中考数学复习专题4-几何小综合多结论选择

合集下载

初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

初中数学中考复习 第3关 多结论的几何及二次函数问题为背景的选择填空题(原卷版)

第3关 多结论的几何及二次函数问题为背景的选择填空题【考查知识点】以多结论的几何图形为背景的选择填空题题,主要考察了学生对三角形、四边形、圆知识的综合运用能力;以二次函数为背景的选择填空题,主要考察了二次函数的性质及二次函数系数与图象的关系。

【解题思路】1.以多结论的几何图形为背景的选择填空题题中,用“全等法”和“相似法”证题应该是两个基本方法,为了更好掌握这两种方法,应该熟悉一对全等或一对相似三角形的基本图形,下图中是全等三角形的基本图形。

大量积累基本图形,并在此基础上“截长补短”,“能割善补”,是学习几何图形的一个诀窍,每一个重要概念,重要定理都有一个基本图形,三线八角可以算做一个基本图形.2. 以二次函数为背景的选择填空题中,根据图象的位置确定a 、b 、c 的符号,a >0开口向上,a <0开口向下.抛物线的对称轴为x=2ba-,由图像确定对称轴的位置,由a 的符号确定出b 的符号.由x=0时,y=c ,知c 的符号取决于图像与y 轴的交点纵坐标,与y 轴交点在y 轴的正半轴时,c >0,与y 轴交点在y 轴的负半轴时,c <0.确定了a 、b 、c 的符号,易确定abc 的符号;根据对称轴确定a 与b 的关系;根据图象还可以确定△的符号,及a+b+c 和a -b+c 的符号。

【典型例题】【例1】(2019·新疆中考真题)如图,正方形ABCD 的边长为2,点E 是BC 的中点,AE 与BD 交于点P ,F 是CD 上的一点,连接AF 分别交BD ,DE 于点M ,N ,且AF ⊥DE ,连接PN ,则下列结论中:①4ABMFDM SS=;②PN =;③tan ∠EAF=34;④.PMN DPE ∽正确的是()A .①②③B .①②④C .①③④D .②③④【名师点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质【例2】(2019·湖北中考真题)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③8>0+a c ; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x 、,则12125x x x x ++⋅=-.其中正确的个数有( )A .5个B .4个C .3个D .2个【名师点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点.【例3】(2019·辽宁中考真题)如图,正方形ABCD 和正方形CGFE 的顶点C ,D ,E 在同一条直线上,顶点B ,C ,G 在同一条直线上.O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH .以下四个结论:①GH ⊥BE ;②△EHM ∽△GHF;③BCCG =﹣1;④HOM HOGS S =2)A.①②③B.①②④C.①③④D.②③④【名师点睛】本题考查了正方形的性质,以及全等三角形的判定与性质,相似三角形的判定与性质,正确求得两个三角形的边长的比是解决本题的关键.【例4】(2018·广西中考真题)如图,抛物线y=14(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1B.2C.3D.4【名师点睛】本题考查了二次函数与圆的综合题,涉及到抛物线的对称轴、圆的面积、平行四边形的判定、待定系数法、两直线垂直、切线的判定等,综合性较强,有一定的难度,运用数形结合的思想灵活应用相关知识是解题的关键.【方法归纳】1.多结论的几何选择填空题考查的知识点较多,如相似三角形的判定与性质、等腰直角三角形的性质、平行线的性质、直角三角形的性质、四边形的知识、圆的知识、等腰三角形的判定与性质以及特殊角三角函数等知识.这类题目的综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2. 多结论的二次函数选择题主要考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.数形结合思想贯穿这类题目的始终,解题时应时时注意.【针对练习】1.(2018·四川中考真题)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形; ②∠PBA=∠APQ ; ③△FPC 为等腰三角形; ④△APB ≌△EPC ;其中正确结论的个数为( )A .1B .2C .3D .42.(2018·辽宁中考真题)已知抛物线y=ax 2+bx+c (0<2a≤b )与x 轴最多有一个交点.以下四个结论: ①abc >0;②该抛物线的对称轴在x=﹣1的右侧; ③关于x 的方程ax 2+bx+c+1=0无实数根; ④a b cb++≥2. 其中,正确结论的个数为( ) A .1个B .2个C .3个D .4个3.(2019·四川中考真题)如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ︒∠=,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S ∆=-;④1DH HC =-.则其中正确的结论有( )A .①②③B .①②③④C .①②④D .①③④4.(2019·广西中考真题)如图,E 是正方形ABCD 的边AB 的中点,点H 与B 关于CE 对称,EH 的延长线与AD 交于点F ,与CD 的延长线交于点N ,点P 在AD 的延长线上,作正方形DPMN ,连接CP ,记正方形ABCD ,DPMN 的面积分别为1S ,2S ,则下列结论错误的是( )A .212S S CP +=B .2AF FD =C .4CD PD = D .3cos 5HCD ∠=5.(2019·山东中考真题)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF 、有以下结论:①AN =EN ,②当AE =AF 时,BEEC=2,③BE+DF =EF ,④存在点E 、F ,使得NF >DF ,其中正确的个数是( )A .1B .2C .3D .46.(2019·黑龙江中考真题)如图,在正方形ABCD 中,E F 、是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且42AB EF =,=,设AE x =.当PEF 是等腰三角形时,下列关于P 点个数的说法中,一定正确的是( )①当0x =(即E A 、两点重合)时,P 点有6个②当02x <<时,P 点最多有9个③当P 点有8个时,x =﹣2④当PEF 是等边三角形时,P 点有4个 A .①③B .①④C .②④D .②③7.(2019·广东中考真题)如图,正方形ABCD 的边长为4,延长CB 至E 使2EB =,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①ANH GNF ∆≅∆;②AFN HFG ∠=∠;③2FN NK =;④:1:4AFN ADM S S ∆∆=.其中正确的结论有( )A .1个B .2个C .3个D .4个8.(2019·湖北中考真题)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有( )A .1个B .2个C .3个D .4个9.(2018·黑龙江中考真题)抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①;2a b 0+=②;③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-;⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++. 其中正确的有( )A .5个B .4个C .3个D .2个10.(2018·黑龙江中考真题)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =12,正确的个数是( )A .2B .3C .4D .511.(2018·山东中考真题)如图,在矩形ABCD 中,∠ADC 的平分线与AB 交于E ,点F 在DE 的延长线上,∠BFE=90°,连接AF 、CF ,CF 与AB 交于G ,有以下结论: ①AE=BC ②AF=CF ③BF 2=FG•FC ④EG•AE=BG•AB其中正确的个数是( )A .1B .2C .3D .412.(2019·四川中考真题)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个13.(2019·山东中考真题)如图,正方形ABCD ,点F 在边AB 上,且:1:2AF FB =,CE DF ⊥,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使12BG BC =,连接CM .有如下结论:①DE AF =;②4AN AB =;③ADF GMF ∠=∠;④:1:8ANF CNFB S S ∆=四边形.上述结论中,所有正确结论的序号是( )A .①②B .①③C .①②③D .②③④14.(2018·湖北中考真题)如图,在四边形ABCD 中,AB=AD=5,BC=CD 且BC >AB ,BD=8.给出以下判断:①AC 垂直平分BD ;②四边形ABCD 的面积S=AC•BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形; ④当A ,B ,C ,D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125. 其中正确的是_____.(写出所有正确判断的序号)15.(2019·广西中考真题)我们定义一种新函数:形如2y ax bx c =++(0a ≠,且240b a ->)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x 2-2x -3|223y x x =--的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为()1,0-,()3,0和()0,3;②图象具有对称性,对称轴是直线1x =;③当11x -≤≤或3x ≥时,函数值y 随x 值的增大而增大;④当1x =-或3x =时,函数的最小值是0;⑤当1x =时,函数的最大值是4.其中正确结论的个数是______.16.(2018·新疆中考真题)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).17.(2018·黑龙江中考真题)如图,抛物线y=ax 2+bx+c (a≠0)的对称轴为直线x=﹣1,下列结论中: ①abc <0;②9a ﹣3b+c <0;③b 2﹣4ac >0;④a >b , 正确的结论是_____(只填序号)18.(2019·湖南中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =④若25MF MB =,则MD =2MA .其中正确的结论的序号是_______.19.(2019·辽宁中考真题)如图,点P 是正方形ABCD 的对角线BD 延长线上的一点,连接PA ,过点P 作PE ⊥PA 交BC 的延长线于点E ,过点E 作EF ⊥BP 于点F ,则下列结论中:①PA =PE ;②CE PD ;③BF ﹣PD =12BD ;④S △PEF =S △ADP ,正确的是___(填写所有正确结论的序号)20.(2019·内蒙古中考真题)如图,在Rt ABC ∆中,90,3,ABC BC D ︒∠==为斜边AC 的中点,连接BD ,点F 是BC 边上的动点(不与点B C 、重合),过点B 作BE BD ⊥交DF 延长线交于点E ,连接CE ,下列结论:①若BF CF =,则222CE AD DE +=;②若,4BDE BAC AB ∠=∠=,则158CE =; ③ABD ∆和CBE ∆一定相似;④若30,90A BCE ︒︒∠=∠=,则DE =其中正确的是_____.(填写所有正确结论的序号)21.(2018·湖北中考真题)如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA=OB=a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A 关于直线OM′的对称点C ,画直线BC 交OM′于点D ,连接AC ,AD ,有下列结论:①AD=CD ;②∠ACD 的大小随着α的变化而变化;③当α=30°时,四边形OADC 为菱形;④△ACD a 2;其中正确的是_____.(把你认为正确结论的序号都填上).。

人教版中考数学中考压轴题突破 一、选填题压轴题突破 重难点突破六 多结论选填题

人教版中考数学中考压轴题突破 一、选填题压轴题突破 重难点突破六 多结论选填题

B.②④
C.③④
D.②③
3.★(2022·广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所
示,图象过点(-1, 0),对称轴为直线x=2,下列结论:①abc<0;② 1
4a+c>2b;③ 3b- 2c>0;④若点A(-2,y1),点B -2,y2 ,点 7
C 2,y3 在该函数图象上,则y1<y3<y2;⑤ 4a+2b≥m (am+b) (m为常 数).
2.(2022·临沂)二次函数y=ax2+bx+c (a≠0)的部分图象如图所示,
1 其对称轴为直线x=- 2 ,且与x轴的一个交点坐标为(-2,0).下列结
论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+
c-1=0有两个相等的实数根.其中正确结论的序号是
( D)
A.①③
其中正确的结论有 A.5个 B.4个 C.3个 D.2个
(C)
4.★(2021·荆门)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过
点A(1,0),B(m,0)(-2<m<-1),下列结论:① 2b+c>0;② 2a+
c<0;③ a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等
对称轴x=-
b 2a
=1,得b=-2a,∴y=ax2-
2ax-1,
确 当x=-1时,
y>0,∴aa++2a2-a-1>0, 1
11 ∴a>33
,故②正正确;当m=1时,m(am+b)= 确
aa++b,故③错错误 ;∵点(-2, y1)到对称轴的距离大大于点(2, y3)到

正方形选择题(中考压轴多结论)

正方形选择题(中考压轴多结论)

几何多命题选择题方法提炼1.对一些基本图形的基本结论要熟悉;2.可根据排序之间的关系,进行排除;3.注意结论之间的相关性与互斥性;4.可用反证法证明某些结论;5.可用度量的方法或画异形图对某些结论进行判断;6.可用特殊位置进行判断。

1.如图,正方形ABCD 的对角线相交于点O ,AE 平分∠BAC 分别交DC 、BC 于点H 、E ,延长AB 至点F ,使BF=BE ,连接CF ,延长AE 交CF 于点G ,连接OG .下列结论:①△ABE≌△CBF;②OG∥AB;③AH=HG;④以AG 为直径的圆与CF 相切.其中正确的结论是 .第1题 第2题 第3题第4题 第5题2.如图,正方形ABCD 边长为12,E 为CD 上一点,沿AE 将△ADE 折叠得△AEF,延长EF 交BC 于G ,连接AG 、CF ,BG=6,下列说法:①△ABG≌△AFG;②DE=4;③AG∥CF;④572=∆FGC S . 其中正确的结论是 .3.如图,在正方形ABCD 中,点O 为对角线AC 的中点,过点0作射线OM 、ON 分别交AB 、BC 于点E 、F ,且∠EOF=90°,BO 、EF 交于点P .则下列结论中:①图形中全等的三角形只有两对;②正方形ABCD 的面积等于四边形OEBF 面积的4倍;③BE+BF=20A ;④OB OP CF AE ⋅=+222,其中正确的结论是 .4.如图,在口ABCD 中,分别以AB 、AD 为边向外作等边△ABE、△ADF,延长CB 交AE 于点G ,点G 在点A 、E 之间,连接CE 、CF ,则以下四个结论①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF 是等边△;④CG⊥AE,其中正确的结论是 .5.如图,正方形ABCD 中,点M 是边BC 上一点(异于点B 、C ),AM 的垂直平分线分别交AB 、CD 、BD 于E 、F 、K ,连AK 、MK .下列结论:①EF=AM;②AE=DF+BM;③EK>FK ; ④∠AKM=90°.其中正确的结论是 .第6题 第7题 第8题6.如图,正方形ABCD 中,P 为对角线上的点,PB=AB ,连PC ,作CE⊥CP 交AP 的延长线于E ,AE 交CD 于F ,交BC 的延长线于G ,则下列结论:①E 为FG 的中点;②CD CF FG ⋅=42;③AD=DE;④CF=2DF.其中正确的结论是 .7.如图,已知四边形ABCD 是四个角都是直角,四条边都相等的正方形,点E 在BC 上,且BC CE 41=,点F 是CD 的中点,延长AF 与BC 的延长线交于点M .以下结论:①AB=CM;②AE=AB+CE;③ABCF AEF S S 四边形41=∆;④∠AFE=90°,其中正确的结论是 .8.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,BE 平分∠DBC,交DC 于点E ,延长BC 到点F ,使CF=CE ,连接DF ,交BE 的延长线于点G ,AC 交BG 于点H ,连接OG ,下列结论:①OG∥AD;②△CHE 为等腰三角形;③BH=GH;④tan∠F=2;⑤2:1:=∆∆BDE BCE S S 其中正确的结论是 .9.如图,在边长为1的正方形ABCD 中,E 为AD 边上一点,连接BE ,将ABE 沿BE 对折,A 点恰好落在对角线BD 上的点F 处.延长AF ,与CD 边交于点G ,延长FE ,与BA 的延长线交于点H ,则下列说法:①BFH 为等腰直角三角形;②ADF FHA ≅;③60DFG ∠=︒;④22DE =-;⑤S AEF S DFG =.其中正确的结论是 .第9题 第10题10.如图,正方形ABCD 中,M 为BC 上一点,且13BM BC =.△AMN 为等腰直角三角形,斜边AN 与CD 交于点F ,延长AN 与BC 的延长线交于点E ,连接MF 、CN ,作NG⊥BE,垂足为G ,下列结论:①ABM MGN ≅;②△CNG 为等腰直角三角形;③MN=EN;④S ABM S CEN =;⑤BM+DF=MF.其中正确的的结论为 .11.如图,正方形ABCD 中,点E 是对角线BD 上一点,点F 是边BC 上一点,点G 是边CD 上一点,BE=2ED ,CF=2BF ,连接AE 并延长交CD 于G ,连接AF 、EF 、FG .给出下列五个结论:①DG=GC ;②∠FGC=∠AGF;③S△ABF=S△FCG;④2AF EF =;⑤∠AFB=∠AEB.其中正确结论结论是 . 12.如图,在正方形ABCD 中,E 为AD 的中点,DF ⊥CE 于M ,交AC 于点N ,交AB 于点F ,连接EN 、BM .有如下结论:①△ADF ≌△DCE ;②MN=FN ;③CN=2AN ;④ADN CNFB SS 25=四边形::⑤∠ADF=∠BMF .其中正确的结论为 .第11题 第12题 第13题14.如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在AD 边上的点B ′处,点A 落在点A ′处.设AE=a ,AB=b ,BF=c ,下列结论:①B ′E=BF ;②四边形B ′CFE 是平行四边形;③a 2+b 2=c 2;④△A ′B ′E ∽△B ′CD ;其中正确的是 .15.如图,在正方形ABCD 中 ,AB=1,E ,F 分别是边BC ,CD 上的点,连接EF 、AE 、AF ,过A 作AH⊥EF 于点H. 若EF=BE+DF ,那么下列结论:①AE 平分∠BEF;②FH=FD;③∠EAF=45°;④EAF ABE ADF S S S ∆∆∆=+;⑤△CEF 的周长为2.其中正确的结论是 .第14题 第15题 第16题16.如图,正方形ABCD 中,E 是AD 的中点,连接BE 、CE ,点F 是CE 的中点,连接DF 、BF ,点M 是BF 上一点且21=MF BM ,过点M 做BC MN ⊥于点N ,连接FN .下列结论中①CE BE =;②DFE BEF ∠=∠;③AB MN 61=;④61=∆EBNF FMN S S 四边形其中正确的结论是: .17.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方形内作等边△BCE,连接并延长AE 交CD 于F ,连接BD 分别交CE 、AF 于G 、H ,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④2BG DG =;⑤31:BEC BGC S S ∆∆+=.其中正确的结论是 .第17题第18题第19题18.如图,在正方形ABCD中,对角线AC、BD交于点O,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G,AC交BG于点H,连接OG,下列结论:①OG∥AD;②△CHE为等腰三角形;③BH=GH;④tan∠F=2;⑤2BCEBDESS∆∆=其中正确的结论有()19.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若CD2AD=,则BG5BC6=.以上命题,正确的有的 .20.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF,有下列结论:①∠BAE=30°;②S△ABE=4S△ECF;③13CF CD=;④△ABE∽△AEF.正确结论的结论为 .第20题第21题21.如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE,下列结论:①EF AE=,②AOE AEO∠=∠,③1OG AE2=;④ACE DCES2S∆∆=;⑤AB(21)DG=.其中正确的是 .。

中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:几何综合题(含答案解析)

中考数学复习专题:⼏何综合题(含答案解析)⼏何综合题1.已知△ABC 中,AD 是BAC ∠的平分线,且AD =AB ,过点C 作AD 的垂线,交 AD 的延长线于点H .(1)如图1,若60BAC ∠=?①直接写出B ∠和ACB ∠的度数;②若AB =2,求AC 和AH 的长;(2)如图2,⽤等式表⽰线段AH 与AB +AC 之间的数量关系,并证明.答案:(1)①75B ∠=?,45ACB ∠=?;②作DE ⊥AC 交AC 于点E .Rt △ADE 中,由30DAC ∠=?,AD=2可得DE =1,AE 3=. Rt △CDE 中,由45ACD ∠=?,DE=1,可得EC =1. ∴AC 31=.Rt △ACH 中,由30DAC ∠=?,可得AH 33+=;(2)线段AH 与AB +AC 之间的数量关系:2AH =AB +AC证明:延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH ≌△AFH .∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =,∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =.∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.2.正⽅形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .(1)如图1,当045α?<②⽤等式表⽰NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α?<CDBA图1备⽤图C DBAM答案:(1)①补全的图形如图7所⽰.(2)当45°<α<90°时,=1802NCE BAM ∠?-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵四边形ABCD 为正⽅形,∴∠BAD=∠ADC=∠BCD=90°,直线BD为正⽅形ABCD的对称轴,点A与点C关于直线BD对称.∵射线AM与线段BD交于点M,∴∠BAM=∠BCM=α.-.∴∠1=∠2=90α∵CE⊥AM,∴∠CEH=90°,∠3+∠5=90°.⼜∵∠1+∠4=90°,∠4=∠5,∴∠1=∠3.-.∴∠3=∠2=90α∵点N与点M关于直线CE对称,-∠.∴∠NCE=∠MCE=∠2+∠3=1802BAM(313. 如图,已知60AOB ∠=?,点P 为射线OA 上的⼀个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满⾜DPA OPE ∠=∠,6DP PE +=. (1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在⼀个定点M ,证明你的判断.答案:(1)作PF ⊥DE 交DE 于F . ∵PE ⊥BO ,60AOB ∠=o,∴30OPE ∠=o.∴30DPA OPE ∠=∠=o.∴120EPD ∠=o∴cos30DF PD =??=∴2DE DF ==(2)当M 点在射线OA 上且满⾜OM =DMME的值不变,始终为1.理由如下:当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠. ∴KPMDPM ∠=∠.∵PK PD =,PM 是公共边, ∴KPM △≌DPM △. ∴MKMD =.作ML ⊥OE 于L ,MN ⊥EK 于N . ∵3,60MO MOL =∠=o,∴sin 603ML MO =?=o.∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形. ∴3EN ML ==.∵6EK PE PK PE PD =+=+=, ∴EN NK =. ∵MN ⊥EK , ∴MKME =.∴ME MKMD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成⽴.4. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上⼀动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中⼼,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的⼤⼩(⽤含α的式⼦表⽰);(3)⽤等式表⽰线段AE 、AF 与CG 之间的数量关系,并证明.答案:(1)补全的图形如图所⽰.(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD 是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ∴∠AGC=30°. ∴∠AFC =α+30°.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. ∴HG =21AG. ∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ∴AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠?= ∴AG =3CG .即AF+AE =3CG .5.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC 外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N . (1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,⽤等式表⽰线段AM ,CN 之间的数量关系,并证明.答案:(1)如图;ABCE(2)45°;(3)结论:AM CN.证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=α.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=12(180°-∠ACD)=12(180°-90°-α-α)=45°-α.∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM AG.∴AM CN.6.在正⽅形ABCD中,M是BC边上⼀点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;答案:(1)补全图形略(2)①证明:连接BD ,如图2,∵线段AP 绕点A 顺时针旋转90°得到线段AQ ,∴AQ AP =,90QAP ∠=°.∵四边形ABCD 是正⽅形,∴AD AB =,90DAB ∠=°.∴12∠=∠.∴△ADQ ≌△ABP .∴DQ BP =,3Q ∠=∠.∵在Rt QAP ?中,90Q QPA ∠+∠=°,∴390BPD QPA ∠=∠+∠=°.∵在Rt BPD ?中,222DP BP BD +=,⼜∵DQ BP =,222BD AB =,∴2222DP DQ AB +=.②BP AB =.7.如图,在等腰直⾓△ABC 中,∠CAB=90°,F 是AB 边上⼀点,作射线CF ,过点B 作BG ⊥C F 于点G ,连接AG .(1)求证:∠ABG =∠ACF ;(2)⽤等式表⽰线段C G ,AG ,BG 之间∵∠CAB=90°. ∵ BG ⊥CF 于点G ,∴∠BGF =∠CAB =90°. ∵∠GFB =∠CFA . ∴∠ABG =∠ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH ,∵△ABC 是等腰直⾓三⾓形,∴∠CAB =90°,AB =AC . ∵∠ABG =∠ACH . ∴△ABG ≌△ACH . ∴ AG =AH ,∠GAB =∠HAC . ∴∠GAH =90°. ∴ 222AG AH GH +=. ∴ GH =2AG . ∴ CG =CH +GH =2AG +BG .8.如图,在正⽅形ABCD 中,E 是BC 边上⼀点,连接AE ,延长CB ⾄点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对⾓线AC 于点P ,连接AF .(1)依题意补全图形;(2)求证:∠FAC =∠APF ;(3)判断线段FM 与PN 的数量关系,并加以证明.答案:(1)补全图如图所⽰.(2)证明∵正⽅形ABCD ,∴∠BAC =∠BCA =45°,∠ABC =90°,∴∠PAH =45°-∠BAE .∵FH ⊥AE .EDCBAM H PDAC∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.(3)判断:FM=PN.证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正⽅形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴FP=MN.∴FM=PN.9.如图所⽰,点P位于等边ABC△的内部,且∠ACP=∠CBP.(1) ∠BPC的度数为________°;(2) 延长BP⾄点D,使得PD=PC,连接AD,CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的⾯积.M HPD AC解:(1)120°. ----------------------------2分(2)①∵如图1所⽰.②在等边ABC △中,60ACB ∠=?,∴60.ACP BCP ∠+∠=? ∵=ACP CBP ∠∠,∴60.CBP BCP ∠+∠=?∴()180120.BPC CBP BCP ∠=?-∠+∠=?∴18060.CPD BPC ∠=?-∠=? ∵=PD PC ,∴CDP △为等边三⾓形.∵60ACD ACP ACP BCP ∠+∠=∠+∠=?,∴.ACD BCP ∠=∠在ACD △和BCP △中,AC BC ACD BCP CD CP =??∠=∠??=?,,,∴()SAS ACD BCP △≌△. ∴.AD BP =∴.AD CD BP PD BD +=+=-----------------------------------------4分(3)如图2,作BM AD ⊥于点M ,BN DC ⊥延长线于点N .∵=60ADB ADC PDC ∠∠-∠=?,∴=60.ADB CDB ∠∠=?∴=60.ADB CDB ∠∠=?D∴=BM BN BD == ⼜由(2)得,=2AD CD BD +=,ABD BCD ABCD S S S ∴△△四边形=+1122AD BM CD BN =22==-----------------------------------7分10.如图1,在等边三⾓形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A的对应点E 落在射线BC 上,连接BQ ,设∠DAQ =α(0°<α<60°且α≠30°). (1)当0°<α<30°时,①在图1中依题意画出图形,并求∠BQE (⽤含α的式⼦表⽰);②探究线段CE ,AC ,CQ 之间的数量关系,并加以证明;(2)当30°<α<60°时,直接写出线段CE ,AC ,CQ 之间的数量关系.解:(1)①3-. ………………………………………………………………………… 1分② 0≤QL.……………………………………………………………… 2分(2)设直线+33y x =与x 轴,y 轴的交点分别为点A ,点B,可得A ,(0,3)B .∴OA =3OB =,30OAB ∠=?.由0≤Q①如图13,当⊙D 与x 轴相切时,相应的圆⼼1D 满⾜题意,其横坐标取到最⼤值.作11D E x ⊥轴于点1E ,可得11D E ∥OB ,111D E AE BO AO=.∵⊙D 的半径为1,∴ 111D E =.∴1AE =11OE OA AE =-=.∴1D x =②如图14,当⊙D与直线y =相切时,相应的圆⼼2D 满⾜题意,其横坐标取到最⼩值.作22D E x ⊥轴于点2E ,则22D E ⊥OA .设直线y =与直线+3y =的交点为F .可得60AOF ∠=?,OF ⊥AB .则9cos 2AF OA OAF =?∠==.图13∵⊙D 的半径为1,∴ 21D F =.∴2272AD AF D F =-=.=?∠72==,22OE OA AE =-=.∴2D x =.由①②可得,D x≤D x≤. ………………………………………… 5分(3)画图见图15..……………………………… 7分11.如图,在等边ABC △中, ,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;(2)若DBC α∠=,求FEC ∠的⼤⼩; (⽤α的式⼦表⽰)(3)⽤等式表⽰线段,BG GF 和FA 之间的数量关系,并证明.GFEDCBA图15(1)DE DF =;(2)解:连接DE ,DF ,∵△ABC 是等边三⾓形,∴60C ∠=?. ∵DBC α∠=,∴120BDC α∠=?-.∴120BDF BDC α∠=∠=?-,DF DC =. ∴1202FDC α∠=?+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆⼼,DC 为半径的圆上.∴1602FEC FDC ∠=∠=?+α.(3)BG GF FA =+.理由如下:连接BF ,延长AF ,BD 交于点H ,∵△ABC 是等边三⾓形,∴60ABC BAC ∠=∠=?,AB BC CA ==. ∵点C 与点F 关于BD 对称,∴BF BC =,FBD CBD ∠=∠.GFEDCBA∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=,则602ABF α∠=?-. ∴60BAF α∠=?+. ∴FAD α∠=.∴FAD DBC ∠=∠.由(2)知60FEC α∠=?+. ∴60BGE FEC DBC ∠=∠-∠=?. ∴120FGB ∠=?,60FGD ∠=?.四边形AFGB 中,360120AFE FAB ABG FGB ∠=?-∠-∠-∠=?. ∴60HFG ∠=?.∴△FGH 是等边三⾓形. ∴FH FG =,60H ∠=?. ∵CD CE =,∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠??∠=∠??=?∴△△AHD BGE ?. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.HGFEDCBA12.如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE= AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD= 度;(2)求∠CDF的度数;(3)⽤等式表⽰线段CD和CE之间的数量关系,并证明.解:(1)45 ……………………………………………………………1分(2)解:如图,连接DB.∵90,°,M是BC的中点,AB AC BAC=∠=∴∠BAD=∠CAD=45°.∴△BAD≌△CAD. ………………………………2分∴∠DBA=∠DCA,BD = CD.∵CD=DF,∴B D=DF. ………………………………………3分∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA =180°,∴∠DCA+∠DFA =180°.∴∠BAC+∠CDF =180°.∴∠CDF =90°. ………………………………………4分21CD. ……………………………………5分(3)CE=)证明:∵90∠=°,EAD∴∠EAF =∠DAF =45°. ∵AD =AE ,∴△EAF ≌△DAF . …………………………………6分∴DF =EF .由②可知,CF. …………………………7分∴CE=)1C D .13.如图,正⽅形ABCD 中,点E 是BC 边上的⼀个动点,连接AE ,将线段AE 绕点A 逆时针旋转90°,得到AF ,连接EF ,交对⾓线BD 于点G ,连接AG .(1)根据题意补全图形;(2)判定AG 与EF 的位置关系并证明;(3)当AB = 3,BE = 2时,求线段BG 的长.解:(1)图形补全后如图…………………1分(2)结论:AG ⊥EF . …………………2分证明:连接FD ,过F 点FM ∥BC ,交BD 的延长线于点M .∵四边形ABCD 是正⽅形,∴AB=DA=DC=BC ,∠DAB =∠ABE =∠ADC =90°,∠ADB =∠5=45°.∵线段AE 绕点A 逆时针旋转90°,得到AF ,A BC ED∴AE=AF ,∠FAE =90°.∴∠1=∠2.∴△FDA ≌△EBA . …………………3分∴∠FDA =∠EBA =90°,FD=BE .∵∠ADC =90°,∴∠FDA +∠ADC =180°。

2019届深圳中考复习《多结论几何综合题》专题试卷含解析

2019届深圳中考复习《多结论几何综合题》专题试卷含解析

2017届中考复习多结论几何综合题专题试卷一、单选题1、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个2、如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②=;③△ABC的面积等于四边形AFBD的面积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )A、①②④B、③④⑤C、①③④D、①③⑤3、如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD ,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE;其中正确的个数是().A、1B、2C、3D、44、如图,把一张长方形纸片ABCD沿对角线BD折叠,使C点落在E处,BE与AD相交于点F,下列结论:①BD=AD2+AB2;②△ABF≌△EDF;③=④AD=BD•cos45°.其中正确的一组是()A、①②B、②③C、①④D、③④5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四边形BEOF中,正确的有()A、1个B、2个C、3个D、4个6、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A、1B、2C、3D、47、如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A、1个B、2个C、3个D、4个8、如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是()A、②③B、②④C、①③④D、②③④9、如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A、1个B、2个C、3个D、4个10、如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A、4B、3C、2D、111、如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是()A、1个B、2个C、3个D、4个12、如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是()A、0B、1C、2D、313、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是( )A 、1B 、2C 、3D 、414、如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A 、4个B 、3个C 、2个D 、1个15、(2016•攀枝花)如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED=2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+4 ,其中正确的结论个数为( )A 、2B 、3C 、4D 、516、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP= ;④S四边形ECFG=2S △BGE .A 、4B 、3C 、2D 、117、如图所示,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣2,0)、B (1,0),直线x=﹣0.5与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD=MC ,连接AC 、BC 、AD 、BD ,某同学根据图象写出下列结论: ①a ﹣b=0;②当﹣2<x <1时,y >0; ③四边形ACBD 是菱形; ④9a ﹣3b+c >你认为其中正确的是()A、②③④B、①②④C、①③④D、①②③18、如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A、2B、3C、4D、519、如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足= ,连接AF并延长交⊙O于点E,连接AD,DE,若CF=2,AF=3,给出下列结论:①△ADF∽△AED;②FG=2;③tanE= ;④S△DEF=4 ,其中正确的是()A、①②③B、②③④C、①②④D、①③④20、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A、①③⑤B、②④⑤C、①②⑤D、①③④答案解析部分一、单选题1、【答案】D【考点】等腰三角形的性质,梯形中位线定理,锐角三角函数的定义【解析】【分析】①根据等腰直角三角形的性质及△ABC∽△CDE的对应边成比例知,;然后由直角三角形中的正切函数,得tan∠AEC=,再由等量代换求得tan∠AEC=;②由三角形的面积公式、梯形的面积公式及不等式的基本性质a2+b2≥2ab(a=b时取等号)解答;③、④通过作辅助线MN,构建直角梯形的中位线,根据梯形的中位线定理及等腰直角三角形的判定定理解答.【解答】解:∵△ABC和△CDE均为等腰直角三角形,∴AB=BC,CD=DE,∴∠BAC=∠BCA=∠DCE=∠DEC=45°,∴∠ACE=90°;∵△ABC∽△CDE∴①∴tan∠AEC=,∴tan∠AEC=;故本选项正确;②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2,∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),∴S△ABC+S△CDE≥S△ACE;故本选项正确;④过点M作MN垂直于BD,垂足为N.∵点M是AE的中点,则MN为梯形中位线,∴N为中点,∴△BMD为等腰三角形,∴BM=DM;故本选项正确;③又MN=(AB+ED)=(BC+CD),∴∠BMD=90°,即BM⊥DM;故本选项正确.故选D.【点评】本题综合考查了等腰直角三角形的判定与性质、梯形的中位线定理、锐角三角函数的定义等知识点.在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2、【答案】C【考点】全等三角形的判定,勾股定理,相似三角形的判定,旋转的性质【解析】【分析】①根据旋转的性质知∠CAD=∠BAF,AD=AF,因为∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°=∠DAE,由此即可证明△AEF≌△AED;②当△ABE∽△ACD时,该比例式成立;③根据旋转的性质,△ADC≌△ABF,进而得出△ABC的面积等于四边形AFBD 的面积;④据①知BF=CD,EF=DE,∠FBE=90°,根据勾股定理判断.⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF;由此即可确定该说法是否正确;【解答】①根据旋转的性质知∠CAD=∠BAF,AD=AF,∵∠BAC=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.∴∠EAF=45°,∴△AED≌△AEF;故本选项正确;②∵AB=AC,∴∠ABE=∠ACD;∴当∠BAE=∠CAD时,△ABE∽△ACD,∴=;当∠BAE≠∠CAD时,△ABE与△ACD不相似,即≠;∴此比例式不一定成立;故本选项错误;③根据旋转的性质知△ADC≌△AFB,∴S△ABC=S△ABD+S△ABF=S四边形AFBD,即三角形ABC的面积等于四边形AFBD的面积;故本选项正确;④∵∠FBE=45°+45°=90°,∴BE2+BF2=EF2,∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,又∵EF=DE,∴BE2+DC2=DE2,故本选项正确;⑤根据①知道△AEF≌△AED,得CD=BF,DE=EF,∴BE+DC=BE+BF>DE=EF,即BE+DC>DE,故本选项错误;综上所述,正确的说法是①③④;故选C.【点评】此题主要考查了图形的旋转变换以及全等三角形的判定等知识,解题时注意旋转前后对应的相等关系.3、【答案】D【考点】等边三角形的性质,菱形的判定与性质,平移的性质【解析】【解答】∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC =CD ,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC ,故①正确;由①可得AD=BC ,∵AB=CD ,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE ,故四边形ACED是菱形,即③正确;∵四边形ACED是菱形,∴AC⊥BD ,∵AC∥DE ,∴∠BDE=∠COD=90°,∴BD⊥DE ,故④正确;综上可得①②③④正确,共4个,故选D.【分析】先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;根据①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD ,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.4、【答案】B【考点】勾股定理,翻折变换(折叠问题),相似三角形的判定与性质,特殊角的三角函数值【解析】【解答】①∵△ABD为直角三角形,∴BD2=AD2+AB2,不是BD=AD2+AB2,故说法错误;②根据折叠可知:DE=CD=AB,∠A=∠E,∠AFB=∠EFD,∴△ABF≌△EDF,故说法正确;③根据②可以得到△ABF∽△EDF,∴=,故说法正确;④在Rt△ABD中,∠ADB≠45°,∴AD≠BD•cos45°,故说法错误.所以正确的是②③.故选B.【分析】①直接根据勾股定理即可判定是否正确;②利用折叠可以得到全等条件证明△ABF≌△EDF;③利用全等三角形的性质即可解决问题;④在Rt△ABD中利用三角函数的定义即可判定是否正确.此题主要考查了折叠问题,也考查了勾股定理、相似三角形的性质、全等三角形的性质及三角函数的定义,它们的综合性比较强,对于学生的综合能力要求比较高,平时加强训练.5、【答案】C【考点】全等三角形的判定与性质,勾股定理,正方形的性质,锐角三角函数的定义【解析】【解答】解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°,∵AE=BF=1,∴BE=CF=4﹣1=3,在△EBC和△FCD中,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;若OC=OE,∵DF⊥EC,∴CD=DE,∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC= = ,故③正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故④正确.故选C.【分析】由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.6、【答案】C【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG,①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,④正确.故选:C.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的.7、【答案】C【考点】等边三角形的判定与性质,含30度角的直角三角形,平行四边形的性质【解析】【解答】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选:C.【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.8、【答案】D【考点】全等三角形的判定与性质,角平分线的性质,正方形的判定【解析】【解答】如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,∴①不正确;∵AD是△ABC的角平分线,∴∠EAD∠FAD,在△AED和△AFD 中,∴△AED≌△AFD(AAS),∴AE=AF,DE=DF,∴AE+DF=AF+DE,∴④正确;在△AEO和△AFO中,,∴△AE0≌△AF0(SAS),∴EO=FO,又∵AE=AF,∴AO是EF的中垂线,∴AD⊥EF,∴②正确;∵当∠A=90°时,四边形AEDF的四个角都是直角,∴四边形AEDF是矩形,又∵DE=DF,∴四边形AEDF是正方形,∴③正确.综上,可得正确的是:②③④.故选:D.【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°,不符合题意,所以①不正确.②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.③首先判断出当∠A=90°时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.9、【答案】B【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE ,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.10、【答案】A【考点】全等三角形的判定与性质,圆心角、弧、弦的关系,相似三角形的判定与性质【解析】【解答】连接OP、OC、OA、OD、OB、CD、AB.∵PC•PA=PD•PB(相交弦定理),PA=PB(已知),∴PC=PD,∴AC=BD;在△AOC和△BOD中,∵∠AOC=∠BOD(等弦对等角),OA=OB(半径),OD=OC(半径),∴△AOC≌△BOD,∴③CA=BD;OE=OF;又∵OE⊥PA,OF⊥PB,∴①OP是∠APB的平分线;∴②PE=PF;在△PCD和△PAB中,PC:PA=PD:PB,∠DPC=∠BPA,∴△PCD∽△PAB,∴∠PDC=PBA,∴④CD∥AB;综上所述,①②③④均正确,故答案选A.【分析】①通过证明△AOC≌△BOD,再根据全等三角形的对应高相等求得OE=OF;再根据角平分线的性质证明OP是∠APB的平分线;②由角平分线的性质证明PE=PF;③通过证明△AOC≌△BOD,再根据全等三角形的对应边相等求得CA=BD;④通过证明△PCD∽△PAB,再根据相似三角形的性质对应角相等证得∠PDC=PBA;然后由平行线的判定得出结论CD∥AB.11、【答案】C【考点】全等三角形的判定与性质,翻折变换(折叠问题),锐角三角函数的定义【解析】【解答】①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知) ∵OB⊥AC,∴∠AOB=∠COB=90°,在Rt△AOB和Rt△COB中,AB="CB" ,BO=BO ,∴Rt△AOB≌Rt△COB(HL),则全等三角形共有4对,故②正确;③∵AB=CB,BO⊥AC,把△ABC折叠,∴∠ABO=∠CBO=45°,∠FBD=∠DEF,∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;④∵OB⊥AC,且AB=CB,∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,又∵∠BFD为三角形ABF的外角,∴∠BFD=∠ABO+∠BAF=67.5°,易得∠BDF=180°-45°-67.5°=67.5°,∴∠BFD=∠BDF,∴BD=BF,故④正确;⑤连接CF,∵△AOF和△COF等底同高,∴S△AOF=S△COF,∵∠AEF=∠ACD=45°,∴EF∥CD,∴S△EFD=S△EFC,∴S四边形DFOE=S△COF,∴S四边形DFOE=S△AOF,故⑤正确;故正确的有3个.故选C.12、【答案】D【考点】等边三角形的性质,菱形的判定,旋转的性质【解析】【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.【分析】根据旋转和等边三角形的性质得出∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,求出△ACD是等边三角形,求出AD=AC,根据菱形的判定得出四边形ABCD和ACED都是菱形,根据菱形的判定推出AC⊥BD.本题考查了旋转的性质,菱形的性质和判定,等边三角形的性质和判定的应用,能灵活运用知识点进行推理是解此题的关键.13、【答案】D【考点】全等三角形的判定与性质,矩形的判定与性质,正方形的性质,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.14、【答案】B【考点】全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的性质,矩形的性质【解析】【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.15、【答案】B【考点】菱形的判定与性质,翻折变换(折叠问题),等腰直角三角形【解析】【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG= ∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF= OG,∴BE= EF= ×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OGF=1,∴OG2=1,解得OG= ,∴BE=2OG=2 ,GF= ==2,∴AE=GF=2,∴AB=BE+AE=2 +2,∴S正方形ABCD=AB2=(2 +2)2=12+8 ,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.16、【答案】B【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x= ,∴sin=∠BQP= = ,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE= BC,BF= BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选:B.【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.17、【答案】D【考点】二次函数的图象,二次函数的性质,菱形的判定【解析】【解答】解:①∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0)、B(1,0),∴该抛物线的对称轴为x=﹣=﹣0.5,∴a=b,a﹣b=0,①正确;②∵抛物线开口向下,且抛物线与x轴交于点A(﹣2,0)、B(1,0),∴当﹣2<x<1时,y>0,②正确;③∵点A、B关于x=0.5对称,∴AM=BM,又∵MC=MD,且CD⊥AB,∴四边形ACBD是菱形,③正确;④当x=﹣3时,y<0,即y=9a﹣3b+c<0,④错误.综上可知:正确的结论为①②③.故选D.【分析】①由抛物线与x轴的两交点坐标即可得出抛物线的对称轴为x=﹣=﹣0.5,由此即可得出a=b,①正确;②根据抛物线的开口向下以及抛物线与x轴的两交点坐标,即可得出当﹣2<x<1时,y>0,②正确;③由AB关于x=0.5对称,即可得出AM=BM,再结合MC=MD以及CD⊥AB,即可得出四边形ACBD是菱形,③正确;④根据当x=﹣3时,y<0,即可得出9a﹣3b+c<0,④错误.综上即可得出结论.本题考查了二次函数的图象、二次函数的性质以及菱形的判定,解题的关键是逐条分析四条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,根据给定的函数图象结合二次函数的性质逐条分析给定的结论是关键.18、【答案】D【考点】全等三角形的判定与性质,正方形的性质,翻折变换(折叠问题)【解析】【解答】解:∵正方形ABCD的边长为6,CE=2DE,∴DE=2,EC=4,∵把△ADE沿AE折叠使△ADE落在△AFE的位置,∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴GB=GF,∠BAG=∠FAG,∴∠GAE=∠FAE+∠FAG= ∠BAD=45°,所以①正确;设BG=x,则GF=x,C=BC﹣BG=6﹣x,在Rt△CGE中,GE=x+2,EC=4,CG=6﹣x,∵CG2+CE2=GE2,∴(6﹣x)2+42=(x+2)2,解得x=3,∴BG=3,CG=6﹣3=3∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= ,∴S△FGC=S△GCE﹣S△FEC= ×3×4﹣×4×(×3)= =3.6,所以⑤正确.故正确的有①②③④⑤,故选:D.【分析】先计算出DE=2,EC=4,再根据折叠的性质AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,然后根据“HL”可证明Rt△ABG≌Rt△AFG,则GB=GF,∠BAG=∠FAG,所以∠GAE= ∠BAD=45°;GE=GF+EF=BG+DE;设BG=x,则GF=x,CG=BC﹣BG=6﹣x,在Rt△CGE中,根据勾股定理得(6﹣x)2+42=(x+2)2,解得x=3,则BG=CG=3,则点G为BC的中点;同时得到GF=GC,根据等腰三角形的性质得∠GFC=∠GCF,再由Rt△ABG≌Rt△AFG得到∠AGB=∠AGF,然后根据三角形外角性质得∠BGF=∠GFC+∠GCF,易得∠AGB=∠GCF,根据平行线的判定方法得到CF∥AG;过F作FH⊥DC,则△EFH∽△EGC,△EFH∽△EGC,由相似比为,可计算S△FGC.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形全等的判定与性质、勾股定理和正方形的性质.19、【答案】C【考点】垂径定理,圆周角定理,相似三角形的判定与性质,解直角三角形【解析】【解答】解:①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;故①正确;②∵= ,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;故②正确;③∵AF=3,FG=2,∴AG= = ,∴在Rt△AGD中,tan∠ADG= = ,∴tan∠E= ;故③错误;④∵DF=DG+FG=6,AD= = ,∴S△ADF= DF•AG= ×6×=3 ,∵△ADF∽△AED,∴=()2,∴= ,∴S△AED=7 ,∴S△DEF=S△AED﹣S△ADF=4 ;故④正确.故选C.【分析】①正确.由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:,DG=CG,继而证得△ADF∽△AED;②正确.由= ,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③错误.由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=.④首先求得△ADF的面积,由相似三角形面积的比等于相似比的平方,即可求得△ADE的面积,继而求得S△DEF=4 .20、【答案】D【考点】垂径定理,圆周角定理,相似三角形的判定与性质【解析】【解答】解:∵在⊙O中,点C是的中点,∴= ,∴∠CAD=∠ABC,故①正确;∵≠ ,∴≠ ,∴AD≠BC,故②错误;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB,∴∠ACE+∠CAE=∠ABC+∠CAE=90°,∴∠ACE=∠ABC,又∵C为的中点,∴= ,∴∠CAP=∠ABC,∴∠ACE=∠CAP,∴AP=CP,∵∠ACQ=90°,∴∠ACP+∠PCQ=∠CAP+∠PQC=90°,∴∠PCQ=∠PQC,∴PC=PQ,∴AP=PQ,即P为Rt△ACQ斜边AQ的中点,∴P为Rt△ACQ的外心,故③正确;∵AB是⊙O的直径,∴∠ACB=90°,又∵CE⊥AB∴根据射影定理,可得AC2=AE•AB,故④正确;如图,连接BD,则∠ADG=∠ABD,∵≠ ,∴≠ ,∴∠ABD≠∠BAC,∴∠ADG≠∠BAC,又∵∠BAC=∠BCE=∠PQC,∴∠ADG≠∠PQC,∴CB与GD不平行,故⑤错误.故答案为:D.【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,据此推理可得①正确,②错误;通过推理可得∠ACE=∠CAP,得出AP=CP,再根据∠PCQ=∠PQC,可得出PC=PQ,进而得到AP=PQ,即P为Rt△ACQ斜边AQ的中点,故P为Rt△ACQ 的外心,即可得出③正确;连接BD,则∠ADG=∠ABD,根据∠ADG≠∠BAC,∠BAC=∠BCE=∠PQC,可得出∠ADG≠∠PQC,进而得到CB与GD不平行,可得⑤错误.。

2022年中考数学复习专题 几何压轴题题型分类整理

2022年中考数学复习专题 几何压轴题题型分类整理

专题训练一 平移问题基本模型经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行(或共线)且相等,因此可以通过平移构造平行四边形,转移线段和角.(基本模型图1) (基本模型图2)如图1,将线段CD 进行平移可得到线段EA ,连接EC ,AD. 根据平移的性质,得CD ∥EA.∴四边形CDAE 是平行四边形.∴EC ∥AD.同理,四边形CDFA 、四边形CDBG 和四边形CDHB 均为平行四边形. 如图2,平移线段AB ,即可得到▱ABCP 、▱ABDM 、▱ABND 和▱ABQC. 典型题在Rt △BAC 中,∠A=90°,D,E 分别为AB ,AC 上的点.(1)如图1,CE=AB ,BD=AE ,过点C 作CF ∥EB ,且CF=EB ,连接DF 交EB 于点G ,连接BF ,求EBDC 的值; (2)如图2,若CE=kAB ,BD=kAE ,EB DC =12,求k 的值.(典型题图1) (典型题图2) 拓展题1.如图,在四边形ABCD中,AD∥BC,∠BAC=90°-1∠CAD,AC与BD相交于点E,且∠BEC=60°,若AD=5,2BD=15,求AC的长.(1题图)2.如图,在△ABC中,点D在AB的延长线上,点E在BC上,AC=BC=AD=DE,BE=BD,求∠BAC的度数.(2题图)3.阅读下面材料:数学课上,老师出示了下列问题:(1)如图1,过点B作AB的垂线BD,延长AB到点C,使AC=BD,延长BD到点E,使ED=CB,连接AE,CD,且CD的延长线交AE于点F,求∠AFC的度数;(2)如图2,在△ABC中,AB=AC=5m,D是边BC上一点,连接AD,延长CB到点E,使BE=kAD,过点E作EF,求EF的长.(用含m,k的式子表示)⊥AD,交AD的延长线于点F.若AF=kCD,tanC= 34(3题图1)(3题图2)同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠AFC的度数等于45°”小伟:“通过平移线段AC,BD,ED,BC中的一条线段,可以构造两个全等三角形,进而可以获得等腰直角三角形,那么∠AFC的度数等于45°这一结论也就显而易见了.”……老师:“只要类比小伟平移线段构造全等三角形的思路与方法,那么(2)的问题就能迎刃而解.”请你根据上面的材料,完成上面的两个问题的解答过程.4.如图,在四边形ABCD中,AD∥BC,AD+BC=BD,AC与BD 相交于点F。

新课标九年级数学中考复习强效提升分数精华版中考数学复习专题 代数、三角、几何综合问题

新课标九年级数学中考复习强效提升分数精华版中考数学复习专题 代数、三角、几何综合问题

中考数学复习专题 代数、三角、几何综合问题概述:代数、三角与几何综合题是较复杂与难度较大的问题,其中包括方程、函数、三角与几何等,内容基本上包含所有的初中数学知识,必须把以前的函数观念、方程思想、数形结合思想、转化与化归思想进行综合来解题.典型例题精析 例1.有一根直尺的短边长2cm ,长边长10cm ,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm ,如图1,将直尺的矩边DE 放置与直角三角形纸板的斜边AB 重合,且点D 与点A 重合,将直尺沿AB 方向平移如图2,设平移的长度为xcm (•0≤x ≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为Scm 2.(1)当x=0时(如图),S=________;当x=10时,S=___________; (2)当0<x ≤4时(如图2),求S 关于x 的函数关系式;(3)当4<x<10时,求S 关于x 的函数关系式,并求出S 的最大值(同学可在图3、•图4中画草图)解析:(1)2;2.(2)在Rt △ADG 中,∠A=45°, ∴DG=AD=x .同理EF=AE=x+2,∴S 梯形DEGF =12(x+x+2)×2=2x+2, ∴S=2x+2.(3)①当4<x<6时,(如图5) GD=AD=x ,EF=EB=12-(x+2)=10-x , 则S △ADG =12x -2,S △BEF =12(10-x )2, 而S △ABC =12×12×6=36,∴S=36-12x 2-12(10-x )2=-x 2+10x-14,S=-x 2+10x-14=-(x-5)2+11,∴当x=5(4<5<6)时,S 最大值=11.②当6≤x<10时(如图6), BD=BG=12-x ,BE=EF=10-x ,S=12(12-x+10-x )×2=22-2x , S 随x 的增大而减小,所以S ≤10.由①、②可得,当4<x<10时,S 最大值=11.例2.如图所示,点O 2是⊙O 1上一点,⊙O 2与⊙O 1相交于A 、D 两点,BC⊥AD,垂足为D ,分别交⊙O 1、⊙O 2于B 、C 两点,延长DO 2交⊙O 2于E ,交BA 的延长线于F ,BO 2交AD 于G ,连结AG .•(1)求证:∠BGD=∠C ;(2)若∠DO 2C=45°,求证:AD=AF ;(3)若BF=6CD ,且线段BD 、BF 的长是关于x 的方程x 2-(4m+2)x+4m 2+8=0•的两个实数根,求BD 、BF 的长.解析:(1)∵BC ⊥AD 于D , ∴∠BDA=∠CDA=90°,∴AB 、AC 分别为⊙O 1、⊙O 2的直径.∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°, ∴∠BGD=∠C .(2)∵∠DO 2C=45°,∴∠ABD=45°,∵O 2D=O 2C ,∴∠C=∠O 2DC=12(180°-∠DO 2C )=67.5°, ∴∠4=22.5°, ∵∠O 2DC=∠ABD+∠F , ∴∠F=∠4=22.5°,∴AD=AF .(3)∵BF=6CD ,∴设CD=k ,则BF=6k . 连结AE ,则AE ⊥AD ,∴AE ∥BC ,∴AE AFBD BF∴AE ·BF=BD ·AF . 又∵在△AO 2E 和△DO 2C 中,AO 2=DO 2 ∠AO 2E=∠DO 2C , O 2E=O 2C ,∴△AO 2E≌△DO 2C ,∴AE=CD=k,∴6k2=BD·AF=(BC-CD)(BF-AB).∵∠BO2A=90°,O2A=O2C,∴BC=AB.∴6k2=(BC-k)(6k-BC).∴BC2-7kBC+12k2=0,解得:BC=3k或BC=4k.当BC=3k,BD=2k.∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根.∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2.整理,得:4m2-12m+29=0.∵△=(-12)2-4×4×29=-320<0,此方程无实数根.∴BC=3k(舍).当BC=4k时,BD=3k.∴3k+6k=4m+2,18k2=4m2+8,整理,得:m2-8m+16=0,解得:m1=m2=4,∴原方程可化为x2-18x+72=0,解得:x1=6,x2=12,∴BD=6,BF=12.中考样题训练1.已知抛物线y=-x2+(k+1)x+3,当x<1时,y随着x的增大而增大,当x>1时,y 随x的增大而减小.(1)求k的值及抛物线的解析式;(2)设抛物线与x轴交于A、B两点(A在B的左边),抛物线的顶点为P,试求出A、•B、P三点的坐标,并在直角坐标系中画出这条抛物线;(3)求经过P、A、B三点的圆的圆心O′的坐标;(4)设点G(0,m)是y轴上的动点.①当点G运动到何处时,直线BG是⊙O′的切线?并求出此时直线BG的解析式.②若直线BG与⊙O相交,且另一个交点为D,当m满足什么条件时,点D在x轴的下方?2.如图,已知圆心A(0,3),⊙A与x轴相切,⊙B的圆心在x轴的正半轴上,且⊙B与⊙A外切于点P,两圆的公切线MP交y轴于点M,交x轴于点N.(1)若sin ∠OAB=45,求直线MP 的解析式及经过M 、N 、B 三点的抛物线的解析式; (2)若⊙A 的位置大小不变,⊙B 的圆心在x 轴的正半轴上移动,并使⊙B 与⊙A 始终外切,过M 作⊙B 的切线MC ,切点为C ,在此变化过程中探究: ①四边形OMCB 是什么四边形,对你的结论加以证明;②经过M 、N 、B 三点的抛物线内是否存在以BN 为腰的等腰三角形?若存在,•表示出来;若不存在,说明理由.3.如图,已知直线L 与⊙O 相交于点A ,直径AB=6,点P 在L•上移动,连结OP 交⊙O 于点C ,连结BC 并延长BC 交直线L 于点D .(1)若AP=4,求线段PC 的长;(2)若△PAO 与△BAD 相似,求∠APO 的度数和四边形OADC 的面积.(•答案要求保留根号)LyM CBA xPO N考前热身训练1.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 为以点A 为旋转中心,AM 边从与AO•重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP•上同时以不同的速度向右平行移动.设OM=x ,ON=y (y>x ≥0),△AOM 的面积为S ,若cos α、OA•是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离;(2)求证:AN 2=ON ·MN ; (3)求y 与x 之间的函数关系式及自变量量x 的取值范围;(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.2.如图,已知P 、A 、B 是x 轴上的三点,点A 的坐标为(-1,0),点B 的坐标为(3,0),•且PA :AB=1:2,以AB 为直径画⊙M 交y 轴的正半轴于点C . (1)求证:PC 是⊙M 的切线;(2)在x 轴上是否存在这样的点Q ,使得直线QC 与过A 、C 、B•三点的抛物线只有一个交点?若存在,求点Q 的坐标,若不存在,请说明理由;(3)画⊙N ,使得圆心N 在x 轴的负半轴上,⊙N 与⊙M 外切,且与直线PC 相切于D ,•问将过A 、C 、B 三点的抛物线平移后,能否同时经过P 、D 、A 三点?为什么?M A Q P O N答案:中考样题看台1.(1)k=1,抛物线解析式y=-x2+2x+3(2)A(-1,0),B(3,0),C(1,4)(3)∵⊙O′过A、B两点,∴O′在AB的垂直平分线上,即在抛物线的对称轴上,设抛物线的对称轴交x轴于M,交⊙O′于N,则有MP×MN=MA×MB,4MN=2×2,∴MN=1,•PN=5,O′P=52<PM,∴O′点在x轴上方,∴O′M=32,∴O′(1,32).(4)①过B点作⊙O′的切线交y轴于点G,直线BO′交y轴于点E,可求出直线BO•′的解析式为,y=-34x+94,∴E(0,94),∵BG是⊙O′的切线,BO⊥EG,∴BO=OE×OG,∴OG=4,•∴G(0,-4),求出直线BG的解析式为y=43x-4.②-4<m<0.2.(1)在Rt△AOB中,∵OA=3,sin∠OAB=45,cos∠OAB=35,∴AB=5,OB=4,BP=5-3=2.•在Rt△APM中,APAM=cos∠OAB=35,∴AM=5,OM=2,∴点M(0,-2),又△NPB∽△AOB,∴BN AB BP OB,∴BN=52,•∴ON=32,∴点B(32,0),设MP的解析式为y=kx+b,∵MP经过M、N两点,∴MP的解析式为y=43x-2,设过M、N、B的抛物线解析式为y=a(x-32)(x-4)且点M(0,-2)在其上,可得a=-13,即y=-13x2+116x-2.(2)①四边形OMCB是矩形.证明:在⊙A不动,⊙B运动变化过程中,恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=90°,∴△AOB≌△APM,∴OB=PM,AB=AM,∴PB=OM ,而PB=BC ,∴OM=BC ,由切线长定理知MC=MP ,∴MC=OB , ∴四边形MOBC 是平行四边形, 又∵∠MOB=90°,∴四边形MOBC 是矩形.②存在,由上证明可知,Rt △MON ≌Rt △BPN , ∴BN=MN .因此在过M 、N 、B 三点的抛物线内有以BN 为腰的等腰三角形MNB 存在,• 由抛物线的轴对称性可知,在抛物线上必有一点M ′与M 关于其对称轴对称, ∴BN=BM ′,这样得到满足条件的三角形有两个,△MNB 和△M ′NB . 3.(1)∵L 与⊙O 相切于点A ,∴∠4=90°,∴OP 2=OA 2+AP 2, ∵OB=OC=12AB=3,AP=4, ∴OP 2=32+42,∴OP=5, ∴PC=5-3=2.(2)∵△PAO ∽△BAD ,且∠1>∠2,∠4=90°, ∴∠2=∠APO ,∴OB=OC ,∴∠2=∠3 ∵∠1=∠2+∠3,∴∠2=2∠2=2∠APO ∴∠4=90°,∴∠1+∠APO=90° ∴3∠APO=90°,∴∠APO=30°. 在Rt △BAD 中,∠2=∠APO=30°.∴AD=6sin30°=6×3. 过点O 作OE ⊥BC 于点E ∵∠2=30°,BO=3,∴OE=32,BE=3×cos30°=2,∴∴S 四边形OADC =S △BAD -S △BOC =12AB ·AD=12BC ·OE=12×6×12×3294154.考前热身训练1.(1)易知OA=2,cos α=12,∠POQ=∠MAN=60°, ∴初始状态时,△AON 为等边三角形,•∴ON=OA=2,当AM 旋转到AM ′时,点N 移动到N ′, ∵∠OAM ′=30°,∠POQ=∠M ′AN•′=60°,∴∠M ′N ′A=30°,在Rt △OAN 中,ON ′=2AO=4, ∴NN ′=ON ′-ON=2,∴点N 移动的距离为2.(2)易知△OAN ∽△AMN ,∴AN 2=ON ·MN .(3)∵MN=y-x ,∴AN 2=y 2-xy ,过A 点作AD ⊥OP ,垂足为D ,可得OD=1, ∴DN=ON-OD=y-1,在Rt △AND 中,AN 2=AD 2+DN 2=y 2-2y+4, ∴y 2-xy=y 2-2y+4,即y=42x-. ∴y>0,∴2-x>0,即x<2,又∵x ≥0,∴x 的取值范围是:0≤x<2.(4)S=12·OM ·x ,∵S 是x 的正比例函数,且比例系数2>0,∴0≤S<2·2.即0≤ 2.(1)易知⊙M 半径为2,设PA=x ,则x :4=1:2⇒x=2,由相交弦定理推论得OC=OA .OB=1×3,2=PO 2+OC 2=32+2=12,PM 2=42=16,MC 2=22=4,∴PM 2=PC 2+MC 2,∴∠PCM=90°.(2)易知过A 、C 、B 三点的抛物线的解析式为(x+1)(x-3),•假设满足条件的Q 点存在,坐标为(m ,0),直线QC 的解析式为y=-m, ∵直线QC 与抛物线只有一个公共点,∴方程(x+1)(x-3)∴(2+3m)2=0,∴m=-32,即满足条件的Q 点存在,•坐标为(-32,0);(3)连结DN ,作DH ⊥PN ,垂足为H ,设⊙N 的半径为r ,则∵ND ⊥PC , ∴ND ∥MC ,∴DN PN MC PM =,∴224r r -=, ∴r=23,∵DN 2=NH ·NP ,∴(23)2=NH·(2-23),∴NH=13,∴,∴D(-2).∵抛物线y=-3(x+1)(x-3)平移,使其经过P、A两点的抛物线的解析式为y=-3(x+•1)(x+3)又经验证D是该抛物线上的点,∴将过A、C、B三点的抛物线平移后能同时经过P、D、A三点.。

四川省2017中考数学拓展题型突破拓展题型五多结论判断题试题

四川省2017中考数学拓展题型突破拓展题型五多结论判断题试题

拓展题型(五) 多结论判断题在四川省的中考中,多结论判断题一般位于选择题或填空题的最后一题,综合性较强,难度较大,且考查频率较高,属于拉分题,复习时要注意这类题型的练习.类型1 代数类多结论判断题1.下列说法:①一个角的两边分别垂直于另一个角的两边,则这两个角相等;②数据5,2,7,1,2,4的中位数是3,众数是2;③平行四边形既是中心对称图形,又是轴对称图形;④命题“若x =1,则x 2=1”的逆命题是真命题;⑤已知方程ax 2+bx +c =0,当b 2-4ac >0时,方程一定有两个不相等的实数根.其中正确的说法有(A)A .1个B .2个C .3个D .5个2.(2016·眉山仁寿县二模)已知二次函数y =ax 2+bx +c(a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程ax 2+bx =0一定有两个不相等的实数根.以上说法正确的个数为(B)A .1B .2C .3D .43.(2014·南充)二次函数y =ax 2+bx +c(a≠0)图象如图,下列结论:①abc>0;②2a+b =0;③当m≠1时,a +b >am 2+bm ;④a-b +c >0;⑤若ax 21+bx 1=ax 22+bx 2,且x 1≠x 2,x 1+x 2=2.其中正确的有(D)A .①②③B .②④C .②⑤D .②③⑤提示:由题意,得a <0,b =-2a >0,c >0,∴abc <0,b +2a =0.故①错误,②正确;当x =1时,函数有最大值a +b +c ,则当m≠1时,a +b +c >am 2+bm +c ,即a +b >am 2+bm.故③正确;当x =-1时,y <0,∴a -b +c <0.故④错误;由ax 21+bx 1=ax 22+bx 2,得(x 1-x 2)[a(x 1+x 2)+b]=0,而x 1≠x 2,则x 1+x 2=-b a,然后把b =-2a 代入,得x 1+x 2=2.4.(2015·南充)关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny+2m =0同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是(D)A .0B .1C .2D .3提示:①两个整数根且乘积为正,两个根同号,由韦达定理有,x 1x 2=2n >0,y 1y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,这两个方程的根都为负根,①正确;②由根判别式有:Δ=b 2-4ac =4m 2-8n≥0,Δ=b 2-4ac =4n2-8m≥0,∵4m 2-8n≥0,4n 2-8m≥0,∴m 2-2n≥0,n 2-2m≥0,m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1,y 2均为负整数,故(y 1+1)(y 2+1)≥0,故2m -2n≥-1.同理可得:2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1,得2n -2m≥-1,即2m -2n≤1,故③正确.5.(2016·成都高新区一诊)如图,已知二次函数y =ax 2+bx +c(a≠0)的图象经过点(1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中-1<x 1<0,1<x 2<2,下列结论:①abc<0;②a<b <-2a ;③b 2+8a <4ac ;④-1<a <0.其中正确结论的序号是①②.提示:由题意,得a <0,c >0,b >0,∴abc <0.故①正确;∵0<-b 2a <1,∴a <b <-2a.故②正确;∵4ac -b 24a>2,∴4ac -b 2<8a ,即b 2+8a >4ac.故③错误;∵当x =1时,y =a +b +c =2(1),当x =-1时,a -b +c <0(2),当x =2时,4a +2b +c <0(3),把(1)代入(3),得4a +b +2-a <0,则a <-b -23.把(1)代入(2),得b >1.则a <-1.故④错误. 6.(2016·绵阳南山模拟)已知函数y =k(x +1)(x -3k ),下列说法:①方程k(x +1)(x -3k)=-3必有实数根;②若移动函数图象使其经过原点,则只能将图象向右平移1个单位;③当k>3时,抛物线顶点在第三象限;④若k<0,则当x<-1时,y 随着x 的增大而增大,其中正确的序号是①③.提示:方程k(x +1)(x -3k )=-3,解得x 1=0,x 2=3k -1.∴①正确;∵函数y =k(x +1)(x -3k)的图象与x 轴交于(-1,0),(3k ,0),∴移动函数图象使其经过原点,则将图象向右平移1个单位或向右平移-3k单位;∴②错误,当k >3时,3k<1,∴对称轴在y 轴的左侧,开口向上,与x 轴有两个交点,∴③正确,若k <0,开口向下,在对称轴的左侧,y 随着x 的增大而增大,∵函数y =k(x +1)(x -3k )的对称轴方程是x =3-k 2k<0,∴④错误. 7.(2014·泸州)如图,矩形AOBC 的顶点坐标分别为A(0,3),O(0,0),B(4,0),C(4,3),动点F 在边BC 上(不与B ,C 重合),过点F 的反比例函数y =k x的图象与边AC 交于点E ,直线EF 分别与y 轴和x 轴相交于点D 和G ,给出下列命题:①若k =4,则△OEF 的面积为83; ②若k =218,则点C 关于直线EF 的对称点在x 轴上; ③满足题设的k 的取值范围是0<k≤12;④若DE·EG=2512,则k =1. 其中正确的命题的序号是②④(写出所有正确命题的序号).类型2 几何类多结论判断题8.(2016·中江模拟六)如图,在半径为6 cm 的⊙O 中,点A 是劣弧BC ︵的中点,点D 是优弧BC ︵上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6 3 cm ;③sin ∠AOB =32;④四边形ABOC 是菱形.其中正确结论的序号是(B)A .①③B .①②③④C .②③④D .①③④9.(2016·攀枝花)如图,正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,给出下列结论:①∠ADG=22.5°;②tan ∠AED =2;③S △AGD =S △OGD ;④四边形AEFG 是菱形;⑤BE=2OG ;⑥若S △OGF =1,则正方形ABCD 的面积是6+42,其中正确的结论个数为(B)A .2B .3C .4D .5提示:①④⑤正确.∵四边形ABCD 是正方形,∴∠GAD =∠ADO=45°,由折叠的性质可得,∠ADG =12∠ADO=22.5°,故①正确;由折叠的性质可得AE =EF ,∠EFD =∠EAD=90°,∴AE =EF 22BE <BE ,∴AE <12AB ,∴AD AE>2,故②错误.∵∠AOB=90°,∴AG =FG >OG ,△AGD 与△OGD 同高,∴S △AGD >S △OGD ,故③错误.∵∠EFD=∠AOF=90°,∴EF ∥AC ,∴∠FEG =∠AGE,∵∠AEG =∠FEG,∴∠AEG =∠AGE,∴AE =AG ,∵AE =EF ,∴AE =GF ,故④正确.∵四边形AEFG 是菱形,∴∠OGF =∠OAB=45°,∴EF =GF =2OG ,∴BE =2EF =2×2OG =2OG.故⑤正确.∵四边形AEFG 是菱形,易证△OGF 是等腰直角三角形.∵S △OGF =1,∴OG 2=2,解得OG =2.∴BE=2OG =22,GF =2,∴AE =GF =2,∴AB =BE +AE =22+2,∴S 正方形ABCD =AB 2=(22+2)2=12+82,故⑥错误.10.(2016·南充二诊)如图,正方形ABCD 中,P 为AB 中点,BE ⊥DP 交DP 延长线于E ,连接AE ,AF ⊥AE 交DP 于F ,连接BF ,CF.下列结论:①EF=2AF ;②AB=FB ;③CF∥BE;④EF=CF.其中正确的结论有(D)A .1个B .2个C .3个D .4个提示:∵∠EAB+∠BAF=90°,∠FAD +∠BAF=90°,∴∠EAB =∠DAF.∵∠EBA+∠EPB=∠APD+∠FDA=90°,∠EPB =∠APD,∴∠EBA =∠ADF.又AB =AD ,∴△ABE ≌△ADF ,∴AE =AF ,∴EF =2AF.故①正确;取EF 得中点M ,连接AM ,BM ,则AM =EM =MF.∵∠PEB=∠APM=90°,AP =BP ,∠EPB =∠MPA,∴△EPB≌△MPA,∴AM =BE.∴AM =BE =EM =MF.∴∠AMB=∠AME+∠EMB=135°,∠BMF =180°-∠EMB=135°.∴△ABM ≌△FBM ,∴AB =FB.故②正确;由①得,BE =DF ,∠ADF =∠EBP.又∠EBP=∠PAM,∠PAM =∠MFB,∴∠ADF =∠MFB.又∠ADF+∠FDC=∠MFB +∠EBF=90°,∴∠FDC =∠EBF.∴△BEF≌△DFC,∴EF =CF ,∠BEF =∠DFC=90°.∴CF ∥BE.故③④正确.11.(2015·南充)如图,正方形ABCD 边长为1,以AB 为直径作半圆,点P 是CD 中点,BP 与半圆交于点Q ,连接DQ.给出如下结论:①DQ=1;②PQ BQ =32;③S △PDQ =18;④cos ∠ADQ =35.其中正确结论是①②④.(填写序号)12.(2015·内江)如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于点H ,连接OH ,FH ,EG 与FH 交于点M ,对于下面四个结论:①CH⊥BE;②HO12BG ;③S 正方形ABCD ∶S 正方形ECGF =1∶2;④EM∶MG=1∶(1+2),其中正确结论的序号为②④.6.(2015·广元)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,关于下列结论:①∠BAD =∠ABC;②GP=GD ;③点P 是△ACQ 的外心,其中正确结论是②③.(只需填写序号).提示:由题意,得AC ︵=CD ︵≠BD ︵,∴∠BAD ≠∠ABC.故①错误;连接OD ,则OD⊥GD,∠OAD =∠ODA.∵∠ODA+∠GDP=90°,∠EPA +∠EAP=∠EAP+∠GPD=90°,∴∠GPD =∠GDP.∴GP=GD.故②正确;∵CE⊥AB,∠ACB =90°,∴∠CAE +∠ACE=∠CAB+∠CBA=90°.∴∠CAE =∠CBA.∵AC ︵=AD ︵,∴∠CAD =∠CBA.∴∠CAP=∠ACP.∴PA=PC.∵∠ACP+∠PCQ=∠CAP+∠CQP=90°,∴∠PCQ =∠PQC.∴PC=P Q.∴P 为Rt △ACQ 斜边AQ 的中点,∴P 为Rt △ACQ 的外心.故③正确.14.(2016·营山县一模)如图1,正方形纸片ABCD 的边长为2,翻折∠B,∠D ,使两个直角的顶点重合于对角线BD 上一点P ,EF 、GH 分别是折痕(如图2).设AE =x(0<x <2),给出下列判断:①当x =1时,点P 是正方形ABCD 的中心;②当x =12时,EF +GH >AC ; ③当0<x <2时,六边形AEFCHG 面积的最大值是114; ④当0<x <2时,六边形AEFCHG 周长的值不变. 其中正确的是①④(写出所有正确判断的序号).提示:由翻折易得,△BEF 和△DGH 是等腰直角三角形.∴当AE =1时,重合点P 是BD 的中点,∴点P 是正方形ABCD的中心.故①正确;易得△BEF∽△BAC,∵x =12,∴BE =2-12=32,∴BE BA =EF AC ,即322=EF AC ,∴EF =34AC.同理,GH =14AC ,∴EF +GH =AC.故②错误;S 六边形AEFCHG =S 正方形ABCD -S △EBF -S △GDH .∵AE =x ,∴S 六边形AEFCHG =22-12BE·BF-12GD·HD=4-12(2-x)2-12x 2=-x 2+2x +2=-(x -1)2+3,∴S 六边形AEFCHG 的最大值是3.故③错误;当0<x <2时,∵EF +GH =AC ,C六边形AEFCHG=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+22=4+2 2.故C六边形AEFCHG的值不变,故④正确.15.(2016·青羊区二诊)如图,菱形ABCD中,AB=AC,点E,F分别为边AB,BC上的点,且AE=BF,连接CE,AF 交于点H,连接DH交AG于点O.则下列结论:①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD·DH 中,正确的是①②③④.提示:由题意,易得△ABC是等边三角形.同理:△ADC是等边三角形,∴∠B=∠EAC=60°.易证△ABF≌△CAE(SAS).故①正确;由①得,∠BAF=∠ACE.∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF +∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;故②正确;在HD上截取HK=AH,连接AK,∵∠AHC+∠ADC=120°+60°=180°,∴点A,H,C,D四点共圆,∴∠AHD=∠ACD=60°,∠AC H=∠ADH,∴△AHK是等边三角形,∴AK=AH,∠AKH=60°,∴∠AKD=∠AHC=120°.证△AKD≌△AHC(AAS),∴CH=DK,∴DH =HK+DK=AH+CH.故③正确;∵∠OAD=∠AHD=60°,∠ODA=∠ADH,∴△OAD∽△AHD,∴AD∶DH=OD∶AD,∴AD2=OD·DH.故④正确.16.(2016·资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D,E分别在边AC,BC上,且AD =CE,连接DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2-2OP2=2DP·PE,其中所有正确结论的序号是①②③④.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档