testing is begun.When equipment is used repetitiously,it should not be neces-sary to heat the piston and die for 15min.N OTE 15—The reduction in heating time when the unit is being used repetitiously is only allowed when runs of the same or similar material are being measured over a continuous time frame.If the piston and die are removed and cleaned,they should be considered “cold”and the full 15minutes heating stabilization time required.9.7Remove the piston and place it on an insulated surface.Charge the cylinder within 1min with a weighed portion of the sample in accordance with the expected flow rate,as given in Table 2.Reinsert the piston and add the appropriate weight.N OTE 16—Experience has shown that for the best reproducibility the piston should operate within the same part of the cylinder for eachTABLE 1Standard Test Conditions,Temperature,and Load//^:^^#^~^^""~:""~:$:@@:"#:$@~#~"^:"~*~~"^~:^^::*#^#$\\measurement.The piston is scribed so the starting point for each extrusion is roughly the same.Some excess of material over the minimum required for the actual flow measurement portion of the test is provided by the charging weights shown in Table 2.This is necessary to achieve a void-free extrudate and flow equilibrium before start of rate measure-ments.N OTE 17—It is frequently helpful to take interim cuts of the extrudate at uniform time intervals during the specified extrusion time.Weights of these individual cuts give an indication of the presence of bubbles which may be masked due to their size or to opacity of the sample.This technique is particularly helpful in the case of highly pigmented materials.Forcing out some of the resin manually during the preheat period often eliminates bubbles in the test extrudate.9.8Allow time for the material to soften and begin to melt,and then purge some material to a position such that subse-quent travel of the piston will position the lower scribe mark at the reference start position 7.060.5min from the completion of the charge.Purge must be completed at least 2min prior to start of the test for materials having melt flow rates less than 10g/10min.N OTE 18—It has been found that purging within 60s of the start time will result in higher variability in the data.N OTE 19—There may be cases where the 7.060.5min is too much or not enough preheat time.For those materials,provisions must be in the material documents.It is necessary to refer to the appropriate material document before beginning any test.N OTE 20—Additional care may be necessary to prevent thermal degra-dation in the extrusion plastometer.This is sometimes done by the addition of an appropriate antioxidant.For highly unstable materials,it may be necessary to use alternative techniques as an indication of flow charac-teristics.9.9For materials with flow rates greater than 10g/10min,a weight (and if needed,a piston)support must be used after the initial purge.The support shall be removed at such a time as to allow the test to begin within 760.5min of the completion of the charge.The piston/weight support should be of such a length that the lower scribe mark of the supportedpiston/weight will be 25mm above the top of the guide bushing or other suitable reference mark.N OTE 21—It has been found that the effect of choosing plugging,weight support,or both,is significant to the flow rate results.The choice of piston support was made to cover all conditions and flow rates 10to 50g/10min.9.10For all tests,start collecting a timed extrudate when requirements for the piston position are met,provided this is within 7.060.5min from the end of charging;otherwise,discard the charge and repeat the test with readjusted piston position after the initial purge,or change weights.Require-ments are that the top scribed mark on the piston be visible above the cylinder or index and that the lower scribe mark be in the cylinder or below the index.As the lower scribed mark approaches the top of the cylinder or index,reset the timer to zero,then simultaneously start the timer and make the initial cut-off when the position requirements are met.Make the final cut-off exactly when the time interval given in Table 2is reached.Collect the timed extrudate.If the extrudate contains visible bubbles,discard the complete charge and begin the test again.N OTE 22—The charge weight should only be increased if no material is being purged and there is still not enough material to complete the test.9.11Discharge the remainder of the specimen and push the die out through the top of the cylinder.Swab out the cylinder with cloth patches after the manner of cleaning a pistol barrel.The die may be cleaned by dissolving the residue in a solvent.A better method is pyrolytic decomposition of the residue in a nitrogen atmosphere.Place the die in a tubular combustion furnace or other device for heating to 550610°C and clean with a small nitrogen purge through the die.This method is preferable to flame or solvent cleaning,being faster than solvent cleaning and less detrimental to the die than an open flame.In certain cases where materials of a given class having similar flow characteristics are being tested consecutively,interim die cleaning may be unnecessary.In such cases,however,the effect of cleaning upon flow rate determination must be shown to be negligible if this step is avoided.9.12Once the extrudate is cool,weigh to the nearest 1mg.9.13Multiply the weight of the extrudate by the appropriate factor shown in Table 2to obtain the flow rate in grams per 10min.N OTE 23—Frequently,errors in test technique,apparatus geometry,or test conditions,which defy all but the most careful scrutiny exist,causing discrepancy in flow rate determinations.The existence of such errors is readily determined by periodically measuring a reference sample of known flow rate.The flow rate value and range to be tolerated can be determined using a statistically correct test program composed of multiple determinations with various instruments.Standard samples of polyethyl-ene,linear or branched,are available from the National Institute of Standards and Technology.9.14In case a specimen has a flow rate at the borderline of the ranges in Table 2and slightly different values are obtained at different time intervals,the referee value shall be obtained at the longer time interval.10.Procedure B—Automatically Timed Flow RateMeasurement 10.1Apparatus :TABLE 2Standard Test Conditions,Sample Mass,A and TestingTime BFlow Range,g/10min Suggested Mass of Sample in Cylinder,gTime Inter-val,min Factor for Obtaining Flow Rate in g/10min0.15to 1.0 2.5to 3.0 6.00 1.67>1.0to 3.5 3.0to 5.0 3.00 3.33>3.5to 10 4.0to 8.0 1.0010.00>10to 25 4.0to 8.00.5020.00>254.0to 8.00.2540.00AThis is a suggested mass for materials with melt densities of about 0.7g/cm 3.Correspondingly,greater quantities are suggested for materials of greater melt densities.Density of the molten resin (without filler)may be obtained using the procedure described by Terry,B.W.,and Yang,K.,“A New Method for Determining Melt Density as a Function of Pressure and Temperature,”SPE Journal ,SPEJA,Vol.20,No.6,June 1964,p.540or the procedure described by Zoller,Paul,“The Pressure-Volume-Temperature Properties of Polyolefins,”Journal of Applied Poly-mer Science ,Vol 23,1979,p.1051.It may also be obtained from the weight of an extruded known volume of resin at the desired temperature.For example,25.4mm (1in.)of piston movement extrudes 1.804cm 3of resin.An estimate of the density of the material can be calculated from the following equation:resin density at test temperature 5M /1.804where:M =mass of extruded resin.BSee 9.14.--`,,```,,,,````-`-`,,`,,`,`,,`---//^:^^#^~^^""~:""~:$:@@:"#:$@~#~"^:"~*~~"^~:^^::*#^#$\\10.1.1Extrusion plastometer and auxiliary equipment are detailed in Section 4and below.10.1.2A timing device shall electrically,optically,or me-chanically time piston movement within the specified travel range.The requirements of the system are as follows:10.1.2.1Sense and indicate the piston travel time within 60.01s (see Note 1).10.1.2.2Measure piston travel within 60.4%of the nomi-nal preset value (see 10.1.2.4and 10.1.2.5)for use in the flow rate calculations.10.1.2.3Any effects on the applied load must be included in the allowable tolerance given in 5.4.3.10.1.2.4It should be preset or be settable for measuring piston travel of 6.3560.25mm for flow rates up to 10g/10min.10.1.2.5It should be preset or be adjustable for measuring piston travel of 25.460.25mm for flow rates greater than 10g/10min.10.1.2.6To ensure high interlaboratory reproducibility,it is important that the timing device operates within a fixed portion of the cylinder.This is defined as the portion of the cylinder between 4662mm and 20.662mm above the top of the die.10.1.2.7Check die,cylinder,and position dimensions for conformance to 5.2-5.4and Figs.1and 2.10.2Procedure :10.2.1Refer to Table 1for selection of conditions of temperature and load in accordance with the material specifi-cation.10.2.2Check the die bore diameter with appropriately sized no-go/go gages prior to testing.Make frequent checks to determine whether the die diameter (tested with die at 2365°C)is within the tolerances given in 5.3(see Note 14).10.2.3Ensure that the bore of the extrusion plastometer is properly aligned in the vertical direction (see Appendix X1).10.2.4Inspect the apparatus and die for cleanliness.If it is not clean,see 9.11and Note 13.10.2.5Check the die bore diameter with appropriately sized no-go/go gages before beginning the test.Make frequent checks to determine whether the die diameter is within the tolerances given in 5.3(see Note 14).10.2.6Verify that the temperature is stable and within 60.2°C of the appropriate test temperature as specified in 5.5.1.10.2.7Insert the die and the piston.The temperature of the cylinder with the piston and die in place must be stable at the appropriate test temperature 15min before testing is begun.When equipment is used repetitiously,it should not be neces-sary to heat the piston and die for 15min.10.2.8Adjust the travel arm to 6.3560.25mm for mea-suring materials with expected flow rates of up to 10g/10min or 25.4060.25mm for measuring materials with expected flow rates of 10g/10min or higher.N OTE 24—It has been found that for some materials the melt flow rates obtained on a material will be different depending on which timer length is chosen;therefore,it is important to adhere to the protocol in 10.2.8to compare interlaboratory results.10.2.9Remove the piston and place it on an insulated surface.Charge the cylinder within 60s with a weighted portion of the sample in accordance with the expected flow rate,as given in Table 2.Reinsert the piston and add weight.10.2.10Allow time for the material to soften and begin to melt,and then purge some material to a position such that subsequent travel of the piston will position the lower scribe mark at the reference start position 7.060.5min from the completion of the charge.Purge must be completed at least 2min prior to start of the test for materials having melt flow rates less than 10g/10min (see Note 18).10.2.11Weight and piston support,if needed,must be used after the initial purge.The support will be removed at such a time as to allow the timer to activate within 7.060.5min after completion of the charge.If the timer is not activated within 760.5min after the completion of the charge,the test must be repeated with readjusted piston position after the initial purge,or change weights.The piston/weight support should be of such a length that the lower scribe mark of the supported piston/weight will be at least 25mm above the top of the cylinder.Only use piston support if there is excessive material flow (see Notes 21and 22).10.2.12For materials greater than 50g/10min a die plug must be used in addition to the piston/weight support.The die plug is inserted before charge and is removed prior to removing the piston/weight support.The initial charge should be adjusted to reduce excess flow.If the timer arm is not activated within 760.5min after the completion of the charge the test must be repeated with readjusted piston position,or change weights (see Notes 21and 22).(Warning—Rapid expulsion of mate-rial when die plug is removed may be hazardous.)10.2.13If the timed extrudate contains visible bubbles,repeat the test (see Note 23).10.2.14Record the time to the nearest 0.01s for the piston to complete the calibrated distance of travel.10.2.15Discharge any remaining resin and clean the die,piston,and cylinder as detailed in 9.11.11.Procedure C—Automatically Timed Flow RateMeasurement for High Flow Rate Polyolefins Using Half-Height,Half Diameter Die 11.1Apparatus :11.1.1Extrusion plastometer and auxiliary equipment are detailed in Sections 5and 10.11.1.2For polyolefins with a MFR of 75or greater using the standard die (See 5.3),an alternate die can be used to reduce the flow rate of these materials and improve the reproducibility of results.The alternate die dimensions shall be:Height 4.000TABLE 3Factors for Calculation of Flow RateMaterial (Unpigmented)Tempera-ture,°C Piston Travel,L ,cm [in.]Factor forCalculation of FlowRate,F APolyethylene 190 2.54[1]826Polyethylene 1900.635[0.25]207Polypropylene 230 2.54[1]799Polypropylene2300.635[0.25]200AFactors calculated using melt-density values of 0.7636g/cm 3for polyethylene and 0.7386g/cm 3for polypropylene,as expressed in article by Zoller,Paul,“The Pressure-Volume-Temperature Properties of Polyolefins,”Journal of Applied Poly-mer Science ,Vol 23,1979,P .1051.The base densities at 23°C for which the melt densities are reported were 0.917g/dm 3for annealed low-density polyethylene and polypropylenehomopolymer.--`,,```,,,,````-`-`,,`,,`,`,,`---//^:^^#^~^^""~:""~:$:@@:"#:$@~#~"^:"~*~~"^~:^^::*#^#$\\。
熔体流动速率测试方法ISO标准与ASTM标准的对比分析

熔体流动速率测试方法ISO标准与ASTM标准的对比分析邓燕霞;郭曦;王超先【摘要】熔体流动速率是衡量热塑性塑料熔体流动性的一个重要指标,对其加工具有指导作用.其测试主要受温度、负荷、预热时间(及开始测试的时间)、挤出物切段时间间隔、活塞起始位置以及活塞移动距离等因素影响.对比分析了国际先进测试标准ISO和ASTM对以上因素的规定,发现除了对开始测试时间没有做出规定外,ISO比ASTM更为合理.最后根据对比分析结果,对熔体流动速率测试方法国家标准的修订给出了建议.【期刊名称】《理化检验-物理分册》【年(卷),期】2015(051)006【总页数】6页(P421-425,433)【关键词】热塑性塑料;熔体流动速率;温度;预热时间;挤出物切段时间间隔;活塞起始位置;活塞移动距离【作者】邓燕霞;郭曦;王超先【作者单位】国家石化有机原料合成树脂质检中心,北京102500;国家橡塑工程研究中心,北京102500;中国石化北京化工研究院燕山分院,北京102500;国家石化有机原料合成树脂质检中心,北京102500;国家橡塑工程研究中心,北京102500;中国石化北京化工研究院燕山分院,北京102500;国家石化有机原料合成树脂质检中心,北京102500;国家橡塑工程研究中心,北京102500;中国石化北京化工研究院燕山分院,北京102500【正文语种】中文【中图分类】TQ322.4在塑料加工中,熔体流动速率是用来衡量热塑性塑料熔体流动性的一个重要指标[1-2]。
现行熔体流动速率测试标准GB/T 3682-2000,ISO 1133:2011[3],ASTM D1238-2013[4](以下分别简称GB,ISO,ASTM)都规定了热塑性塑料熔体质量流动速率(MFR)和熔体体积流动速率(MVR)的测试方法,分别为A法和B法。
A法是指热塑性塑料在熔体流动速率仪料筒中经过一定的预热时间,在规定的负荷和温度下,通过活塞将负荷加到料筒中的熔体上,在规定的活塞起始位置和规定的时间内通过熔体流动速率仪标准口模的熔体质量(通过切段时间间隔及至少3个连续切段质量的平均值来计算,单位为g/10min)。
astmd1238 质量法

ASTMD1238是一项美国材料与试验协会(ASTM)制定的标准,它规定了用质量法测定塑料颗粒的雾化性能的测试方法。
这项标准适用于通过雾化过程生产的塑料颗粒,无论这些颗粒是用作原料还是作为成品。
在ASTMD1238标准中,质量法是用来评估颗粒大小分布和颗粒质量的一种方法。
测试过程中,将一定量的颗粒样品放入一个特定的容器中,然后通过一系列的筛选过程,按照颗粒大小进行分离。
每个尺寸范围的颗粒会被计数并测量其质量。
通过这些数据,可以计算出颗粒的体积百分比和平均粒径,进而评估颗粒的雾化性能。
具体来说,ASTMD1238质量法的测试步骤通常包括以下几个方面:
1.样品的准备:从雾化过程中取得代表性样品,并确保样品充分干燥。
2.筛分过程:使用一系列标准筛对样品进行筛分,每种筛孔大小代表不同的颗粒大小范围。
3.计数和称重:将筛选出的颗粒按大小分类,然后进行计数和称重,得到每个尺寸范围的颗粒数量和质量。
4.数据分析:将收集到的数据用于计算颗粒的体积百分比、质量百分比以及平均粒径等参数。
5.结果报告:按照ASTMD1238标准的要求,将测试结果以适当的方式报告,包括颗粒大小分布图、颗粒质量数据等。
这项标准不仅提供了详细的测试方法,还包括了测试结果的表示方法、测试误差的控制以及测试结果的置信度评估等内容,以确保测试结果的准确性和重复性。
通过遵循ASTMD1238标准,可以有效地评估不同条件下塑料颗粒的雾化性能,对于塑料制造业的质量控制和工艺优化具有重要意义。
常见塑料物性的检测及标准

常见塑料物性的检测及标准流动系数(1)测试的标准:ASTM D1238(2)常用的测试标准的量测仪器是溶液指数计(Melt Indexer).(3)流动系数检测方法:是一种表示塑胶材料加工时的流动性的数值。
它是美国量测标准协会(ASTM)根据美国杜邦公司(Du Pont)惯用的鉴定塑料特性的方法制定而成,其测试方法是先让塑料粒在一定时间(10分钟)内、一定温度及压力(各种材料标准不同)下,融化成塑料流体,然后通过一直径为2.1mm圆管所流出的克(g)数。
其值越大,表示该塑胶材料的加工流动性越佳,反之则越差。
(4)测试的具体操作过程是:将待测高分子(塑料)原料置入小槽中,槽末接有细管,细管直径为2.095mm,管长为8mm。
加热至某温度后,原料上端藉由活塞施加某一定重量向下压挤,量测该原料在10分钟内所被挤出的重量,即为该塑料的流动指数。
有时您会看到这样的表示法?MI25g/10min,它表示在10分钟内该塑料被挤出25克。
一般常用塑料的MI值大约介于1~25之间。
MI愈大,代表该塑料原料粘度愈小及分子重量愈小,反之则代表该塑料粘度愈大及分子重量愈大。
收缩率•测试的标准:ASTM D955•塑胶制品经冷却、固化并脱模成形后,其尺寸与原模具尺寸之差的百分比。
(3)因结构不同的关系,结晶性塑料与非结晶性塑料的收缩率存在明显的差异。
一般地,结晶性塑料的收缩率比非结晶性塑料的收缩率大上好几倍(如下表所示)。
同时有添加玻璃纤维或其它强化剂的塑胶材料,其收缩率可降低好几倍。
影响成型收缩的因素有热收缩、结晶度(热塑性)或硬化度(热固性)、弹性回复、分子配向、与成型条件等因素。
<1>热塑性塑料塑料名称成形收缩率(%)塑料名称成形收缩率(%)塑料名称成形收缩率(%)ABS0.3~0.8PA0.6~2.5POM0.8~3.5 AS0.2~0.7PA-60.5~2.2PP 1.0~2.5 CA0.3~0.8PA-660.5~2.5PPO0.5~0.7 CAB0.4~0.5PA-610 1.2PPS0.6~1.4 CAP1PA-612 1.1PS0.2~1.0 CP0.4~0.5PA-11 1.2PVA0.5~1.5 EC0.4~0.5PA-120.3~1.5PVAC0.5~1.5 EPS0.4PAR0.8~1.0PVB0.5~1.5 FEP 3.0~4.0PBT 1.3~2.4硬质PVC0.1~0.5FRP0.1~0.4PC0.4~0.7软质PVC 1.0~5.0 EVA0.5~1.5PCTFE0.2~2.5PVCA 1.0~5.0 HDPE 1.2~2.2PE0.5~2.5PVDC0.5~2.5 HIPS0.2~1.0PET 2.0~2.5PVFM0.5~1.5 LCP0.1~1.0PES0.5~1.0SAN0.2~0.6 LDPE 1.5~3.0PMMA0.2~0.8SB0.2~1.0<2>热固性塑料塑料名称成形收缩率(%)塑料名称成形收缩率(%) EP0.1~0.5SP0.0~0.5MF0.5~1.5UF0.6~1.4PDAP0.1~0.5UP0.1~1.2PF0.4~0.9DAP0.1~0.5PU0.6~0.8BMC0.0~0.2热膨胀系数•测试的标准:ASTM D696•塑料加热时尺寸膨胀的比率•由于一般塑料的热膨胀系数比金属大2~10倍,因此在设计模具、塑料与金属并用的器具、塑料的钳核物时,必须详加考虑,以防止因内部应力而造成产品的龟裂变形。
ASTM-D1238中文翻译(熔融流动率熔融指数体积流动速率)

ASTM-D1238中文翻译(熔融流动率、熔融指数、体积流动速率)用挤压塑料计测量热塑性塑料熔体流动速率的试验方法 1. 范围1.1该测试方法涵盖了熔融树脂挤出流动速率测试方法,通过在精确的温度,载荷,压料杆在料筒位置等条件下,指定长度和直径的口模来定时测量。
1.2程序A是手工切断操作,用于材料流动速率下降至0.15与50g/10min之间的时候。
程序B是自动定时测量流动速率,用于材料流动速率在0.5至900g/min。
通过两个程序,压料杆的行程在定时测量过程中几乎一致,压料杆位于口模以上46~20.6mm。
通过这些程序多次循环测量描述的几种材料可以得到流动速率对比。
1.3.1 计算熔融体积流动速率及熔融质量流动速率的规定。
Note1――如果定时器可以定时最短时间达到0.01s. 反复循环测试表明测试方法适合流动速率最大为1500g/10min,Note2――测试方法和ISO 1133-1991年在技术上是相当的。
2. 参考文献:略 3.术语:略 4. 意义及使用4.1本试验方法是特别适用于热塑性塑料的品质管控测试。
Note3――塑料流率小于0.15或大于900g/10min的程序可以测试,但在这个测试方法中,高精度的数据还没有被开发出来。
4.2 该测试方法用于流动速率显示一致且采用单一加工制造的塑料,这种情况可能其他性能也显示一致。
但是,多种不同加工制造出的塑料即使流动性一致,在其他试验中也不会显示其他性能一致。
4.3由挤出塑料计测量得到的流动速率并不是塑料的本质属性,它只是经验性定义了影响塑料物理性能和分子结构的关键参数,熔融树脂的流变特性基于一些变量,由于在大规模加工中,这些变量的值会发生改变,因此测试结果与加工方式可能并不直接联系。
4.4 在8.2列下的任何条件,一种材料的流动速率都可能被测量。
如果大于一个条件被使用,就可以获得材料的另一个特征。
如果用到两个条件,可以获得两种不同条件下流动速率比(FRR)。
塑料熔融指数测试标准

塑料熔融指数测试标准塑料熔融指数测试是一种常见的塑料材料流动性能测试方法,用于评估塑料材料在熔融状态下的流动性能。
这是关于塑料熔融指数测试标准的详细介绍。
1. ASTM D1238-13a 标准测试方法ASTM D1238-13a 是由美国材料和试验协会(ASTM International)制定的标准测试方法,用于测定塑料熔融指数(Melt Flow Rate,MFR)。
该测试方法适用于流动速率在0.10 g/10 min到200 g/10 min之间的熔融塑料。
测试过程中,使用一台熔体流动速率仪(Melt Flow Rate Tester)对塑料试样进行测试。
试样通过一个加热筒,在一定的温度和负荷下被挤压通过一个标准孔口。
通过测量试样在一定时间内通过的质量,计算出熔融指数。
2. ISO 1133 标准测试方法ISO 1133 是国际标准化组织(International Organization for Standardization)制定的标准测试方法,也用于测定塑料的熔融指数。
该方法与ASTM D1238-13a类似,适用于流动速率在0.1 g/10 min到50 g/10 min之间的塑料。
ISO 1133测试方法使用一台熔体流动速率仪进行测试。
试样通过加热筒在一定温度和负荷下挤出通过一个标准孔口。
通过测量试样在一定时间内通过的质量,计算出熔融指数。
3. GB/T 3682-2000 标准测试方法GB/T 3682-2000 是中国国家标准化管理委员会(Standardization Administration of China)制定的标准测试方法,用于测定塑料的熔融流动速率。
该方法适用于流动速率在0.1 g/10 min到1000 g/10 min 之间的塑料。
测试过程中,使用一台熔体流动速率仪对塑料试样进行测试。
试样在一定温度和负荷下通过一个标准孔口挤出,并测量试样在一定时间内通过的质量,计算出熔融流动速率。
塑料物性检测标准ISO ASTM DIN_对比

Procedure A: 0.15-50
DIN 5373O 3451/1-1997
特殊说明
GB 9345-88
1.坩埚称重, 材料净重
2.燃烧后放入马弗炉中煅烧 600±25度, 0.5 h
3.冷却,灰分净重
试样量不超过坩埚体积一半, 燃烧火焰不超过2.5cm
在马弗炉中煅烧不超过3 h
80*10*4 标准扰度0.34
127*13*3-13 标准扰度0.25
试样中点弯曲变形达到 0.34mm时的温度
平放试样, 三点弯曲应 力,恒速升温,形变量达 标准扰度的温度
1.检查支座跨度
2.平放试样,施加载 荷,5min后,调零
3.匀速升温,记录达标准 扰度的温度
A法:0.45MPa; B法:1.8MPa 最少2个试样 起始温度<27度 升温速度120度/h
样条尺寸 测试方法 特殊说明
ISO 179
80*10*4(缺口2) 支撑线间距离62
GB 1043-96
ASTM D 6110 – 06
80*10*4(缺口2) 支撑线间距离60
1.铣缺口 2.测量试样尺寸 3.选择摆锤(能量最大), 调节校准仪器
4.抬起摆锤,放置试样, 缺口背对刀刃
5.释放摆锤,读取数据
补
3 MFR
标准
ISO 1133-2005 GB 3682-2000
ASTM D1238
测试方法
特殊说明
1.清洗仪器, 升温恒温 15min; 2.装样压实,预热 3.施负荷,下标线达料筒 顶面时计时并切除料条
4.按一定间隔切取料条至 上标线达料筒顶面
5. 选合格料条计算结果
5min预热,切条长度10-20 mm 230 oC, 2.16 kgPA6 PA66 ABS AS PC/ABS PBT PET PPO PPS PEEK POM HIPS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ASTM D1238标准试验方法
热塑性塑料熔体流动速率的挤压
1。
范围*
1.1本标准采用率的测定
熔融挤压热塑性树脂使用挤压塑性计。
在指定的预热时间,树脂挤压通过模具与指定的长度和孔直径规定条件的温度,负荷,和活塞位置在桶。
四个程序描述。
类似的结果获得了这些程序间轮转测量几种材料和
在15节中描述。
1.2个程序是用来确定熔体流动速率(熔体)的热塑性材料。
测量的单位克/ 10分钟(克/ 10分钟)。
它是基于质量的测量材料的挤出模具在一段特定的时间。
它一般用于材料具有熔体流动率下降0.15至50克/ 10分钟
(见注1)。
1.3个程序是一个自动定时测量
用于确定熔体流动速率(熔体)以及熔体容积率(术)的热塑性材料。
熔体流动速率测量与程序的报告在克/ 10分钟。
术测量报告在立方厘米/十分钟(立方厘米/ 10分钟)。
程序测量为基础在测定材料的数量从挤压模具在一段特定的时间。
该卷转换一个质量测量的再乘以融化密度值为材料(见注2)。
程序是一般使用的材料具有熔体流动速率从0.501500克/ 10分钟。
1.4个程序是一个自动定时测量
用于确定熔体流动速率(熔体)聚烯烃材料。
它一般是用来作为一种替代程序对样品具有熔体流动速率大于75克/ 10分钟。
程序涉及使用一种修改模具,一般被称为“half-die,“其中有一半的高度和半
内部直径的模具标准规定使用
程序,从而保持相同的长度直径比。
测试程序类似的程序,但所获得的结果与程
序不应假定这些结果的一半制作方法
1.5个程序是一个multi-weight测试通常称为作为一个“流量比”(识)试验。
程序设计允许制造商决定采用两根或三不同试验载荷(无论是增加或减少负载
在测试)一管材料。
容量是一个
无量纲数除以熔体在高负荷试验的熔体在低负荷试验。
结果从multi-weight不得直接比较试验得出的结果的程序或程序B。
注意1-polymers具有熔体流动速率小于0.15或大于900克/ 10分钟可测试程序在本试验方法;然而,准确的数据尚未开发。
注意2-melt密度密度的材料在熔融状态。
这是不可混淆标准密度
值的材料。
参见
表3。
注意3-this测试方法和标准1133地址相同此事,但不同的技术内容。
1.6本标准并非旨在解决安全问题,如果有的话,与它的使用。
它的责任是对用
户建立适当的安全标准和卫生管理办法和确定适用限制使用前。
操作程序
9.1选择条件下的温度和负荷从8.2或按照材料规格。
在多个测试存在的条件,试验条件应当约定实验室。
如果测试的条件是不知道,选择条件,导致流量的
0.15 - 50克/ 10分钟。
9.2检查清洁度(见挤压式塑性计注10)。
所有的气缸孔表面,模具和活塞的应
无任何残留物从以前的测试。
9.3检查模孔直径在频繁的间隔适当大小的去/不继续计(检查与死亡23 6 5°丙)验证,模具是在给定的公差在3。
目视检查模具孔核实其不划伤或损坏。
还目视检查土地的活塞核实其不划伤或损坏和使用校准微米验证尺寸
9.4设定温度根据制造商指令。
9.5次插入模和活塞到孔。
允许的温度与汽缸,活塞和死亡的地方,到稳定在60.2摄氏°选定的试验温度为至少15分钟前开始测试。
当设备的使用不断,这是没有必要的热活塞及模具15分钟时,运行在相同或类似的材料同一试验温度是衡一个连续时间框架,提供了活塞和模具的清洗重新插入孔内,五分钟后去除挤压式塑性计在每个测试结束。
如果活塞,或死亡,或两者,是删除从钻孔时间超过五分钟,他们应被视为“冷”和全部15分钟须加热稳定时间。
9.6拆下活塞孔(见注12)。
在60秒,电荷气缸与体重的一部分样本符合预期的流量(如在表3),重新插入活塞和添加适当的重量。
充电量表3中给出,只是建议,和实际重量为特定的样本,如果不是
众所周知,将需要确定的试验和错误。
调整收费重量使活塞在适当位置的预热期结束。
如果有必要,它是可以接受的清除多余的材料从气缸孔,使活塞在适当的位置结束时的预热时间。
清洗材料在条件更大的力量比测试条件须完成至少2分钟之前作出初步截止(见注13)。
注意12-placing活塞在绝缘表面删除后从孔将减少热损失。
注意13-material清洗,迫使活塞位置将确保后续行程活塞在余下的预热期将活塞的位置在正确的起始位置。
本材料应该被允许软化和融化之前,手动清洗。
注意14-additional保健可能是必要的,以防止热降解在挤压式塑性计。
这有时是通过增加一个适当的抗氧化剂。
极不稳定的材料,这可能是必
须使用替代技术作为一种指示流量特性。
9.7开始测试启动的计时装置,监视器预热期,这一时期是时间使材料的软化和开始融化。
预热时间应当在7 6 0.5分钟从建成的收费除非另有规定的材料规格。
9.8为材料的流量大于10克/ 10分钟,重量(如果需要,活塞)的支持,必须使用防止活塞旅行在预热期为了确保有足够的材料的孔正确的材料试验。
支架被安装在一个方式,拥有较低的划线标记的活塞约25毫米以上的顶部的引导衬套或其他合适的参考标记。
另外,它是可以接受的操作延迟应用重量活塞。
支持应删除或重量应用到活塞的一时间允许经营者作出初步切断内7 6 0.5分钟完成充电。
注意15-it已发现的影响,支撑重量显着的流动率的结果。
选择支持了活塞至所有条件和流量10至50克/ 10分钟/活塞重量支持不同厂商之间的挤压式塑
性计。
9.9月底的预热段,当上划线标记在活塞是有形以上缸(或顶部的导套)和较低的抄写员马克在缸(或以下的顶部导套)表明,活塞土地是46 6 2毫米从模具的顶部,复位定时器零同时作出初步截止。
丢弃的挤出从预热段。
作出最后截止正是在选定的时间间隔(见表3)达到。
收集和重量的挤出试样。
如果挤出标本包含可见的气泡,抛弃它,开始测试又来了。
如果最初的截止开始以外的公差在预热期间或活塞位置的要求,丢弃的标本和重复测试与调整活塞的位置后,初步
清除,或重量的改变。
9.10一旦挤出,冷却,体重接近1毫克。
9.11乘以重量的挤出通过适当的因子表3所示,获得流量每克10分钟。
按照制造商的指示,挤压式塑性计为消除从模具孔。
签出缸棉花补丁和气缸孔清洁工具。
彻底的清洁模具和柱塞清除所有残留(注17。