选 修1-2第一章

合集下载

(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)

(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)

一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )表1表2表3 语文 性别不及格 及格 总计 数学 性别不及格 及格 总计 英语 性别不及格 及格 总男 14 36 50 男 10 40 50 男 25 25 女 16 34 50 女 20 30 50 女 5 45 总计3070100总计3070100总计30701A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C4.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910245.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.10 0.05 0.025 0.010 0.005 0.001 2.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人6.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .187.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530 女生 151530合计40 20 60附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥ 0.100.050.025 0.010 0.005 0.001 0k 2.706 3.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%8.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .139.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125 D .6412510.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样11.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 16.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.17.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P B A │等于_________.18.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,()20P K k ≥ 0.100.05 0.01 0.005 0.001 0k 2.7063.8416.6357.87910.82825.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动 不喜爱运动 总计 男生 ab30 女生 cd20 总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图所示的茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写下面的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗 非优质花苗 合计甲培育法 乙培育法 合计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.0100.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.B解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.4.B解析:B 【分析】打光所有子弹,分中0次、中一次、中2次. 【详解】5次中0次:5 1 4⎛⎫ ⎪⎝⎭5次中一次:4 153144 C⎛⎫⨯⨯ ⎪⎝⎭5次中两次:前4次中一次,最后一次必中314331 444C⎛⎫⨯⨯⨯ ⎪⎝⎭则打光子弹的概率是514⎛⎫⎪⎝⎭+4153144C⎛⎫⨯⨯ ⎪⎝⎭+314331444C⎛⎫⨯⨯⨯ ⎪⎝⎭=13256,选B【点睛】本题需理解打光所有子弹的含义:可能引爆,也可能未引爆.5.B解析:B【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音不喜欢抖音总计男生女生总计男女人数为整数故答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】先计算出粒种子都没有发芽的概率即得出每个坑需要补种的概率然后利用独立重复试验的概率得出所求事件的概率【详解】由独立事件的概率乘法公式可知粒种子没有粒发芽的概率为所以一个坑需要补种的概率为由独 解析:21512【分析】先计算出3粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率. 【详解】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为31128⎛⎫= ⎪⎝⎭, 所以,一个坑需要补种的概率为18, 由独立重复试验的概率公式可得,需要补种的坑数为2的概率为223172188512C ⎛⎫⋅⋅= ⎪⎝⎭, 故答案为21512. 【点睛】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有()k k N *∈次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.15.②③【分析】①根据相关指数的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量的观测值k 的关系进行判断【详解】①在线性回归模型中相关指数表示解释变量对于预报变量解析:②③ 【分析】①根据相关指数2R 的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量2K 的观测值k 的关系进行判断. 【详解】①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,所以①错误;②在回归直线方程ˆy=0.8x−12中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.8个单位,正确;③两个变量相关性越强,则相关系数的绝对值就越接近于1,正确;④对分类变量X 与Y ,对它们的随机变量K2的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越小,所以④错误; 故正确命题的序号是②③. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有线性回归分析,两个变量之间相关关系强弱的判断,独立性检验,属于简单题目.16.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.17.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

浙江省普通高中新课程作业本物理选修1-2答案

浙江省普通高中新课程作业本物理选修1-2答案

答案与提示55 !"#$%第一章 分子动理论 内能一、分子及其热运动(一)物质是由分子组成的1.C 2.ABC 3.B 4 6 02×1023 6 02×1023 6 02×1023 5.6×1076 2 4×1013m 7.B 8.约3×10-10m(二)分子的热运动1.B 2.B 3.AC 4.D 5.D 6.D 7.ABD 8.变少,没有区别。

如果颗粒变大到宏观物体这么大,周围分子对它的碰撞不会产生可见的运动。

这样的推想能使我们理解颗粒越小,布朗运动越明显 9.细菌太小,它在水中受周围水分子的碰撞做无规则运动,这种运动是细菌本身无法控制的,所以细菌的运动是不自主的 10.氨水中氨气分子扩散到空气中,空气中的氨气分子再扩散到水中,清水成为氨水,氨水呈弱碱性,酚酞遇碱变红实验:用油膜法估测分子的大小1.VS 2.溶解在水中及挥发到空气中 3.不规则的 4.BC 5.ACD 6.AC7.ABCD 8.不能。

分子的直径极小,由滴管或注射器产生的一滴纯油酸形成的单分子油膜面积极大,无法在实验室条件下测出它的面积。

用酒精稀释之后,就能获得一滴体积极小的纯油酸,在实验室中形成大小恰当的单分子层油膜;按稀释比例计算出一滴纯油酸的体积,测出它形成的单分子油膜的面积,就能求出分子的直径 9.(1)2 64×10-2m2 (2)1 2×10-5mL (3)4 5×10-10m二、物体的内能(一)分子间的相互作用力1.BCD 2.ABC 3.AD 4.BD 5.B 6.C 7.BD 8.这些现象的产生原因是:①分子是运动的;②分子间存在空隙 9.当纸是干的时,纸与黑板相接触,只有少量分子能接近到距离小于10r0,总的分子引力很小,纸不会贴在黑板上。

纸打湿后,湿纸与黑板之间会有更多的分子距离接近到小于10r0,纸与黑板之间总分子力较大,纸就能贴在黑板上 10.(1)主要来自于库仑力,万有引力比库仑力小得多 (2)分子由带正电和带负电的粒子组成,同种电荷相斥,异种电荷相吸,所以分子间同时存在引力和斥力(二)物体的内能1.大 小 温度 2.相对位置 增大 增大 3.内能 4.A 5.D 6.A 7.CD 8.(1)动能较大的分子容易飞出液体表面 (2)平均动能变小,温度降低 9.组成机械能的动能对应于物体整体的宏观运动,而组成内能的动能对应于微观的分子无规则运动;机械能中的势能对应于宏观的重力或弹力作用,而内能中的势能对应于微观的分子力作用三、固体和液体(一)固体1.各向异性 各向同性 2.CEHIJK 3.C 4.BC 5.D 6.ACD 7.略8.雪花有规则的几何形状,是晶体 9.不能,它的规则外形是人为加工的,而不是天然的(二)液体1.固体 较强 不易 弱 没有 2.改变 各向同性 3.表面张力 4.AB 5.C 6.BC 7.相同。

数学选修1-2目录

数学选修1-2目录

数学选修1-2目录第一章统计案例
1.1 统计案例的引入
1.2 统计案例的分析与解读
1.3 统计案例的实践应用
1.4 典型案例研究
第二章推理与证明
2.1 推理的基本概念
2.2 演绎推理与归纳推理
2.3 合情推理与类比推理
2.4 数学证明的基本方法
2.5 经典数学问题证明实例
第三章数系的扩充
3.1 数系的历史发展
3.2 实数系的扩充
3.3 复数系的引入
3.4 数系扩充的意义与应用
第四章复数的引入
4.1 复数的历史背景
4.2 复数的定义与性质
4.3 复数的运算
4.4 复数在几何中的应用
4.5 复数在物理与工程领域的应用
第五章流程图
5.1 流程图的基本概念
5.2 流程图的绘制方法
5.3 流程图在数学问题解决中的应用
5.4 流程图在其他学科与日常生活中的应用
第六章结构图
6.1 结构图的基本概念
6.2 结构图的绘制技巧
6.3 结构图在数学知识体系中的应用
6.4 结构图在其他领域的应用与案例分析
此文档仅作为目录框架,详细内容需要根据实际教学材料和学生需求进行补充和完善。

最新人教版高二数学选修1-2(B版)电子课本课件【全册】

最新人教版高二数学选修1-2(B版)电子课本课件【全册】

2.1.2 演绎推理
2.2.2 反证法
阅读与欣赏
《原本》与公理化思想
第三章 数引入
3.2.2 复数的乘法和除法
阅读与欣赏
复平面与高斯
4.1 流程图
本章小结
附录 部分中英文词汇对照表
第一章 统计案例
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.1 独立性检验
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
阅读与欣赏
“回归”一
词的由来
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
最新人教版高二数学选修1-2(B 版)电子课本课件【全册】目录
0002页 0090页 0178页 0200页 0277页 0329页 0401页 0403页 0454页 0530页 0608页 0610页 0672页 0703页
第一章 统计案例
1.2 回归分析
阅读与欣赏
“回归”一词的由来
第二章 推理与证明
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
1.2 回归分析
最新人教版高二数学选修1-2(B版) 电子课本课件【全册】
本章小结

高中数学选修1-1、1-2、4-4知识点高考复习总结

高中数学选修1-1、1-2、4-4知识点高考复习总结

选修1-1、1-2数学知识点 选修1-1数学知识点第一章 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

上海育秀实验学校选修1-2第一章《统计案例》检测卷(含答案解析)

一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9163.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6484.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表学习成绩不优秀 16 2 18 合计201030经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%6.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13D .297.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .598.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1159.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1x y a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.200010.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .411.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;12.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.0050k 2.072 2.706 3.841 5.024 6.635 7.879A .130B .190C .240D .250二、填空题13.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2,n n N ∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________. 14.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆; ②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________. 15.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.16.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人 非年轻人 合计 经常使用单车用户 100 20 120 不常使用单车用户 60 20 80 合计16040200则得到的2χ=__________.(小数点后保留一位) (附:()()()()()22χ-=++++n ad bc a b c d a c b d )17.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)18.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.19.某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有_____%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.(注:独立性检验临界值表参考第9题,K 2=2()()()()()n ad bc a b c d a c b d -++++.) 20.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知lg 20.3010=,lg30.4771=) 三、解答题21.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.1500.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++ 22.某研究所在研究某种零件的使用寿命和维护成本的关系时,得到以下数据: 零件寿命x (月) 1 3 5 7 9 维护成本y (千元)102560105170(1)若x 与y 之间存在线性相关关系y a bx =+①,试估计a ,b 的值a ,b ; (2)若x 与y 之间存在非线性相关关系2y c dx =+②,可按与(1)类似的方法得到8c =,2d =,且模型②残差平方和为6.计算模型①的残差平方和,并指出哪个模型的拟合效果更好;(3)利用(2)中拟合效果较好的模型,计算当零件使用多少个月时报废,可使得零件的性价比(即零件寿命与维护成本的比值)最高.参考公式:若()(),1,2,,i i x y i n =⋅⋅⋅是线性相关变量x ,y 的n 组数据,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑. 23.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()()()()()22n ad bc K a b c d a c b d -=++++24.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价.参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155,18.8, 6.8 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.25.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若||0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系: 周光照量X (单位:小时)3050X << 5070X ≤≤70X >光照控制仪最多可运行台数 321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=∑0.55≈,0.95≈.26.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,其中每周线上学习时间不足5小时的人数为X ,求X 的分布列及其数学期望. (下面的临界值表供参考)(参考公式()()()()()22n ad bc K a b c d a c b d -=++++其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输.【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜, 所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确; 对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输, 所以乙队以3:2获胜的概率为221433327⨯⨯=,故错. 故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.3.C解析:C【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。

人教版B数学选修1-2:第一章章末综合检测

(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列两个变量之间的关系哪个不是函数关系( ) A .角度和它的余弦值 B .正方形边长和面积C .正n 边形的边数和顶点角度之和D .人的年龄和身高解析:选D.函数关系是确定性关系,故选D. 2.下列说法中,正确的是( )①回归方程适用于一切样本和总体;②回归方程一般都有时间性;③样本取值的范围会影响回归方程的适用范围;④回归方程得到的预报值是预报变量的精确值.A .①②B .②③C .③④D .①③解析:选 B.①回归方程只适用于所研究的样本,故①错;④回归方程得到的预报值是可能取值的平均值,故④错;回归方程一般要受时间和范围的影响,故②③正确.3.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( ) A.29 B.118C.13D.23解析:选D.由已知P (A ·B )=P (A )P (B )=19,①又P (A ·B )=P (A ·B ),即[1-P (A )]·P (B )=P (A )[1-P (B )],② 由①②解得P (A )=P (B )=13,所以P (A )=23.4.对于线性相关系数r ,叙述正确的是( )A .|r |∈(0,+∞),|r |越大,相关程度越大,反之相关程度越小B .r ∈(-∞,+∞),r 越大,相关程度越大,反之相关程度越小C .|r |≤1,且|r |越接近于1,相关程度越大,|r |越接近于0,相关程度越小D .以上说法都不对解析:选C.由r 的意义可知C 项正确.5.若回归直线方程中的回归系数b =0,则相关系数( ) A .r =1 B .r =-1 C .r =0 D .无法确定解析:选C.b =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2·∑i =1n(y i -y )2,若b =0,则r =0.6.下表提供了某厂节能降耗技术改造后生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据.根据下表提供的数据,求出y 关于x 的线性回归方程为y ^=0.7x +0.35,那么表中t 的值为( )A.3 C .3.5D .4.5解析:选A.根据线性回归方程一定过定点(x ,y ),计算可知选A.7.下表给出5组数据(x ,y ),为选出4组数据使线性相关程度最大,且保留第1组数据(-5,-3),则应去掉( )A.第2组 C .第4组D .第5组解析:选B.通过散点图选择,画出散点图如图所示:应除去第三组,对应点是(-3,4).故选B.8.设有一个回归方程为y ^=3-2x ,变量x 增加一个单位时( ) A .y 平均增加2个单位 B .y 平均减少3个单位 C .y 平均减少2个单位D .y 平均增加3个单位解析:选C.∵[3-2(x +1)]-(3-2x )=-2,∴y 的值平均减少2个单位.9.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( ) A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:选A.由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中y =100,而C 中y =-300,C 不符合题意.故选A.10.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程为y ^=b ^x +a ^,那么下面说法不正确的是( )A .直线y ^=b ^x +a ^必经过点(x ,y )B .直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点C .直线y ^=b ^x +a ^的斜率为∑i =1nx i y i -n x y∑i =1nx 2i -n x2D .直线y ^=b ^x +a ^和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的误差∑i =1n[y i -(b ^x i +a ^)]2是该坐标平面上所有直线与这些点误差中最小的解析:选B.回归直线可能不经过任何一个样本点,但必经过样本点的中心.11.对四对变量Y 与x 进行线性相关检验,已知n 是观测值组数,r 是相关系数,且已知: ①n =7,r =0.9533;②n =15,r =0.3012;③n =17,r =0.4991;④n =3,r =0.9950.则变量Y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B.由于小概率0.05与n -2在附表中分别查得:①r 0.05=0.754;②r 0.05=0.514;③r 0.05=0.482;④r 0.05=0.997.因此知①、③中相关系数比r 0.05大,变量Y 和x 具有线性相关关系.而②、④中的相关系数小于r 0.05,故变量Y 与x 不具有线性相关关系.12.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所根据以上数据,则( )A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对解析:选A.由公式χ2=382×(37×202-121×22)158×224×59×323≈13.11.由于13.11>6.635,所以有99%的把握认为含杂质的高低与设备改造是有关的,但是否改造设备这一行为并不对含杂质高低有决定性作用.二、填空题(本大题共4小题,请把答案填在题中横线上)13.若回归直线方程为y ^=0.5x -0.81,则x =25时,y 的估计值为________. 解析:y 的估计值为0.5×25-0.81=11.69. 答案:11.6914.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:由题意知[0.254(x +1)+0.321]-(0.254x +0.321)=0.254. 答案:0.25415.为了判断高中一年级学生选修文科与选修理科是否与性别有关,现随机抽取50名学生,得到2×2列联表如下:已知P (χ2≥3.841)≈0.05,P (χ≥5.024)≈0.025. 根据表中数据,得到χ2=50×(13×20-10×7)223×27×30×20≈4.844.则认为选修文科与性别有关出错的可能性是________.解析:本题考查对假设检验含义的理解,由χ2≈4.844>3.841,得选修文科与性别无关是不成立的,即有关的概率是95%,出错的可能性是1-95%=5%. 答案:5%16.已知一个线性回归方程为y ^=1.5x +45,x i ∈{1,7,5,13,19},则y =________. 解析:因为x =15×(1+7+5+13+19)=9,且y ^=1.5x +45,所以y =1.5×9+45=58.5.答案:58.5三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.某地震观测站对地下水位的变化和发生地震的情况共进行了n =1700次观测,列联表如下:解:根据列联表中的数据得到χ2=1700×(98×618-82×902)2180×1520×1000×700≈1.59≤3.841,∴没有充分的证据显示地下水位的变化与地震的发生相关. (2)求出回归直线方程. 解:(1)散点图如图.(2)x =44.5,∑i =110x 2i =20183,y =7.67,∑i =110x i y i =3481.32,则b ^=3481.32-10×44.5×7.6720183-10×44.52≈0.179,a ^=7.67-0.179×44.5=-0.2955. ∴回归直线方程为y ^=0.179x -0.2955.19.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率.解:(1)法一:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得(1-P (B ))2=(1-p )2=116, 解得p =34或p =54(舍去),所以乙投球的命中率为34.法二:设“甲投球一次命中”为事件A ,“乙投球一次命中”为事件B . 由题意得P (B )P (B )=116于是P (B )=14或P (B )=-14(舍去),故p =1-P (B )=34,所以乙投球的命中率为34.(2)由题设知,P (A )=12,P (A )=12,故甲投球2次至少命中1次的概率为1-P (A A )=34.20.一台机器由于使用时间较长(但还可以使用),它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,下表为抽样试验结果:(1)对变量Y 与x (2)如果Y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,机器的运转速度应控制在什么范围内?解:(1)x =12.5, y =8.25,∑i =14x i y i =438, 4x y =412.5,∑i =14x 2i =660, ∑i =14y 2i =291.所以r =∑i =14x i y i -4x y(∑i =14x 2i -4x 2)(∑i =14y 2i -4y 2)=438-412.5(660-625)×(291-272.25)=25.5656.25≈25.5025.62≈0.995. 查临界值表:4-2=2的r 0.05=0.950.因为r >r 0.05,所以Y 与x 有线性相关关系. (2)由(1)可知Y 与x 有线性相关关系, 所以,b ^=438-412.5660-4×12.52≈0.7286,a ^=8.25-0.7286×12.5=-0.8571.所以Y 对x 的回归直线方程为y ^=0.7286x -0.8571. (3)要使y ^≤10,即0.7286x -0.8571≤10, 所以x ≤14.9013.所以机器的转速应控制在14.9013转/秒以下. 21.下表是一次试验的数据:根据上面数据分析:y 与1x 之间是否具有线性相关关系?如果有,求出回归方程.解:令u =1xu =1.324,y =16.414; ∑i =14u 2i =12+…+0.022=1.0504,∑i =14y 2i =10.152+…+1.302=117.2871,∑i =14u i y i =10.957,相关系数r ≈0.9999.由于r 与1非常接近,所以u 与y 有很强的线性相关关系. 由题知b ^≈9.01,a ^≈1.13,∴y ^=1.13+9.01u ,∴y ^=1.13+9.01x.22.针对时下的“韩剧热”,某校团委对“学生性别和是否喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16女生喜欢韩剧的人数占女生人数的23.(1)若在推断结论为错误的可能性为5%的前提下认为是否喜欢韩剧和性别有关,则男生至少有多少人;(2)若没有充分的证据显示是否喜欢韩剧和性别有关,则男生至多有多少人? 解:设男生人数为x ,依题意可得2×2列联表如下:(1)若在推断结论为错误的可能性为5%的前提下认为回答结果的对错和性别有关,则χ2>3.841,由χ2=3x 2(x 6×x 6-5x 6×x 3)2x ·x 2·x 2·x =38x >3.841,解得x >10.24, ∵x 2,x6为整数, ∴若在推断结论为错误的可能性为5%的前提下认为是否喜欢韩剧和性别有关,则男生至少有12人.(2)没有充分的证据显示是否喜欢韩剧和性别有关,则χ2≤3.841, 由χ2=3x 2(x 6×x 6-5x 6×x 3)2x ·x 2·x 2·x =38x ≤3.841,解得x ≤10.24, ∵x 2,x6为整数 ∴若没有充分的证据显示回答结果的对错和性别有关,则男生至多有6人.。

成都双语实验学校选修1-2第一章《统计案例》检测题(答案解析)

一、选择题1.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.2922.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是( ) A .0.216B .0.36C .0.352D .0.6484.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:2()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .185.A B 两支篮球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局A 队获胜的概率是12外,其余每局比赛B 队获胜的概率都是13.假设各局比赛结果相互独立.则A 队以3:2获得比赛胜利的概率为( ) A .427B .281C .1681D .8276.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .237.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .598.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125D .641259.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A 袋中的概率为 ( )A .34B .14C .13D .2310.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示: 价格x (元) 9 9.5 10 10.5 11销售量y (件)1110865由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4011.在5道题中有3道代数题和2道几何题.如果不放回地依次抽取2道题,则在第1次抽到代数题的条件下,第2次抽到代数题的概率为 ( ) A .15B .25C .12D .3512.下列关于统计学的说法中,错误的是( ) A .回归直线一定过样本中心点(),x y B .残差带越窄,说明选用的模型拟合效果越好C .在线性回归模型中,相关指数2R 的值趋近于1,表明模型拟合效果越好D .从独立性检验:有99%的把握认为吸烟与患肺病有关系时,可解释为100人吸烟,其中就有99人可能患有肺病二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____.14.某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.15.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________. 16.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.17.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p _____.18.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.19.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.20.甲、乙两人独立地破译一密码,他们能单独破译该密码的概率分别是21,53,假设他们破译密码彼此没有影响,则该密码被破译的概率为____.三、解答题21.在我国,大学生就业压力日益严峻,伴随着政府政策的引导与社会观念的转变,大学生的创业意识与就业方向也悄然发生转变.某大学生在国家提供的税收,担保贷款等多方面的政策扶持下选择加盟某专营店自主创业,该专营店统计了近五年来创收利润数iy(单位:万元)与时间it(单位:年)的数据,列表如下:iy 2.4 2.7 4.1 6.47.9(1)依据表中给出的数据,是否可用线性回归模型拟合y与t的关系,请计算相关系数r 并加以说明(计算结果精确到0.01).(若0.75r>,则线性相关程度很高,可用线性回归模型拟合)(2)该专营店为吸引顾客,特推出两种促销方案.方案一:每满500元可减50元;方案二:每满500元可抽奖一次,每次中奖的概率都为25,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.(ⅰ)某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客换得100元现金奖励的概率(ⅱ)某位顾客购买了2000元的产品,作为专营店老板,是希望该顾客直接选择方案一返回200元现金,还是选择方案二参加四次抽奖?说明理由.附:相关系数公式:()()()()()()1122221111n ni i i ii in n n ni i i ii i i it t y y t y ntyrt t y y t t y y======---==----∑∑∑∑∑∑,参考数据:56.957.547≈,5185.2i iit y==∑,()52110iit t=-=∑,()52122.78iiy y=-=∑.22.某工厂A,B两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A,B生产线生产的产品为合格品的概率分别为p和21(0.51)p p-.(1)从A,B生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p的最小值0p;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的p作为p的值.①已知A,B生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为2 7(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系” .(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++25.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动不喜爱运动总计男生a b30女生c d20总计50(1)求出列联表中a、b、c、d的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bcKa b c d a c b d-=++++,(其中n a b c d=+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==). 81i ii y μ=∑μ2μ821ii μ=∑81i i y =∑ 821ii y=∑ 0.616185.5⨯ 2e - ln 96.54 ν(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6,所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】 【分析】先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。

人教版 选修1-2 高二物理 第一章 1.4气体 教学课件(共44张PPT)


解: 化学反应完成后,硝酸甘油释放 的总能量为
W=mU, 设反应后气体的温度为T,根据题意,有 W=Q(T-T0), 器壁所受的压强为 p=CT/V0, 联立以上各式并代入数据,得 p=3.4×108PA.
7.某压缩式喷雾器储液桶的容量是5.7×10-3m3 .往桶内倒入4.2×10-3m3的药液后开始打气, 打气过程中药液不会向外喷出.如果每次能打 进2.5×10-4m3的空气,要使喷雾器内空气的压 强达到4标准大气压应打气几次?这个压强能 否使喷雾器内的药液全部喷完?(设大气压强 为1标准大气压)
可以发现秤指针的读数更大。 钢珠的动能越大,对秤盘产生额压力越大
结论
气体压强的大小与两个因 素有关:一是气体分子的 平均动能;二是分子的密 集程度。
注意
1.气体的平均动能越大,分子撞击容器壁 时产生的作用力越大,气体的压强就越大; 温度是分子平均动能的标志,所以气体的 压强就和温度有关。 2.气体越密集,每秒撞击容器壁单位面积 的分子越多,气体压强越大。一定质量的 气体,体积越小,分子越密集,因此气体 压强与体积有关。
4.气体分子的速率分布 和统计规律
根据这个图表我们可以发现温度较高时,速率较大的分 子占得比例大一些,速率小的分子占得比例小一些,对于 一定种类的大量分子来说,在一定温度下,处于一定速率 范围呢的分子数所占的百分比是确定的,呈现一定的规律,
即统计规律。
让我们通过实验来理解统计规律
伽尔顿板
向入口投入大量的小球,观察小球 落下后在槽内的分布。用数量级不 同的小球反复该实验。
气体压强 就是气体
对于容器壁的压强,在国际

制中,压强的单位是帕斯卡,

简称帕,符号式Pa。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 一 章 统 计 案 例1.1 回归分析的基本思想及其初步应用飞跃,这里是最好的起点……1. 下列两个变量之间的关系中,是函数关系的是( ). A. 学生的性别与他的数学成绩 B. 人的工作环境与健康状况 C. 女儿的身高与父亲的身高 D. 正三角形的边长与面积2. 给出下列变量间的关系:①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. 其中是相关关系的是( ). A. ①② B. ①③ C. ①④ D. ②③3. 下面两个变量间的关系不是函数关系的是( ). A. 正方体的棱长与体积 B. 角的度数与它的正弦值C. 单产为常数时,土地面积与粮食总产量D. 日照时间与水稻亩产量4. 关于变量y 与x 之间的回归直线方程叙述正确的是( ). A. 表示y 与x 之间的一种确定性关系 B. 表示y 与x 之间的相关关系 C. 表示y 与x 之间的最真实的关系D. 表示y 与x 之间真实关系的一种效果最好的拟合 5. 已知变量x 与y 间的一组数据如下:由表可计算出变量x ,y 的线性回归方程为________.6. 将形如y =ax b +c (b ≠0)的函数转化成线性函数的方法:令________,则得到方程________,其函数的图象是一条直线.7. 有下列关系:①名师出高徒;②球的体积与该球的半径之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树,其断面直径与高度之间的关系;⑤学生与他(她)的学号之间的关系;⑥乌鸦叫,没好兆.其中,具有相关关系的是________.8. 若回归直线方程中的回归系数b =0,则相关系数r =______. 9. 在某年一项关于16艘轮船的研究中,船的吨位区间从192吨到3 246吨,船员的数目从5人到32人.船员人数y 关于船的吨位x 的线性回归方程为y ^=9.5+0.0 062x . (1)假设两艘轮船吨位相差1 000吨,则船员平均人数相差多少? (2)对于最小的船,估计的船员数是多少?对于最大的船,估计的船员数是多少?(结果保留整数)10. )有如下的统计资料:若由资料可知y 对x (1)y 与x 之间的线性回归方程;(2)估计使用年限为10年时,维修费用是多少万元.课内与课外的桥梁是这样架起的……11. 为了考查两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2,已知两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,那么下列说法正确的是( ).A. l 1和l 2有交点(s ,t )B. l 1和l 2相交,但交点不一定是(s ,t )C. l 1与l 2必定平行D. l 1与l 2必定重合12. 若某地财政收入x 与支出y 满足回归直线方程y ^=bx +a +e (单位:亿元),其中b =0.8,a =2,|e |≤0.5,如果今年该地区财政收入10亿元,则今年支出预计不会超过( ).A. 10亿元B. 9亿元C. 10.5亿元D. 9.5亿元13. 许多因素都会影响贫富,教育也是其中之一,在研究这两者的关系时收集了美国50个州的成年人受过9年或更少教育的百分比(x )和收入低于官方规定的贫困线的人数占本州人数的百分比(y )的数据,建立的回归直线方程y ^=0.8x +4.6,斜率的估计等于0.8,说明________________;成年人受过9年或更少教育的百分比(x )或收入低于官方规定的贫困线的人数占本州人数的百分比(y )之间的相关系数________.(填“大于0”或“小于0”)14. 用施化肥量x (kg)预报水稻产量y (kg)的回归直线方程为y ^=5x +250,当施化肥量为80 kg 时,水稻产量________为650 kg.(填“一定”或“不一定”)16. 在7块面积相同的试验田上进行关于施的化肥量对水稻产量影响的试验,得到如下(1)(2)当施的化肥量x =28 kg 时,预测水稻的产量.(2009·复旦大学)设Q 是有理数集,集合X ={X |X =2+2b ,a ,b ∈Q ,x ≠0},在下列集合:①{2x |x ∈X };②{x /2|x ∈X };③{1/x |x ∈X };④{x 2|x ∈X }中,和X 相同的集合有________个.答案:317. 已知10只狗的血球体积及红血球的测量值如下:(x (血球体积,单位:mm 3),(2)求出x ,y ,∑i =110x i y i ,∑i =110x 2i ;(3)由散点图判断能否用线性回归方程来刻画x 与y 之间的关系,若能,求出线性回归方程.对未知的探究,你也行!18. 某考察团对全国10大城市进行职工人均平均工资x 与居民人均消费y 进行统计调查,y 与x 具有相关关系,回归方程y ^=0.66x +1.562(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为( ).A. 10%B. 72.3%C. 67.3%D. 83%19.则y 与x A. y ^=380.530+0.4 845x B. y ^=442+0.210 9x C. y ^=275.697 2+0.486 7x D. y ^=150.0+0.50x20. 为考虑广告费用x 与销售额y 之间的关系,随机抽取5家超市,得到如下表所表示的数据:21. 为研究弹簧质量x (单位:克)对长度y (单位:厘米)的影响,对不同质量的6根弹簧进(1)(2)如果散点图中的各点大致分布在一条直线的附近,求y 与x 之间的线性回归方程; (3)对x ,y 两个变量进行相关性检验.解剖真题,体验情境。

22. (2011·江西文·8)为了了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下表:则y 对x A. y ^=x -1 B. y ^=x +1C. y ^=88+12x D. y ^=176(1)利用所给数据求年需求量与年份之间的回归直线方程y =bx +a ; (2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.飞跃,这里是最好的起点……1. 工人月工资y (元)关于劳动生产率x (千元)的回归方程为y ^=650+80x ,下列说法中: ①劳动生产率为1 000元时,工资约为730元; ②劳动生产率提高1 000元时,工资提高约80元; ③劳动生产率提高1 000元时,工资提高730元; ④当月工资为810元时,劳动生产率约为2 000元. 其中,正确的个数是( ). A. 1 B. 2 C. 3 D. 42. 下表是x 和y ( ).A. 点(2,3)B. 点(1.5,4)C. 点(2.5,4)D. 点(2.5,5)3. 下列结论中,能表示变量x ,y 具有线性相关关系的是( ). A. |r |≥r 0.05 B. |r |≤r 0.05 C. |r |>r 0.05 D. |r |<r 0.054. 下列说法中,正确的是________.(填序号) ①回归分析就是研究两个相关事件的独立性; ②回归模型都是确定性的函数; ③回归模型都是线性的;④回归分析的第一步是画散点图或求相关系数r ;⑤回归分析就是通过分析、判断,确定相关变量之间的内在关系的一种统计方法. 5. 某医院用光电比色计检验尿汞时,得尿汞含量x (单位:毫克/升)与消化系数y 的数据如下表:若y 与x 6. 已知x ,y则y 与x 之间的线性回归方程y =a +b x 必过定点________.7.则y 关于x (2009·复旦大学)设x ,y ,z >0满足xyz +y +z =12,则log 4x +log 2y +log 2z 的最大值是________.答案:38. 某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,(2)对这两个变量是否线性相关进行相关性检验;(3)设回归直线方程为y ^=b ^x +a ^,求系数a ^,b ^.9.(1)(2)如果x 与y 之间具有线性相关关系,求出直线回归方程,并预测当腐蚀时间为75 s 时,腐蚀深度为多少微米.课内与课外的桥梁是这样架起的……A. y ^=12x +1 B. y ^=xC. y ^=2x +13D. y ^=x +111. 国际上通常用恩格尔系数来衡量一个国家和地区人们生活的状况,它的计算公式n =xy(x 为人均食品支出总额,y 为人均个人消费支出总额),且y =2x +475.相同的情况下人均少支出75元,则该家庭2008年属于( ).A. 贫困B. 温饱C. 小康D. 富裕12. 已知x ,y则y 与xA. (2,2)B. (1,2)C. (1.5,3.5)D. (1.5,4)13. 某炼钢厂废品率x (%)与成本y (元/t)的线性回归方程为y ^=105.492+42.596x .当成本控制在176.5元/t 时,可以预计在生产的1 000 t 钢中,约有________t 钢是废品.14. 为了科学地比较考试成绩,有些选拔性考试会将考试分数转化为标准分,转化关系式为Z =x -xs(其中x 是某位考生的考试分数),x 是该次考试的平均分,s 是该项考试的标准差,Z 是该考生的标准分.转化成标准分后可能出现小数和负值,因此,又常常再将Z 分数作线性变换转化成其他分数.例如:一次考试采用的是T 分数,线性变换公式是T =40Z +60.已知在这次考试中,甲考生的考试分数是85,这次考试的平均分是70,标准差是25,则该考生的T 分数是________.15. 若回归直线方程中的回归系数b ^=0,则相关系数r =________. 16. 假定学生在七年级和八年级的数学成绩是线性相关的.若某10位学生七年级的数学成绩x (分(1)(2)求y 与x 的线性回归方程;(3)如果一个学生八年级的数学成绩为85分,试估计他七年级时的数学成绩.17. 某种花卉的开花期与温度显著相关,为了控制花卉的开花期,做了10次试验,数据(2)若要将花卉开花期控制在45天左右,养花的温度应控制在多少?对未知的探究,你也行!18. 某什么规律?19. 下表是1957年美国旧轿车价格的调查资料,今以x表示轿车的使用年数,y表示相解剖真题,体验情境。

20. (2011·根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时销售额为().A. 63.6万元B. 65.5万元C. 67.7万元D. 72.0万元21. (2011·陕西文·9)设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是().(第21题)A. x和y的相关系数为直线l的斜率B. x和y的相关系数在0到1之间C. 当n为偶数时,分布在l两侧的样本点的个数一定相同D. 直线l过点(x,y)一代数学大师——柯西柯西(Cauchy),法国数学家,1789年8月21日出生于巴黎,父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日、拉普拉斯交往密切.柯西少年时代的数学才华颇受这两位数学家的赞赏,并预言柯西日后必成大器.柯西在代数学、几何学、误差理论以及天体力学、光学、弹性力学等方面都有出色的贡献.特别是,他弄清了弹性理论的基本数学结构,为弹性力学奠定了严格的理论基础,他还是诗歌爱好者,他那诗人般的高远意境、富于联想的品格,推动了他的科学研究.他的文章有思想、有创见、朴实无华、充满新意,这使得他的研究成果能及时传播并较快得到公认.飞跃,这里是最好的起点……1. 若变量x 与y则变量x ,y A. 0,0 B. 0,1 C. 1,0 D. 1,12. 在一次科技实验活动中,某同学测得(x ,y )的四组值分别是A (1,2),B (2,3),C (3,4),D (4,5),则y 与x 之间的线性回归方程为( ).A. y ^=x +1B. y ^=x +2 C. y ^=2x +1 D. y ^=x -1 3. 下列说法错误的是( ).A. 变量间的关系若是非确定性关系,则因变量不能由自变量唯一确定B. 相关系数可以是正的,也可以是负的C. 如果r 2=1或r =±1,那么x 与y 之间完全线性相关D. 相关系数r ∈(-1,1)4. 设有一个回归方程为y ^=3-5x ,变量x 增加一个单位时,y 的值的变化情况是( ). A. 平均增加3个单位 B. 平均减少5个单位 C. 平均增加5个单位 D. 平均减少3个单位5. 2003年春季,我国部分地区SARS 流行,党和政府采取果断措施,防治结合,很快使病情得到控制.下表是某同学记载的5月1日至5月12日每天北京市SARS 病患者治愈的141 152 168 175 186(第5题)下列说法中正确的是________.①根据此散点图,可以判断日期与人数具有线性相关关系; ②根据此散点图,可以判断日期与人数具有一次函数关系. 6. 在研究身高与体重的关系时,求得相关指数R 2≈________,可以叙述为“身高解释了64%的体重变化”,而随机误差贡献了剩余的36%,身高对体重的效应比随机误差的效应大得多.7. 在两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是________.①模型一的相关指数R2为0.98;②模型二的相关指数R2为0.85;③模型三的相关指数R2为0.61;④模型四的相关指数R2为0.31.8. 当建立了多个模型来拟合某一数据时,为了比较各个模型的拟合效果,我们可以通过计算________来确定.①残差平方和;②相关指数R2;③相关系数r.9. 对x,y(1)(2)对x与y作回归分析;(3)求出y对x的回归直线方程;(4)根据回归直线方程估计在y=20时,x的值.10. 一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产的有缺点的零件数随机器的运转速度而变化.下表为抽样的试验结果:(1)(2)如果y与x有线性相关关系,求回归直线方程;(3)在实际生产中,如果允许每小时生产的产品中有缺点的零件数最多为10个,那么机器的运转速度应控制在什么范围内?课内与课外的桥梁是这样架起的……11. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是().A. 总偏差平方和B. 残差平方和C. 回归平方和D. 相关指数R212. 下列结论正确的是().A. 在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越小,模型的拟后效果越好;B. 在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;C. 在回归分析中,可用相关系数r 的值判断模型的拟合效果,r 越小,模型的拟合效果越好;D. 在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.13. 甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表;则试验结果体现A 、B 两变量更强的线性相关性的是( ).A. 丁B. 丙C. 乙D. 甲(2009·复旦大学)设函数y =10x2的图象是曲线C ,曲线C 1和C 关于直线x =1对称,曲线C 2和C 1关于直线y =x 对称,则C 2是函数________的图象.答案:y =2-2lg x 14. 若有一组数据的总偏差平方和为120,相关指数为0.6,则残差平方和为________.15. 某化工厂为预测某产品的回收率y ,需研究它和原料有效成分含量之间的相关关系,现取了8对观察值,计算得:∑8i =1x i =52,∑8i =1y i =228,∑8i =1x 2i =478,∑8i =1x i y i =1849,则y 对x 的回归直线方程是________.16. 对于回归方程y ^=4.75x +257,当x =28时,y 的估计值是________.(2)若y 与x 具有相关关系,试估计高一时体重为78 kg 的学生在高二时的体重.18. 某市全民所有制职工工资总额x 与社会商品零售总额y 之间有如下对应数据(单位:(2)若y 与x 之间具有线性相关关系,求回归直线方程.如果2008年职工工资总额为75亿元,预测2008年的社会商品零售总额.对未知的探究,你也行!19. 设一城市居民的年收入x (20亿元),商品A 的销售额y (20万元),y 与x 之间具有显著的线性相关关系,10年来观测值的散点图大致分布在直线y ^=b ^x +a ^的附近.现有1999年、2000年和2001利用直线y ^=b ^x +a ^对这3年里商品A 的销售额y 的估计值分别记为y ^i (i =1,2,3). (1)试用配方法确定参数a ^,b ^的值,使得代数式Q =(y 1-y ^1)2+(y 2-y ^2)2+(y 3-y ^3)2取到最小值;(2)有关部门预计2009年该城市居民年收入约50亿元,根据以上预测2009年商品A 的销售额大约为多少万元.20. 某地区今年1月,2月,3月患某种传染病的人数分别为52人,61人,68人.为了预测以后各月的患病人数,甲选择了模型y ^=ax 2+bx +c ,乙选择了模型y ^=pq x +r ,其中y 为患病人数,x 为月份数,a ,b ,c ,p ,q ,r 都是常数.结果4月,5月,6月的患病人数分别为74人,78人,83人.你认为谁选择的模型比较好?飞跃,这里是最好的起点……1. 对四对变量y 和x 进行线性相关性检验,已知n 是观测值组数,r 是相关系数,且已知:①n =7,r =0.953 3;②n =15,r =0.301 2; ③n =17,r =0.499 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ). A. ①和② B. ①和④ C. ②和④ D. ③和④2. 设有一个线性回归方程为y ^=2-1.5x ,则变量x 增加1个单位时,( ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位3. 一位母亲记录了儿子3~9岁的身高(数据略),由此建立的身高与年龄的回归模型为y ^=7.19x +73.93,用这个模型预测这个孩子10岁时的身高,则正确的是( ).A. 身高一定是145.83 cmB. 身高在145.83 cm 以上C. 身高在145.83 cm 左右D. 身高在145.83 cm 以下4. 某校高三年级学生学习数学的时间(x )与考试成绩(y )之间的线性回归直线方程y ^=a ^+b^x ,经计算,方程为y ^=20-0.8x ,该方程中参数( ).A. a ^值是明显不对的 B. b ^值是明显不对的 C. a ^值和b ^值都是不对的 D. a ^值和b ^值都是正确的5. 对于一组数据的两个函数模型,其残差平方和分别为180.2和290.7,若从中选取一个拟合程度较好的函数模型,应选________.6. 在对两个变量x ,y 进行线性回归分析时有下列步骤: ①对所求出的线性回归方程作出解释; ②收集数据(x i ,y i ),i =1,2,…,n ; ③求线性回归方程; ④求相关系数;⑤根据所搜集的数据绘制散点图.若根据可靠性要求能够作出变量x ,y 具有线性相关结论,则操作顺序应为________. 7. 对四组变量y 和x 进行线性相关性检验,已知n 是观测值组数,r 是相关系数.已知:①n =7,r =0.9545;②n =15,r =0.381 2;③n =17,r =0.498 5;④n =3,r =0.987 0.则变量y 与x 具有线性相关关系的是________.8. 某地区的年财政收入x 与年支出y 满足线性回归模型y ^=a +bx +ε(单位:亿元),其中b =0.8,a =2,|ε|≤0.5.如果今年该地区财政收入为10亿元,那么年支出预计不会超过________亿元.(2009·复旦大学)用同样大小的一种正多边形平铺整个平面(没有重叠),有几种正多边形可以铺满整个平面而不留缝隙?答案:3种9. 保险公司统计的资料表明:居民住宅区到最近(1)用计算器计算线性回归方程及相关系数r ;(2)若发生火灾的某居民区与最近的消防站相距7.8千米,评估一下火灾的损失.10.(1) (2)描述解释变量与预报变量之间的关系. (3)计算残差、相关指数R 2.课内与课外的桥梁是这样架起的……11. 已知x 与y由散点图分析知,y 与x 线性相关,且y =0.95x +a ,则a =________.12. 设回归直线方程为y ^=a +bx ,现将y 的单位由cm 变为m ,x 的单位由ms 变为s ,则在新的线性回归直线方程y ^=a *+b *·x 中,b *与b 的关系是________.13.(1)(2)求出y 对x 的线性回归方程;(3)若广告支出为9万元,则销售收入为多少万元?14. 已知x 与y对于表中数据,甲、乙两名同学给出的拟合直线分别为y =13x +1与y =12x +12,试判断哪条直线拟合程度更好.对未知的探究,你也行!15. 下列关于相关系数r 的说法中,正确的是________.(填序号) ①若|r |越接近1,则两个变量线性相关程度越弱; ②若|r |越接近0,则两个变量线性相关程度越弱; ③若|r |越接近1,则两个变量线性相关程度越强; ④r 的取值范围应为[0,1].16. 由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程y ^=b ^x +a ^,那么下面正确说法的序号是________.①直线y ^=b ^x +a ^必经过点(x ,y );②直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;③直线y ^=b ^x +a ^的斜率b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2.17.)有如下统计资料:已知∑i =15x 2i =90,∑i =15y 2=140.8,∑i =15x i y i =112.3,79≈8.9,2≈1.4,当n -2=3时,r 0.05=0.878.(1)求x ,y ;(2)对x 与y 进行线性相关性检验;(3)如果x 与y 具有线性相关关系,求出线性回归方程; (4)估计使用年限为10年时,维修费用约为多少?1.2 独立性检验的基本思想及其初步应用飞跃,这里是最好的起点……1. 判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是( ). A. 三维柱形图 B. 二维条形图 C. 等高条形图 D. 独立性检验2. 在三维柱形图中,底面主对角线上两个柱体高度的乘积与副对角线上的两个柱体高度的乘积相差越大,两个变量有关系的可能性就( ).A. 越大B. 越小C. 无法判断D. 以上都不对3. 下列关于K 2的说法正确的是( ).A. K 2在任何相互独立问题中都可以用来检验有关还是无关B. K 2的值越大,说明“两个变量有关系”成立的可能性越大C. K 2是用来判断两个分类变量是否有关系的随机变量,当K 2的值很小时,可以推定两个分类变量不相关D. K 2的观测值k 的计算公式为k =(ad -bc )2(a +b )(c +d )(a +c )(b +d )4. 在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大,两个变量有关系的可能性就( ).A. 越大B. 越小C. 无法判断D. 以上都不对5. 为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表:6. 独立性检验的统计假设就是假设相关事件A 与B ________.7. 经独立性检验可知“吸烟的人容易患心脏病”.则下列四个命题中,对这句话理解错误的是________.①吸烟与患心脏病是相关的;②吸烟的人比不吸烟的人患心脏病的风险更大; ③吸烟的人一定患有心脏病;④吸烟的与不吸烟的人对比,吸烟的人中患心脏病的比例较高.(2009·复旦大学)一个菱形边长与其内切圆的直径之比为k ∶1(k >1),则这个菱形的一个小于π2的内角等于________.答案:arctan 1k 2-18. 调查某学生班,按性别和原籍分类得调查表如下:9. 某医疗机构为了了解肝病与酗酒是否有关,对成年人进行了一次随机抽样调查,结果如下表:(1)(2)在不酗酒者中,患肝病的人所占的百分比是多少? (3)从直观上你能得到什么结论?10. 某防疫站对屠宰场及肉食零售点的猪肉检查沙门氏菌情况,结果如下表,能否在犯错误的概率不超过课内与课外的桥梁是这样架起的……11. 随机抽样340人,性别与喜欢韩剧列联表如下,则性别与喜欢韩剧之间有关的概率约为________.12.为了判断主修统计专业是否与性别有关系,根据表中数据得K 2=50×(13×20-10×7)223×27×20×30≈4.844.∵ K 2>3.841,∴ 断定主修统计专业与性别有关系.那么,这种判断出错的可能性约是________.13. 飞机在一次恶劣气候飞行中,男女乘客晕机的情况如下:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.(1)列出2×2列联表;(2)分别求出男女乘客中晕机者所占的百分比;(3)写出独立性检验的统计假设,并求出K 2的观测值.14. 妇女委员会怀疑某校的机电工程和英文专业对申请入学学生的审核带有性别歧视,其提供的证明如下:机电工程男性女性通过3010不通过3010英 文男性女性通过510不通过1530(1)若你是妇女委员会的代表,请陈述你的理由; (2)若你是校方代表,请陈述你的理由; (3)若你是一名仲裁者,谈谈你的观点.对未知的探究,你也行!15. 下列关于等高条形图的叙述正确的是().A. 从等高条形图中可以精确地判断两个分类变量是否有关系B. 从等高条形图中可以看出两个变量频数的相对大小C. 从二维条形图可以粗略地看出两个分类变量是否有关系D. 以上说法都不对16. 关于分类变量x与y的随机变量K2的观测值k,下列说法正确的是().A. k的值越大,“x和y有关系”可信程度越小B. k的值越小,“x和y有关系”可信程度越小C. k的值越接近于0,“x和y无关”程度越小D. k的值越大,“x和y无关”程度越大17. 检验两个分类变量是否相关时,可以用________粗略地判断两个分类变量是否有关系.18. 判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是________.19. 某生物药品厂研制出一批新的鸡瘟疫苗,为检验其免疫力,用200只鸡进行试验,其中100只鸡注射了新鸡瘟疫苗,其余的注射旧鸡瘟疫苗.试验结果的相关数据如下表所示,20. 某单位餐厅的固定餐椅经常有损坏,于是该单位领导决定在餐厅墙壁上张贴文明标解剖真题,体验情境。

相关文档
最新文档