混凝土细观力学研究进展及评述
混凝土细观力学研究进展综述共3篇

混凝土细观力学研究进展综述共3篇混凝土细观力学研究进展综述1混凝土作为一种重要的基础建材,其力学性能的研究一直是混凝土材料科学领域的重要研究内容。
近年来,随着人们对工程结构安全性的要求越来越高,混凝土细观力学研究在材料科学领域变得越来越重要。
混凝土细观力学研究的基本思路是将混凝土看成是由一系列的微观单元构成的,通过对这些微观单元的力学响应进行分析、研究和计算,以揭示混凝土的力学性能。
混凝土的微观单元主要包括水泥石、骨料、孔隙等,因为这些单元的形态、大小和分布等因素会影响混凝土的宏观力学性能。
混凝土细观力学研究的核心问题之一是混凝土的力学损伤与破坏。
在混凝土中,由于微观单元之间的相互作用和外部加载作用等因素,混凝土可能发生微裂纹、裂缝扩展、局部破坏等过程,这些过程将直接影响混凝土的宏观力学性能。
因此,深入研究混凝土力学损伤与破坏机理,对于深入理解混凝土的力学性能、提高混凝土的力学性能具有重要意义。
近年来,混凝土细观力学研究在许多方面取得了重要进展。
首先是在混凝土力学损伤与破坏机理的研究上,在微观单元尺度上,人们通过数值模拟、实验研究等手段,发现混凝土的破坏过程是由微裂纹、裂缝扩展到宏观破坏的连续过程,其中裂缝扩展是破坏过程中最主要的损伤形式。
其次,在混凝土本构关系的研究上,人们根据微观单元的力学响应,通过多尺度分析方法建立了混凝土的本构关系,这对于混凝土宏观力学性能的计算和分析具有重要意义。
此外,混凝土的疲劳损伤与寿命研究、混凝土在高温下的性能等也是混凝土细观力学研究领域中重要的研究方向。
总的来说,混凝土细观力学研究在深入理解混凝土力学性能、提高混凝土工程结构安全等方面具有重要的科学意义和工程应用价值。
未来,混凝土细观力学研究领域需要继续深化相关理论和数值模拟技术,探究混凝土的力学性能与微观单元结构的关系,为混凝土工程结构的优化设计和施工提供更加精准的理论基础。
混凝土细观力学研究进展综述2随着现代科技和工程实践的发展,混凝土作为一种最基础的建筑材料,已经被广泛应用于建筑结构和基础工程中。
《基于三维细观模型的混凝土损伤力学行为研究》范文

《基于三维细观模型的混凝土损伤力学行为研究》篇一一、引言混凝土作为建筑结构的主要材料,其力学性能的研究对于保障建筑安全具有重要意义。
混凝土损伤力学行为的研究是该领域的重要方向之一,而基于三维细观模型的混凝土损伤力学行为研究更是近年来研究的热点。
本文旨在通过建立三维细观模型,对混凝土损伤力学行为进行深入研究,以期为混凝土结构的设计和施工提供理论支持。
二、混凝土三维细观模型的建立建立混凝土三维细观模型是研究混凝土损伤力学行为的基础。
该模型应包含混凝土的基本组成成分,如骨料、砂浆和气孔等。
在模型中,需要考虑到各种组成成分的形状、大小、分布和排列方式等因素,以及它们之间的相互作用关系。
目前,随着计算机技术的不断发展,通过数值模拟方法建立混凝土三维细观模型已成为可能。
在建立混凝土三维细观模型时,需要考虑到模型的尺度问题。
由于混凝土结构的尺度较大,因此在建模时需要选择合适的尺度范围。
同时,需要考虑模型的精细度问题,即在保证计算效率的同时尽可能地提高模型的精度。
三、混凝土损伤力学行为的研究方法混凝土损伤力学行为的研究方法主要包括实验研究和数值模拟两种方法。
实验研究可以通过对混凝土试件进行加载、卸载等操作,观察其力学性能的变化,从而得出混凝土的损伤规律。
而数值模拟则可以通过建立混凝土三维细观模型,利用有限元等方法对混凝土进行力学分析,从而得出混凝土的损伤情况。
在研究混凝土损伤力学行为时,需要考虑到混凝土的多种因素,如骨料类型、砂浆性质、气孔分布等。
因此,在实验研究和数值模拟中,需要设计多种方案,以全面了解混凝土的损伤规律。
四、基于三维细观模型的混凝土损伤力学行为研究基于三维细观模型的混凝土损伤力学行为研究,可以通过对模型进行力学分析,得出混凝土的损伤情况。
在分析过程中,需要考虑到混凝土的多种因素,如骨料形状、大小和分布,砂浆的强度和弹性模量等。
同时,还需要考虑到混凝土的应力状态、加载速率等因素对损伤的影响。
在研究中,可以采用有限元等方法对模型进行力学分析。
《基于多种深度学习模型的混凝土宏细观力学行为研究》范文

《基于多种深度学习模型的混凝土宏细观力学行为研究》篇一一、引言混凝土作为建筑工程中最为常用的材料之一,其力学性能的研究具有重要意义。
近年来,随着深度学习技术的发展,越来越多的研究者开始将其应用于混凝土材料的宏细观力学行为研究。
本文旨在通过采用多种深度学习模型,对混凝土宏细观力学行为进行深入研究,以期为混凝土材料的性能优化提供理论支持。
二、文献综述在过去的研究中,混凝土宏细观力学行为的研究主要依赖于传统的试验方法和理论分析。
然而,这些方法往往需要大量的时间和人力成本,且难以全面反映混凝土材料的复杂性能。
近年来,随着深度学习技术的发展,越来越多的研究者开始将其应用于混凝土材料的力学行为研究。
其中,卷积神经网络、循环神经网络、生成对抗网络等深度学习模型在混凝土材料的图像识别、裂纹扩展预测、力学性能预测等方面取得了显著的成果。
三、研究问题与方法本研究采用多种深度学习模型,包括卷积神经网络、循环神经网络和生成对抗网络等,对混凝土宏细观力学行为进行研究。
首先,通过图像识别技术,对混凝土试件的表面裂纹进行识别和分类。
其次,利用循环神经网络对混凝土材料的应力-应变曲线进行预测和分析。
最后,采用生成对抗网络对混凝土材料的微观结构进行模拟和预测。
在研究过程中,我们采用了大量的实验数据和公开数据集进行模型训练和验证。
同时,我们还对不同模型进行了对比分析,以确定最优的模型结构和参数。
四、实验结果与分析1. 图像识别结果通过卷积神经网络对混凝土试件表面裂纹进行识别和分类,我们得到了较高的识别准确率和分类精度。
其中,对于表面裂纹的形状、大小和分布等特征,模型能够有效地进行提取和分类。
2. 应力-应变曲线预测结果利用循环神经网络对混凝土材料的应力-应变曲线进行预测和分析,我们发现模型能够较好地拟合实际数据,并预测混凝土材料的力学性能。
通过对比不同模型的预测结果,我们发现循环神经网络在处理时间序列数据方面具有较好的性能。
3. 微观结构模拟结果采用生成对抗网络对混凝土材料的微观结构进行模拟和预测,我们得到了与实际微观结构相似的模拟结果。
混凝土细观力学研究进展及评述

混凝土细观力学研究进展及评述马怀发陈厚群黎保琨展,在细观层次上利用数值方法直接模拟混凝土试件或结构的裂缝扩展过程及破坏形态,直观地反映出试件的损伤破坏机理引起了广泛的注意。
近十几年来,基于混凝土的细观结构,人们提出了许多研究混凝土断裂过程的细观力学模型,最具典型的有格构模型(Latticemodel)、随机粒子模型(R跚domparticle啪del)‘掣MohamedAR【引等提出的细观模型、随机骨料模型(Randomaggllegatemodel)及唐春安等人心8’2引提出的随机力学特性模型等。
这些模型都假定混凝土是砂浆基质、骨料和两者之间的粘结带组成的三相复合材料,用细观层次上的简单本构关系来模拟复杂的宏观断裂过程。
另外,文献[30~32]根据混凝土材料特性与分形维数的相关关系,运用分形方法定量描述了混凝土的损伤演化行为。
4.1格构模型格构模型将连续介质在细观尺度上被离散成由弹性杆或梁单元连结而成的格构系统,如图2。
每个单元代表材料的一小部分(如岩石、混凝土的固体基质)。
网格一般为规则三角形或四边形,也可是随机形态的不规则网格。
单元采用简单的本构关系(如弹脆性本构关系)和破坏准则,并考虑骨料分(a)格构杼件网络(b)格构杆件属性布及各相力学特性分布的随机性。
计算时,图2格构模型在外载作用下对整体网格进行线弹性分析,计算出格构中各单元的局部应力,超过破坏阈值的单元将从系统中除去,单元的破坏为不可逆过程。
单元破坏后,荷载将重新分配,再次计算以得出下个破坏单元。
不断重复该计算过程,直至整个系统完全破坏,各单元的渐进破坏即可用于模拟材料的宏观破坏过程。
格构模型思想产生于50多年前,当时由于缺乏足够的数值计算能力,仅仅停留在理论上。
20世纪80年代后期,该模型被用于非均质材料的破坏过程模拟n8瑚’21’33。
6]’。
后来,schlangenE等人汹’21’”“3将格构模型应用于混凝土断裂破坏研究,模拟了混凝土及其它非均质材料所表现的典型破坏机理和开裂面的贯通过程。
混凝土静态力学性能的细观力学方法述评

结合实际的工程经验,混凝土细观有限元法、理论分析法。针对混凝土ห้องสมุดไป่ตู้渡区中的难题,提出了混凝土静态力学性能今后的研究方向。
一、概述
由混凝土材料组成的工程结构,如高坝、桥梁、海洋平台、核电站、隧道、地基基础及边坡等是基础设施建设中重要的组成部分。混凝土材料是以水泥为主要胶结材料,拌合一定比例的砂、石和水,经过搅拌、振捣、养护等工序后,逐渐凝固硬化而成的复合材料。粗骨料和硬化水泥砂浆两种主要组成材料的成分、性质、配比以及粘结作用均对混凝土的力学特性有不同程度的影响,这使混凝土比其他单一材料具有更为复杂的力学性能。混凝土力学特性(宏观应力–应变关系)是进行大坝、海洋平台、边坡等混凝土结构抗震设计及静、动力仿真分析的重要基础之一,也是目前研究的薄弱环节。根据特征尺寸和研究方法侧重点的不同将混凝土材料内部结构分为3个层次,微观层次、细观层次及宏观层次.目前,对于混凝土材料的力学特性与本构模型方面的研究主要从宏观和细观两个层次进行.早期,人们基于连续介质理论分析混凝土及混凝土工程结构的力学行为的前提是,假设混凝土为各向同性材料,但这样的宏观模型不能揭示混凝土内部结构、组成与宏观力学性能之间的关系,不能合理解释其裂纹扩展规律,难以描述细观非均匀性引起的混凝土材料损伤及局部应力集中导致的局部破坏现象。混凝土力学实验是研究混凝土材料力学特性及混凝土结构力学行为和断裂过程的最基本的研究方法,实验结果为研究提供了宝贵资料。但是由于加载条件、试验机刚度、实验费用以及混凝土试件规格(大体积混凝土)等的限制,实验结果不能反映试件的材料性能,甚至实验难以进行。细观力学理论的发展和高速大容量电子计算机的出现,为用数值方法研究混凝土细观结构对混凝土材料破坏的影响,及细观裂缝发展与宏观力学性能之间的关系提供了新思路.在细观层次上,混凝土可以看作是由粗细骨料、砂浆基质及过渡区界面(ITZ)、微裂纹或孔隙等组成的多相复合材料。如何建立起复合材料的有效性能和组分性能,以及微观结构组织参数之间的关系,一直是复合材料细观力学研究的重点,也是复合材料细观力学研究的核心目标之一.细观力学方法大体分为两类:细观力学有限元法和理论分析法。有限元细观计算力学应用于复合材料力学行为数值模拟的本质是将有限元计算技术与细观力学及材料学相结合,根据复合材料具体细观结构,建立细观计算模型、界面条件和边界条件,求解受载下细观复合材料模型中具有夹杂的边值问题.从而建立起细观局部场量与宏观平均场量间的关系,最终获得复合材料的宏观力学响应。
《2024年细观混凝土分析模型与方法研究》范文

《细观混凝土分析模型与方法研究》篇一一、引言混凝土作为现代建筑与工程领域最常用的材料之一,其性能和结构特性的研究具有至关重要的意义。
随着科技的进步和研究的深入,细观混凝土分析模型与方法的研究逐渐成为混凝土材料研究的重要方向。
本文旨在探讨细观混凝土分析模型与方法的原理、应用及发展趋势,为混凝土材料的研究与应用提供理论支持。
二、细观混凝土分析模型1. 细观结构模型细观结构模型是研究混凝土内部结构的重要手段,主要包括微观结构模型和细观力学模型。
微观结构模型通过观察混凝土内部微观结构,如骨料形状、孔隙分布等,来描述混凝土的细观特性。
细观力学模型则通过分析混凝土内部各组分(如骨料、砂浆、孔隙等)的力学性能和相互作用,来揭示混凝土的宏观力学行为。
2. 数值模拟模型数值模拟模型是利用计算机技术对混凝土进行数值模拟分析的方法。
常见的数值模拟模型包括有限元模型、离散元模型和格构模型等。
这些模型可以模拟混凝土在受力过程中的应力、应变、裂纹扩展等行为,为混凝土的细观性能研究和结构设计提供有力支持。
三、细观混凝土分析方法1. 实验方法实验方法是研究细观混凝土性能的主要手段,包括试件制备、材料性能测试、微观结构观察等。
通过实验,可以获得混凝土的各种性能参数,如抗压强度、抗拉强度、弹性模量等。
此外,利用显微镜、扫描电镜等设备,可以观察混凝土内部的微观结构,为细观结构模型提供依据。
2. 数值分析方法数值分析方法是利用计算机技术对混凝土进行数值分析和模拟的方法。
常见的数值分析方法包括有限元法、离散元法、边界元法等。
这些方法可以模拟混凝土在各种工况下的力学行为,为混凝土的结构设计和性能评估提供依据。
四、细观混凝土分析模型与方法的应用细观混凝土分析模型与方法在建筑、桥梁、道路、隧道等工程领域具有广泛的应用。
通过细观混凝土分析,可以了解混凝土的内部结构和性能,为混凝土的结构设计、施工质量控制和性能评估提供依据。
此外,细观混凝土分析还可以为新型混凝土的研发和应用提供指导,推动混凝土材料的不断创新和发展。
《2024年细观混凝土分析模型与方法研究》范文

《细观混凝土分析模型与方法研究》篇一摘要:本文针对混凝土材料在细观尺度上的分析模型与方法进行了深入研究。
首先,介绍了混凝土细观分析的重要性及其在工程实践中的应用。
接着,详细阐述了细观混凝土分析模型的构建过程,包括材料组成、微观结构以及力学性能的模拟。
最后,探讨了不同分析方法的特点及适用性,并通过实例验证了所提方法的可行性和有效性。
一、引言混凝土作为一种重要的建筑材料,在工程实践中广泛应用。
然而,混凝土材料的性能受其微观结构影响较大,因此,对混凝土进行细观分析具有重要意义。
细观混凝土分析模型与方法的研究,有助于深入了解混凝土材料的性能、耐久性及力学行为,为工程实践提供理论支持。
二、细观混凝土分析模型的构建1. 材料组成细观混凝土分析模型的材料组成主要包括骨料、水泥浆体、孔隙和界面过渡区等。
这些组成部分的相对比例、形状和分布对混凝土的宏观性能具有重要影响。
在构建模型时,需充分考虑这些因素。
2. 微观结构微观结构是混凝土细观分析的核心内容。
通过电子显微镜、X射线计算机断层扫描等技术手段,可以观察到混凝土的微观结构特征。
在构建分析模型时,需将这些结构特征进行抽象化、数学化,以便进行定量分析和模拟。
3. 力学性能模拟细观混凝土分析模型的另一个重要方面是力学性能的模拟。
通过建立本构关系、破坏准则等,对混凝土的力学行为进行模拟,从而预测其在不同条件下的性能表现。
三、细观混凝土分析方法1. 实验方法实验方法是细观混凝土分析的重要手段。
通过制备不同配比的混凝土试样,进行力学性能测试、微观结构观察等实验,获取混凝土的性能数据和结构特征。
这些数据为构建和分析细观混凝土模型提供了基础。
2. 数值模拟方法数值模拟方法是细观混凝土分析的另一种重要手段。
通过建立有限元模型、离散元模型等,对混凝土的力学行为进行数值模拟。
这种方法可以预测混凝土的力学性能,并揭示其微观结构对宏观性能的影响机制。
四、不同分析方法的特点及适用性实验方法直观可靠,但成本较高,耗时较长。
《基于三维细观模型的混凝土损伤力学行为研究》范文

《基于三维细观模型的混凝土损伤力学行为研究》篇一一、引言混凝土作为一种常见的建筑材料,其力学性能和损伤行为一直是土木工程、材料科学等领域的热点研究课题。
为了更好地理解和掌握混凝土材料的力学行为和损伤机制,学者们对混凝土的结构特性、细观结构和力学性能进行了大量的研究。
本文旨在通过建立三维细观模型,研究混凝土材料的损伤力学行为,以期为混凝土结构的性能优化和设计提供理论依据。
二、三维细观模型的建立基于混凝土的微观结构特点,本文采用数字化建模技术建立了混凝土的三维细观模型。
该模型包含了混凝土内部的骨料、砂浆和孔隙等细观结构单元,以及它们之间的相互作用关系。
在模型中,骨料和砂浆被视为刚性体,而孔隙则被视为弹性体。
此外,考虑到混凝土内部的非均匀性,我们还引入了随机性因素,使模型更符合实际情况。
三、损伤力学模型的建立损伤是混凝土材料的重要性能之一,为了研究混凝土的损伤力学行为,我们建立了基于三维细观模型的损伤力学模型。
该模型将混凝土的损伤过程分为微观裂纹的萌生、扩展和宏观裂缝的形成三个阶段。
在模型中,我们引入了损伤变量来描述混凝土的损伤程度,通过分析不同阶段的应力-应变关系和能量耗散情况,来研究混凝土的损伤力学行为。
四、数值模拟与结果分析基于建立的三维细观模型和损伤力学模型,我们进行了数值模拟实验。
通过改变模型的参数,如骨料含量、孔隙率等,来研究不同因素对混凝土损伤力学行为的影响。
结果表明,骨料含量和孔隙率对混凝土的损伤行为具有显著影响。
当骨料含量较高时,混凝土的抗损伤能力较强;而孔隙率较高时,混凝土的损伤程度较大。
此外,我们还发现混凝土在受荷过程中,微观裂纹的扩展和宏观裂缝的形成具有一定的规律性,这些规律对混凝土的性能和耐久性具有重要意义。
五、结论与展望通过本文的研究,我们得出以下结论:基于三维细观模型和损伤力学模型的研究方法,能够有效地揭示混凝土材料的损伤力学行为;骨料含量和孔隙率是影响混凝土损伤行为的重要因素;混凝土在受荷过程中,微观裂纹的扩展和宏观裂缝的形成具有一定的规律性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土细观力学研究进展及评述(1.北京工业大学分部,北京100044;2.中国水利水电科学研究院工程抗震研究中心,北京100044)摘要:本文介绍了混凝土细观力学的研究方法,总结了到目前为止在细观层次上对混凝土实验研究和数值模拟的研究成果,详细分析讨论了格构模型、随机骨料模型和随机力学特性模型3种细观力学数值模型的优缺点。
目前混凝土细观力学的研究主要集中对细观数值模型的研究,已建立起来的细观数值模型仍待完善,同时尚缺乏系统的各相材料力学特性参数试验测定成果。
用细观力学数值模拟取代部分试验任务还要做很多工作。
关键词:混凝土;细观力学;数值模拟;试验研究中图分类号:TV313 文献标识码:A1 引言混凝土是由水、水泥和粗细骨料组成的复合材料。
一般从特征尺寸和研究方法的侧重点不同将混凝土内部结构分为三个层次(如图1):(1)微观层次(Micro-level)。
材料的结构单元尺度在原子、分子量级,即从小于10-7cm~10-4cm着眼于水泥水化物的微观结构分析。
由晶体结构及分子结构组成,可用电子显微镜观察分析,是材料科学的研究对象;(2)细观层次(Meso-level)。
从分子尺度到宏观尺度,其结构单元尺度变化范围在10-4厘米至几厘米,或更大些,着眼于粗细骨料、水泥水化物、孔隙、界面等细观结构,组成多相复合材料,可按各类计算模型进行数值分析。
在这个层次上,混凝土被认为是一种由粗骨料、硬化水泥砂浆和它们之间的过渡区(粘结带)组成的三相材料。
砂浆中的孔隙很小而量多,且随机分布,水泥砂浆力学性能可以看作细观均质损伤体。
相同配合比、相同条件的砂浆试件,通常其力学性能也比较稳定,可以由试验直接测定。
由泌水、干缩和温度变化引起粗骨料和水泥砂浆之间产生初始粘结裂缝,而这些细观内部裂隙的发展将直接影响混凝土的宏观力学性能;(3)宏观层次(Macro-level)。
特征尺寸大于几厘米,混凝土作为非均质材料存在着一种特征体积,一般认为是相当于3~4倍的最大骨料体积。
当小于特征体积时,材料的非均质性质将会十分明显;当大于特征体积时,材料假定为均质。
有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变的关系成为宏观的应力应变关系。
图1 混凝土的层次结构示意长期以来,人们对混凝土材料和构件宏观力学性能的劣化直至破坏全过程的机理、本构关系、力学模型和计算方法都非常重视,并且用各种理论和方法进行了研究。
为了研究其材料组织结构和裂缝的开展以及在单轴、双轴、三轴应力的作用与强度之间的关系,人们作了大量试验。
强度理论也从最简单的最大拉应力理论、最大拉应变理论,发展到单剪应力系列、八面体剪应力系列、双剪应力系列,直至现在的统一强度理论[1]。
关于混凝土本构关系的研究也有大量文献,概括起来混凝土本构关系模型[2,3]主要有以下三种:(1) 弹性本构模型,包括线弹性和非线性弹性本构模型;(2)以经典塑性理论为基础的本构模型;(3)基于不可逆热力学的本构模型,包括内蕴时间模型和损伤力学模型。
对混凝土细观结构的研究表明,即使在加载以前,混凝土内部已有微裂缝存在。
这种微裂缝一般首先在较大骨料颗粒与砂浆接触面(粘结带)上形成,即所谓的初始粘结裂缝。
这是由于水泥砂浆在混凝土硬化过程中干缩引起的。
砂浆和粗骨料接触面处是混凝土内部的薄弱环节,正是这种接触面导致混凝土具有较低的抗拉强度。
粘结裂缝的数量取决于许多因素,包括骨料尺寸及其级配、水泥用量、水灰比、固化强度、养护条件、环境湿度和混凝土的发热量等。
由于骨料和砂浆的刚度不同,在加载过程中,这种裂缝还将进一步发展,以致使混凝土在宏观上的应力应变曲线呈现出非线性。
不均匀性是混凝土材料的最本质的特点,微裂缝是决定其性能的主导因素。
材料和物理学家从微观的角度研究微缺陷产生和扩展的机理,但是所得结果不易与宏观力学量相关联。
而着眼于宏观裂纹分析的混凝土裂断力学理论和方法,主要研究裂纹尖端附近的应力场、应变场和能量释放率等,以建立宏观裂纹起裂、裂纹的稳定扩展和失稳扩展的判据。
但是断裂力学无法分析宏观裂纹出现以前材料中微缺陷或微裂纹的形成及其发展对材料力学性能的影响。
为了建立混凝土细微观结构各种缺陷及其特性的不均匀性与其在宏观力学特性的关系,自20世纪70年代末[4],人们发展了混凝土细观力学研究方法。
2 混凝土细观力学的研究方法细观力学将混凝土看作由粗骨料、硬化水泥胶体以及两者之间的界面粘结带组成的三相非均质复合材料。
选择适当的混凝土细观结构模型,在细观层次上划分单元,考虑骨料单元、固化水泥砂浆单元及界面单元材料力学特性的不同,以及简单的破坏准则或损伤模型反映单元刚度的退化,利用数值方法计算模拟混凝土试件的裂缝扩展过程及破坏形态,直观地反映出试件的损伤断裂破坏机理。
由于细观上破坏或损伤单元刚度的退化,使得混凝土试件所受荷载与变形之间的关系表现为非线性。
细观力学的研究需要将试验、理论分析和数值计算三方面相结合。
试验观测结果提供了细观力学的实物物性数据和检验判断标准;理论研究总结出细观力学的基本原理和理论模型;数值模拟计算是细观力学不可少的有效研究手段。
人们可以在细观层次上合理地采用各相介质本构关系的情况下,借助于计算机的强大运算能力,对混凝土复杂的力学行为进行数值模拟,而且能够避开试验机特性对于试验结果的影响。
数值模拟可直观再现混凝土细观结构损伤和破坏过程。
当前混凝土细观力学数值模拟主要沿着两个方向进行:(1)将连续介质力学、损伤力学和计算力学相结合去分析细观尺度的变形、损伤和破坏过程,以发展较精确的细观本构关系和模拟细观破坏的物理机制;(2)基于对细观结构和细观本构关系的认识,将随机分析等理论方法与计算力学相结合去预测材料的宏观性质和本构关系,对混凝土试件的宏观响应进行计算仿真。
3 混凝土细观力学的试验研究随着自动控制系统和电液伺服加载系统在结构试验中的广泛应用,从根本上改变了试验加载的技术,由过去的重力加载逐步改进为液压加载,进而过渡到低周反复加载、拟动力加载以及地震模拟随机振动台加载等。
CT扫描,微波内部成像,声发射以及光纤应变传感器等已应用于解决应力、位移、裂缝、内部缺陷、损伤及振动的量测问题[5~14]。
在试验数据的采集和处理方面,实现了量测数据的快速采集、自动化记录和数据自动处理分析等。
与计算机联机的拟动力伺服加载系统可以在静力状态下量测结构的动力反应。
由计算机完成的各种数据采集和自动处理系统可以准确、及时、完整地收集并表达荷载与试件材料行为的各种信息。
试验的作用有两个方面:一方面,为细观数值模拟提供基础数据,包括试样组成材料的细观力学性质、试样的尺寸等;另一方面,检验数值模拟结果的可靠性。
在从细观层次入手进行混凝土的断裂过程模拟时,混凝土被视为由砂浆基质、粗骨料以及两者之间界面组成的复合材料,必须通过试验确定这三相组成材料的力学性质(包括弹性模量、强度、本构关系等),以此为基础才能进行混凝土试样的断裂过程模拟,但是模拟结果还必须与真实试件的宏观试验结果进行比较,以验证其正确性和适用性。
但在细观层次上,研究混凝土各相材料的试验资料并不多。
进行细观力学数值模拟试验要以基本试验数据为基础,数值模拟的结果最终还要得到宏观试验结果的验证。
作者所见的国内最早进行水泥浆体与骨料界面结合能力试验研究是同济大学的吴科如等人[15],文献[15]设计了4种结合类型,分别测定了大理石粗骨料与水泥浆体结合面的劈拉强度和断裂能,并讨论了增强硬化水泥浆体-粗骨料界面结合力对混凝土断裂能的影响。
刘光廷等[16]给出了粗骨料、水泥浆体及其结合面的抗拉强度、弹模等统计参数。
宋玉普[17]介绍了全级配混凝土试件进行的系列试验,研究了全级配混凝土试件单轴抗拉、抗压、襞裂抗拉和抗折的强度及变形等特性,对试件的破坏形态及裂纹传播路径等进行了统计处理。
van Mier J G M[18] Horsch T和Schlangen E[20,21]等[19]给出了混凝土三相组成材料的力学特性具有参考价值的试验资料。
文献[18]系统地讨论了混凝土单轴压、单轴拉,剪切(Ⅱ,Ⅲ及混合型)微裂缝产生、扩展过程和细观力学机制,研究了骨料尺寸、类型、水灰比、养护条件以及压板摩擦约束和刚度对试验结果的影响。
Hordijk D A[22]基于非线性断裂力学,比较系统地进行了素混凝土试件单轴拉伸和疲劳加载以及四点弯曲梁循环加载试验及数值模拟,绘出了应力变形全曲线,并总结了相应的本构关系。
应该指出,上述文献有关骨料、固化水泥砂浆基质的力学特性都有一些试验统计数据,而水泥骨料结合面力学特性指标的试验研究则较为少见。
组成混凝土各相材料的力学特性是进行数值模拟的基础。
为了获得这些基本参数,有针对性地进行试验,特别是对水泥骨料结合面的力学特性开展研究是必不可少的。
“九五”期间,中国水利水电科学研究院结合小湾高拱坝工程,进行了大坝全级配混凝土静、动态试件的试验研究[23]。
该项试验研究试件样本容量较少,但据此得出的初步结论表明:在与高拱坝长周期相应的加载速率下,全级配混凝土和湿筛混凝土的动态抗压强度及动态抗压弹性模量较静态值提高幅度不等,但都低于目前规范所规定的30%;在试验的加载速度下,全级配混凝土的动态弯拉强度和动态弯拉弹性模量较静态值提高幅度均低于30%。
另外,特别值得注意的是,具有初始静载试验的极限弯拉强度并不小于动态弯拉强度,不同初始静载对极限弯拉强度未见有不利的影响。
混凝土是一种多相介质的复合材料,其力学特性与所采用的水泥标号、骨料质量、水灰比、混凝土的配合比、制作方法、养护条件以及混凝土龄期等有关。
试验时采用的试件尺寸和形状、试验方法和加载速度不同,测得的数据也不同。
因此,深入系统地进行全级配大坝混凝土的静、动态试验研究,弄清全级配混凝土和湿筛混凝土的力学特性及其在不同初始静载时的动强度变化规律对高拱坝抗震设计是至关重要的。
这是我国强震区高拱坝抗震研究中的薄弱环节,急需加强。
4 细观力学数值模拟研究混凝土力学试验是研究其断裂过程和宏观力学性质的基本手段。
但是,由于试验条件的限制,往往其试验结果不能反映试件的材料特性,而只能反映整个试样-加载系统的结构特性。
细观力学数值模拟,在计算模型合理和混凝土各相材料特性数据足够精确的条件下,可以取代部分试验,而且能够避开试验条件的客观限制和人为因素对其结果的影响。
Wittmann F H[24]和Zaitsev Y V[4,25]把混凝土看作非均质复合材料,在细观层次上研究了混凝土的结构、力学特性和裂缝扩展过程。
随着计算技术的发展,在细观层次上利用数值方法直接模拟混凝土试件或结构的裂缝扩展过程及破坏形态,直观地反映出试件的损伤破坏机理引起了广泛的注意。