深部煤层瓦斯赋存规律及其涌出特征
煤层瓦斯赋存讲解

江安县煤矿有限公司瓦斯赋存及特征编制单位:生产技术科编制时间:2014年1月江安县煤矿有限公司煤层瓦斯赋存规律及特征一、矿井概况1、交通位置及隶属关系江安县煤矿有限公司江安县煤矿矿区位于宜宾市江安、兴文县交界处,江安县富安井田129~123号勘探线浅部,即江安县城160°方向直线距离约40km,距兴文县城(古宋)310°方向直线距离约15km。
行政区划隶属江安县五矿镇。
地理坐标:东经:105°05′44″~105°07′26″,北纬:28°23′16″~28°24′39″。
矿区中心点坐标:105°06′18″,28°23′53″。
矿山紧邻古(宋)~巡(场)主干公路(800m平距),东行18km达兴文县县城(古宋),西至珙县金沙湾火车站约57km,至宜宾市约120km,东至泸州市约240km,交通十分便捷,详见交通位置图1。
2、井型、开拓方式及生产能力江安县煤矿有限公司由原江安煤矿与芋禾湾煤矿整合而成。
2008年8月22日,四川省国土资源厅以“川采矿区审字(2008)第409号”批准整合后的江安煤矿煤矿划定的矿区范围由1~31号拐点坐标圈闭,面积为2.523km2,开采K2煤层,开采深度+370m至+50m。
矿井为斜井暗斜井开拓,根据煤层赋存情况、矿区范围和开拓布置,划分两个水平,即:矿井南翼为+215m水平,北翼为+285m水平。
同时根据井田煤层赋存状况和开采技术条件,煤层开采方式、机械化程度、年推进度、产量均衡等因素,沿煤层走向每800m左右划分一个采区,将全井田划分南北两翼,南翼为4个采区,北翼2个采区,全矿6个采区。
目前技改验收采区为二采区,也是矿井生产的主采区,技改验收结束后逐步布置三采区、四采区、五采区、六采区。
矿井设计生产能力为15万吨/年。
二、瓦斯根据宜宾市经济委员会《关于全市煤矿瓦斯等级鉴定结果的批复》(宜市经煤[2012]4号文),经鉴定,江安县煤矿2012年矿井CH4绝对涌出量为4.84m3/min,相对涌出量为9.73m3/t,二氧化碳绝对涌出量3.47m3/min、相对涌出量17.99m3/t,属高瓦斯、高二氧化碳矿井。
深部煤层瓦斯赋存规律及其涌出特征

深部煤层瓦斯赋存规律及其涌出特征瓦斯是煤矿的主要自然灾害之一,长期以来一直严重威胁着煤矿的安全生产和矿井的经济效益。
近几年来,少数低瓦斯矿井由于瓦斯规律不明,对突发的局部瓦斯异常涌出常疏于防范,相继发生了一系列的重大瓦斯事故(根据近几年统计资料初步表明,该类事故约占事故总数的25%左右),给国家和人民的生命财产造成了巨大损失。
因此,矿井瓦斯赋存、瓦斯涌出及其防治技术的研究多年来一直是我国煤矿,特别是高、突瓦斯矿井的重点研究课题,瓦斯研究工作受到了人们的高度重视。
1 夹河煤矿深部煤层瓦斯赋存规律及涌出特征研究的目的和意义夹河煤矿是徐州矿务集团公司主力矿井之一。
从近几年生产中瓦斯涌出情况及实际瓦斯涌出资料来看,夹河煤矿矿井瓦斯来源较为丰富,因此,随着矿井开采深度的进一步延伸,瓦斯涌出量的增加,瓦斯涌出异常现象的发生将成为可能。
故探明并了解深部煤层瓦斯赋存规律及其涌出特征,对于更好地采取具有针对性的瓦斯防治技术措施,避免采掘工作面瓦斯积聚和超限、甚至煤与瓦斯突出事故的发生,做到预防瓦斯超前,实现矿井安全采煤具有十分重要的现实意义。
2 夹河煤矿2#、7#和9#煤层物理性质和煤层特征分析2.12#、7#和9#煤层描述(1)下石盒组2#煤层2#煤层全区发育,沉积特征明显,属结构复杂、沉积较稳定的可采中厚煤层。
煤层厚度0.20~4.41m,平均 1.81m,煤的容重为1.34t/m3,其变化规律与井田构造格架有关。
(2)山西组7#煤层7#煤层全区发育,沉积特征明显,属全区可采的较稳定中厚煤层。
煤层厚度0.37~5.35m,平均2.28m,煤的容重为1.34t/m3,其变化规律与井田构造格架有关。
(3)山西组9#煤层9#煤层在夹2号断层以东及F1号断层上盘,总体上9#煤层沉积厚度大,稳定性好;而夹2号断层以西煤层沉积厚度小,稳定性差,属大部区域可采的较稳定中厚煤层。
煤层厚度0.20~4.05m,平均1.49m,煤的容重为1.35t/m3,其变化规律与井田构造格架有关。
一号煤矿煤层瓦斯赋存规律的研究与探索

一号煤矿煤层瓦斯赋存规律的研究与探索一号煤矿是国内的一座重点煤矿,矿区内该煤层的瓦斯赋存规律对于矿井的安全生产至关重要。
本文通过对一号煤矿矿区煤层瓦斯赋存规律的研究与探索,提出了一些可供参考的结论。
煤层瓦斯赋存的时空变化规律是影响矿井瓦斯爆炸灾害的重要因素。
经过对一号煤矿矿区煤层瓦斯赋存数据的分析,我们发现煤层瓦斯赋存呈现时空变化规律:1、时间变化规律:煤层瓦斯赋存随着时间的推移呈现出高低波动的趋势,同时也具有显著的季节性变化规律,夏季瓦斯含量明显高于冬季。
2、空间分布规律:煤层瓦斯赋存不仅受到煤层厚度、排水能力等因素的影响,还与高低位置、断层、煤层裂隙等因素有关。
一号煤矿矿区煤层瓦斯分布主要以煤层中部为主,而在断层和煤层裂隙处也会出现明显的瓦斯聚集。
二、煤层瓦斯分布与瓦斯抽采的匹配为了有效地治理煤矿煤层瓦斯,需要合理安排瓦斯抽采措施。
煤层瓦斯的空间分布规律为瓦斯抽采提供了重要的依据。
在一号煤矿矿区,瓦斯抽采主要采用钻孔瓦斯抽放法和井下瓦斯抽放法。
根据煤层瓦斯分布规律,我们可以推测出以下瓦斯抽采方案:1、钻孔瓦斯抽放法:该方法适合在煤层中部区域进行瓦斯抽采,可选择在煤层比较厚实且煤层产煤较好的位置进行钻孔,不仅能够抽取部分区域的瓦斯,还能够降低煤层中的瓦斯压力,从而减小瓦斯爆炸的危险。
2、井下瓦斯抽放法:该方法适合在断层和煤层裂隙处进行瓦斯抽采,可通过集中排采等方式有效地降低瓦斯压力,从而减小瓦斯爆炸的危险。
三、瓦斯抽采效果的评估瓦斯抽采是煤矿瓦斯治理中最有效的方法之一,但瓦斯抽采效果的评估也是非常重要的。
在一号煤矿矿区,我们采用了“煤层瓦斯赋存量—瓦斯抽采量—瓦斯浓度”三个指标评估了瓦斯抽采效果。
评估结果表明,煤层瓦斯赋存量的减少可以有效地降低煤矿瓦斯爆炸的危险;同时,瓦斯抽采量与煤层瓦斯赋存量之间存在一定的正相关关系;最终,瓦斯浓度的降低可以直接反映瓦斯抽采的效果。
综上所述,煤层瓦斯赋存规律的研究与探索对于煤矿的安全生产具有重要的意义。
厚煤层分层开采中的瓦斯涌出规律

厚煤层分层开采中的瓦斯涌出规律瓦斯涌出规律:1、瓦斯涌出的主要表现形式:(1)开采中瓦斯涌出地面;(2)瓦斯注入停采工作面的管道系统;(3)厚煤层瓦斯室的涌出;(4)采空区顶板失稳涌出;(5)采空区煤柱贯入涌出;(6)采空区脆性帮助层失稳形成瓦斯沟,涌出煤层凹陷。
2、开采后瓦斯涌出的概率(1)随采深加深到煤层中心,涌出瓦斯的概率会增大,这是上述瓦斯涌出表现形式常见的现象;(2)采掘运动、穿层性矿变和顶板距离的变化,会影响瓦斯的涌出程度;(3)如果建立的采掘空间与煤层上、下、左右的凹陷相互靠近,极易出现瓦斯涌出;(4)巷道上的倒放或旋转,尤其是汇水、井筒等地点,容易出现瓦斯涌出。
3、薄、空、唐煤层瓦斯涌出规律(1)薄煤层涌出瓦斯概率较高,受开采运动影响较大;(2)以采掘深度较低的薄煤层为例,开采至层煤心数量达到一定数量时,常会产生压力,从而使薄煤层涌出瓦斯;(3)空煤层涌出瓦斯程度规律为:煤层变薄时瓦斯涌出概率增加;(4)唐煤层涌出瓦斯程度规律为:煤层逐渐变薄、空气逐渐减少时产生瓦斯压力,容易涌出瓦斯。
4、煤层厚度、压力等影响涌出瓦斯程度(1)随采深加深,煤层面壁倾角增大,煤层中动态压力梯度增大,地层构造更加不稳定;(2)当煤层厚度小于1.2m时,开采会使瓦斯涌出概率增大;(3)薄煤层厚度小于60cm,且顶板距离小于100cm,即可引起瓦斯涌出;(4)当薄煤层的压力情况较大时,可能引起瓦斯涌出;(5)开采深度要控制在合理限度内,不能过大。
5、瓦斯涌出预警及处理(1)采用瓦斯涌出模拟软件,对煤层瓦斯放散程度、放散方向、放散速度等进行分析,按照预警和结果显示,及时采取有效措施;(2)在实际开采中,及时观察采空区、采空区顶板开裂,进入采空区时要进行瓦斯测量;(3)如果出现重大瓦斯涌出现象,应及时进行限流控制,采取措施防止瓦斯危害;(4)当遇到唐煤层出现瓦斯涌出,应立即采取限流措施,减缓瓦斯突出,减少瓦斯放散危害。
矿井深部瓦斯涌出规律及其成因的探索

1.51 4.03
.
14.44
1977
1978 1979
1994 1995
14.91
12.89
11.6l
4.45 6.07
5.08
6.36
12.∞
12.37 14.52,
1996
1997
15.8l 16.5l
19∞
1981
6.64 7.79
6.55
,9.69 9.48
6.95
1998 19919
13.00 15.35
(徐州矿务集团有限公司庞庄煤矿,江苏徐州221141)
摘要徐矿集团庞庄煤矿张小楼井开采深度超过1200m,由于开采深度大,不
可避免地遭遇高地温、高地压和高瓦斯等难题的困扰,加强对瓦斯赋存规律的分 析和有效治理是实际矿井安全高效开采的关键。本文着重探讨庞庄煤矿张小楼井 矿井深部开采中瓦斯涌出规律及其成因的个例,分析矿井因地质构造和成因不 同,矿井瓦斯分布及涌出规律存在差异的特点,提出因地制宜进行瓦斯治理的 措施。
・
为研究矿井深部瓦斯赋存规律,首先进行矿井历年来瓦斯涌出量的数据分析。
表l是张小楼井自矿井投产以来,历年矿井瓦斯等级鉴定的资料,表中列出了矿井每 年绝对瓦斯涌出量及相对瓦斯涌出量(表1),为便于分析历年矿井正常瓦斯涌出的规律, 我们将瓦斯涌出的数值用折线图表示出来(图1)。从图表呈现的矿井瓦斯涌出规律有下 列特点: (1)矿井从开采至1990年,瓦斯涌出量随开采深度的加大而增加;1990--2000年 间,瓦斯涌出量进入平衡释放期;2000年至今,相对瓦斯涌出量有逐年减少的趋势,自2005
减弱。
(4)矿井西翼的喷出次数高于东翼。 表2张小楼井瓦斯喷出一览表
年度
煤层瓦斯的涌出规律与预测方法

一
“ 七五 ”期 间 ,提 出矿 井瓦斯 涌 出量 分源预 测方 法; “ 八五”期间,提 出构造单元分源预测法 ; “ 九五”期间 ,研究和完善 了矿井瓦斯涌出量预测 方法 。 经过近4 年的研 究与发展 , 目前瓦斯分源预测法 已 0 基本达 到实用阶段 ,而近 几年来出现的 一些新预测方 法如灰 色系统预测法 、瓦斯 地质数学预测法 、趋势面 预测法 、神经网络预测法 仍处于探索阶 段 ,没有达到 实用阶段。 ( )经典预测方法——矿山统计法 二 l 、原理 :根据 已采矿井或邻近矿井 历年来实际瓦 巨大 威 胁 。 斯涌 出量随开采深度 的变 化规律 ,并据 此预 测新水平 三、煤层 中瓦斯的存在形式 煤层中存在游离瓦斯和 吸附瓦斯 ,在合适 的气压下 或新井中瓦斯 涌出规律 二者之间可以相互 转换 ,在煤层 内存在 动态平衡 。比 2 、计算步骤 : 如当煤层被揭开后 ,其表 面的吸附瓦斯在 气压差的作 首先确定相 对瓦斯涌 出量随开 采深 度的变化梯度a 用下迅速释放到空 气中。同样在气压差作 用下 ,煤层 值
按煤 层瓦 斯 涌 出 形式 的流 动 性 质 、表 现 方式 的 不 同 出量 。 可将 煤 层 瓦 斯 的 涌 出形 式 分 为 四 种 : 其次为瓦斯风化带深度H0 的确定 HO H1 a ( - ) = 一 *Q1 2 l 、正 常式 瓦 斯 涌 出 ; 然后 计算 矿井 相对 瓦斯 涌 出量 ( Q)与开 采深 度 2 、喷 出式瓦斯涌出 ; 3 、矿井动力现象引发的瓦斯涌 出; ( H)之 间的关系 4 、煤 与瓦斯突 出式瓦斯涌 出。 Q ( H0/ = H- )a 针对不同的涌出形式 ,管理防治措施 也各不相 同。 式 中符号同前 。 其 中 ,正 常式瓦斯 涌出是 煤层瓦斯涌 出的主要形式 , 作者单位 :中国矿业 大学信 电学院 参考文献 : 可 以用有关数学模 型来描述 结算 。本文也 是以正常式 【 】《 井 通 风 与 安 全 》 . 德 明 主 编 , 国 矿 业 大 学 出 版 1 矿 王 中 瓦斯 涌出形式为例来讲 解煤层瓦斯的 涌出规律 与预测 社 ,0 7 1 . 2 0 .0 方 法 【 综掘 工作面瓦斯预测技术的研究》 . 2 】《 陈大力主编 , 煤矿安全出 2 0 .. 五 、煤层瓦斯 的涌 出规律 ( 煤层被揭 露后 ,随煤层 版 社 ,0 18 【]《 3 矿井瓦斯涌出理论 与预 测技术》 . 王魁军 , 程五 一等编著 , 煤 暴露时间延长) 炭 工 、 出版 社 ,0 9 7 l 20 ..
煤层瓦斯赋存规律

煤层瓦斯赋存规律
煤层瓦斯赋存规律是指煤矿中煤层瓦斯的分布、存在形式及其规律。
煤层瓦斯是由煤中的有机质在埋藏过程中形成的,在煤矿开采过程中具有潜在的危险性。
煤层瓦斯的赋存规律对煤矿安全生产具有重要意义。
煤层瓦斯赋存规律可以归纳为以下几个方面:
1. 吸附瓦斯:煤层中的瓦斯主要以吸附态存在于煤体孔隙中。
随着压力的减小或温度的升高,吸附瓦斯可以解吸并逸出。
吸附瓦斯的赋存量受煤种、煤质、压力及温度等因素的影响。
2. 渗透瓦斯:煤层中的瓦斯可以通过煤层间隙或裂隙的渗透而存在。
渗透瓦斯的赋存与煤层孔隙度、赋存压力、地应力及煤层裂隙特征等因素有关。
3. 包裹瓦斯:煤层中的瓦斯可以包裹在煤体中的微小气泡中存在。
包裹瓦斯的赋存量受煤体孔隙结构、煤质及煤体松散程度等因素的影响。
4. 瓦斯运移规律:煤层瓦斯的运移与煤体孔隙连通性、地应力、渗透能力等因素有关。
瓦斯通常遵循从高压区到低压区的流动规律,地质构造、矿井开采等因素会影响瓦斯的运移路径和速度。
了解煤层瓦斯赋存规律对煤矿安全生产具有指导意义,可以帮
助矿井管理人员做好瓦斯抽放、通风以及瓦斯爆炸防治等工作,从而提高煤矿的生产安全性。
深部煤层瓦斯赋存及解吸规律

表1 D-S理论的计算结果项目有火灾无火灾不确定结论温度传感器0.670.250.08有火灾烟雾传感器0.010.570.42无火灾氢气传感器0.680.020.30有火灾三种传感器同时进行检测时,为了获得更准确的结论,对三种传感器进行“与”和“或”运算。
本次计算对温度传感器、烟雾传感器、氢气传感器先取“与”合成运算;对烟雾传感器和氢气传感器取“或”合成运算。
采用三种类型的传感器从不同点探测,并进行数据合成(表2),来判断火灾是否发生,得出的结果较为准确。
表2 模拟火灾数据的合成结果项目有火灾无火灾不确定结论温度传感器0.670.25000.08有火灾烟雾传感器0.010.57000.42无火灾气体传感器0.680.02000.30有火灾融合结果0.720.240.05有火灾3 结语传感器网络广泛应用于火灾监测系统,在这种系统下,只需要将分布在不同监测区域内的传感器节点采集到的数据进行综合,对采集到的数据按照设定的贝叶斯D-S理论算法进行分析,并进行数据的融合,以便监测环境是否处于正常状态,从而确定是否有火灾的发生。
如果有火灾发生,系统就会发出警告信息,并通过触动其他的联锁设施,采取相应的灭火措施,控制火灾的蔓延,降低火灾的损失。
参考文献:[1] 王殊,阎毓杰,胡富平. 无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社,2007.[2] 于海斌,曾鹏. 智能无线传感器网络系统[M].北京:科学出版社,2006.[3] 张德跃. 无线传感器网络分簇路由算法研究[D].山东:山东师范大学,2008.[4]孙利民,李建中,陈渝. 无线传感器网络[M].北京:清华大学出版社,2005.作者简介:陈晓枫(1991-),女,本科,助理工程师,主要从事热工自动化仪表类相关工作。
欢迎广大作者在线投稿 为方便广大作者投稿,本刊设置在线“作者投稿系统”。
作者可以登录网址“http://fggl.”进行在线投稿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深部煤层瓦斯赋存规律及其涌出特征
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
深部煤层瓦斯赋存规律及其涌出特征瓦斯是煤矿的主要自然灾害之一,长期以来一直严重威胁着煤矿的安全生产和矿井的经济效益。
近几年来,少数低瓦斯矿井由于瓦斯规律不明,对突发的局部瓦斯异常涌出常疏于防范,相继发生了一系列的重大瓦斯事故(根据近几年统计资料初步表明,该类事故约占事故总数的25%左右),给国家和人民的生命财产造成了巨大损失。
因此,矿井瓦斯赋存、瓦斯涌出及其防治技术的研究多年来一直是我国煤矿,特别是高、突瓦斯矿井的重点研究课题,瓦斯研究工作受到了人们的高度重视。
1 夹河煤矿深部煤层瓦斯赋存规律及涌出特征研究的目的和意义
夹河煤矿是徐州矿务集团公司主力矿井之一。
从近几年生产中瓦斯涌出情况及实际瓦斯涌出资料来看,夹河煤矿矿井瓦斯来源较为丰富,因此,随着矿井开采深度的进一步延伸,瓦斯涌出量的增加,瓦斯涌出异常现象的发生将成为可能。
故探明并了解深部煤层瓦斯赋存规律及其涌出特征,对于更好地采取具有针对性的瓦斯防治技术措施,避免采掘
工作面瓦斯积聚和超限、甚至煤与瓦斯突出事故的发生,做到预防瓦斯超前,实现矿井安全采煤具有十分重要的现实意义。
2 夹河煤矿2#、7#和9#煤层物理性质和煤层特征分析
2.12#、7#和9#煤层描述
(1)下石盒组2#煤层
2#煤层全区发育,沉积特征明显,属结构复杂、沉积较稳定的可采中厚煤层。
煤层厚度0.20~4.41m,平均1.81m,煤的容重为1.34t/m3,其变化规律与井田构造格架有关。
(2)山西组7#煤层
7#煤层全区发育,沉积特征明显,属全区可采的较稳定中厚煤层。
煤层厚度0.37~5.35m,平均2.28m,煤的容重为1.34t/m3,其变化规律与井田构造格架有关。
(3)山西组9#煤层
9#煤层在夹2号断层以东及F1号断层上盘,总体上9#煤层沉积厚度大,稳定性好;而夹2号断层以西煤层沉积厚度小,稳定性差,属大部区域可采的较稳定中厚煤层。
煤层厚度0.20~4.05m,平均1.49m,煤的容重为1.35t/m3,其变化规律与井田构造格架有关。
2.2夹河煤矿2#、7#和9#煤层物理性质
夹河煤矿2#、7#和9#煤层物理性质如表1所示。
表1 夹河煤矿2#、7#和9#煤层物理性质
煤层号
颜色
光泽
坚固性系数
真密度
视密度
断口
裂隙
2#
黑色
半亮~半暗淡型2.065
1.314 3
1.247 8
条带状、鳞片状至块状
发育
7#
黑色
半亮型,玻璃光泽3.435
1.336 8
1.253 4
条带状、具平坦状至贝壳状
发育
9#
黑色
半亮~光亮型玻璃光泽2.812
1.313 2
1.220 6
条带状、块状结构
发育
3 夹河煤矿2#、7#和9#煤层瓦斯地质分析
3.1钻孔煤层瓦斯含量及成分分析
近几年,集团公司地质勘探工程处对夹河煤矿2#、7#和9#煤层进行了23次瓦斯含量解吸测定,钻孔煤层瓦斯分析使用瓦斯吸附解吸实验仪及气样色谱质谱仪进行煤层瓦斯含量测定与成分分析。
测定结果如表2所列。
由表2可知,7#、9#煤层甲烷含量较2#煤层高,各煤层瓦斯成分均以甲烷为主,重烃微量。
据煤层瓦斯成分分析,本煤田瓦斯分带应为沼气带。